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Abstract: Oil palm is rapidly expanding in Southeast Asia and represents one of the major drivers
of deforestation in the region. This includes both industrial-scale and smallholder plantations,
the management of which entails specific challenges, with either operational scale having its own
particular social and environmental challenges. Although, past studies addressed the mapping of
oil palm with remote sensing data, none of these studies considered the discrimination between
industrial and smallholder plantations and, furthermore, between young and mature oil palm stands.
This study assesses the feasibility of mapping oil palm plantations, by typology (industrial versus
smallholder) and age (young versus mature), in the largest palm oil producing region of Indonesia
(Riau province). The impact of using optical images (Sentinel-2) and radar scenes (Sentinel-1) in a
Random Forest classification model was investigated. The classification model was implemented in a
cloud computing system to map the oil palm plantations of Riau province. Our results show that
the mapping of oil palm plantations by typology and age requires a set of optimal features, derived
from optical and radar data, to obtain the best model performance (OA = 90.2% and kappa = 87.2%).
These features are texture images that capture contextual information, such as the dense harvesting
trail network in industrial plantations. The study also shows that the mapping of mature oil palm
trees, without distinction between smallholder and industrial plantations, can be done with high
accuracy using only Sentinel-1 data (OA = 93.5% and kappa = 86.9%) because of the characteristic
backscatter response of palm-like trees in radar scenes. This means that researchers, certification
bodies, and stakeholders can adequately detect mature oil palm stands over large regions without
training complex classification models and with Sentinel-1 features as the only predictive variables.
The results over Riau province show that smallholders represent 49.9% of total oil palm plantations,
which is higher than reported in previous studies. This study is an important step towards a global
map of oil palm plantations at different production scales and stand ages that can frequently be
updated. Resulting insights would facilitate a more informed debate about optimizing land use for
meeting global vegetable oil demands from oil palm and other oil crops.
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1. Introduction

Southeast Asia is one of the most rapidly deforesting regions in the world [1]. As such, deforestation
has been well-documented in the region, including its drivers, which are mostly due to various tree
cash crops [2]. It is estimated that, by 2012, Indonesia lost up to 83% more primary forest than
the Amazon region [3]. A major driver in the region is oil palm, which is still expanding at a high
rate, due to the favorable climate and policy conditions [4]. While the majority of these expansions
are truly large scale (i.e., industrial) driven by companies, local farmers are also expanding their
plantations (i.e., smallholders) [5]. The global extent of industrial-scale plantations was recently
estimated at 18.7 million ha (mha) [5], but the extent of smaller-scale plantations remains largely
unknown. Mosnier et al. [6] report that, as large scale oil palm plantation developers increasingly
comply with sustainability standards, the area cultivated by small-scale producers will likely increase.
Smallholders have limited financial means to clear and replant old plantations, which are generally
replanted after 25 years of production. For such reasons, there is a risk that smallholders abandon
their plantations after one production cycle and, eventually, establish new plantations in other areas,
thereby producing a new wave of deforestation. Although this is not yet happening [7].

The extent of industrial-scale plantations in Southeast Asia, particularly in Indonesia and Malaysia,
has been the focus of several studies that have relied on medium-resolution (10–30 m/pixel) satellite
images. There has been a multitude of methods used to map industrial plantations that have various
levels of automation [8–12]. These studies use radar satellite data (L-band in ALOS PALSAR and
C-band in Sentinel-1) as the main source for the classification of oil palm plantations. Closed oil palm
stands present a characteristic radar backscatter, which entails a high separability from other tropical
plantations [8]. Concretely, oil palm plantations show a higher backscatter than other vegetation types
in the dual cross-polarization bands and, secondly, the single co-polarization bands and the dual
cross-polarization bands present a large difference. More recently, such analyses have moved to cloud
processing platforms, holding various freely available satellite datasets, in an attempt to fully automate
mapping [9,10].

To date, several studies have attempted to map oil palm plantations without discriminating
plantations based on their type (industrial versus smallholder) and age. One study has attempted
to discriminate industrial and smallholder oil palm plantations [11], but its study area had a small
coverage (<50 km2) and considered only oil palm plantations in peatlands, which in consequence,
did not allow the generalization of the results at a regional scale for the entire Sumatra island. Due to
the difficulty in detecting young oil palm plantations, most of these studies have mapped mature
(>3 years, but potentially >8 years in some studies [12]) oil palm stands, apart from a recent work
that discriminated both classes [13]. As a result of these studies, the global extent of industrial
plantations is relatively well known, although it remains based on a patchwork of a large number of
different studies with different methodologies. Consequently, there is no standardized global map of
industrial-scale mature oil palm plantations [5]. The extent of smallholder plantations is, furthermore,
poorly quantified and estimates the proportion of smallholder plantations vary extensively between
countries, with Nigeria at the high end (~94%) and areas in Indonesia and Malaysia containing ~40% [5].

Hence, it is apparent that there are several challenges to overcome before attaining a globally
automated map of industrial and smallholder plantations, on which young and mature stands are
mapped at frequent intervals (e.g., one year). In this study, we aim to show the suitability of radar
(Sentinel-1) and optical (Sentinel-2) satellite data for the automated detection of oil palms and for
discriminating industrial and smallholder plantations. Thus, we collected a sample dataset in Riau
province (Indonesia) and assessed the performance of Sentinel-1 and Sentinel-2 for the mapping of
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oil palm plantations. The classification model was implemented in a large scale cloud processing
system [14]. Such an automated method of detecting industrial and smallholder plantations has the
benefit that it can potentially lead to a global oil-palm plantation map. It can be adopted by certifying
bodies, such as the Roundtable on Sustainable Oil Palm (RSPO) and additionally help to create a
transparent and free mapping tool for all of the involved stakeholders. It would also help in ongoing
debate about how to best meet future vegetable oil demands in the world, and which crops to use,
given their respective yields and social and environmental impacts [15].

2. Materials and Methods

2.1. Data and Study Area

2.1.1. Sentinel Missions

This study uses Synthetic Aperture Radar (SAR) data, collected by Copernicus’ Sentinel-1 satellites
(A and B), and optical multispectral images from Copernicus’ Sentinel-2 satellites (A and B); both
missions were launched by the European Space Agency. The Sentinel-1 mission provides SAR scenes
in the C-band with a global revisit time of 3 days. Sentinel-1 SAR Ground Range Detected (GRD)
with the highest spatial resolution (10 meters) was used in this study. The scenes were taken with
the interferometric wide swath mode in both ascending and descending orbits. The first scenes of
Sentinel-1 for the study area were taken in October 2014.

The Sentinel-2 mission is composed of two multispectral satellites with various spectral resolutions
(10, 20, and 60-meter resolution). We used the 10- and 20-meter resolution bands of level-1C orthorectified
Top-Of-Atmosphere reflectance. The first images of Sentinel-2 for the study area were taken in October
2016. Due to the timing and the constellation of the four satellites, this study focuses on the second
half of the year 2018 when both missions operated at their full capabilities.

2.1.2. Training and Validation Data Collection

The training and validation dataset was based on 4000 points that were collected in Riau province.
We discarded the points that were located within pixels that presented missing values in the Sentinel-1 or
Sentinel-2 composite images. Thus, only 3448 points were eventually used for the training and validation
of the algorithm (Figure 1). The points were subdivided for a 10-fold cross-validation (10% of the points
for training and 90% of the points for validation). We collected the points with a visual interpretation
over the study area using the high-resolution (sub-meter) Google Earth orthophotos, Sentinel-1, and
Sentinel-2 images. The points were collected with the geometry editing tools, that are available on the
Google Earth Engine (GEE) code editor. Another feature of the GEE code editor, which helped in visual
interpretation, is the fast visualization of satellite imagery. The classes that we visually distinguished
were: 1. Industrial mature oil palm plantations (621 points—18.01%), 2. Industrial young oil palm
plantations (727 points—21.08%), 3. Smallholder mature oil palm plantations (1016 points—29.47%),
4. Smallholder young oil palm plantations (244 points—7.08%), and 5. Other land uses that are not oil
palm plantations (840 points—24.36%).
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Figure 1. Riau province, and the locations of the training and validation points used in this study. 
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Binanga (North Sumatra), adjacent to Riau province, on 25 and 26 January 2019. The photos were 

taken in 23 spots and depicted both industrial and smallholder oil palm plantations at different 

growth stages (Figure 2). Such geotagged photos were useful for identifying the spatial patterns 

observed from satellite data that are characteristic of the different types of oil palm plantations. Here, 

the canopy closure is the feature that makes possible the discrimination between mature and young 

plantations: Young plantations present an open canopy until the age of 3 to 8 years (Figure 2b, 2c), 

while the canopy in mature plantations cover most of the surface (Figure 2d). Therefore, it was 

assumed that an oil palm plantation gets to its maturity when it reaches the full canopy coverage, at 

a varying threshold of 3 to 8 years. 

 

Figure 2. (a–d) Field photos around the village of Binanga (North Sumatra). The photos depict oil 

palm plantations of different ages. Note that oil palm stands reach the full canopy coverage between 

the ages of 3 and 8 years (photos ©  Erik Meijaard). 

Figure 1. Riau province, and the locations of the training and validation points used in this study.

The visual interpretation was supported with geotagged photos taken around the village of Binanga
(North Sumatra), adjacent to Riau province, on 25 and 26 January 2019. The photos were taken in
23 spots and depicted both industrial and smallholder oil palm plantations at different growth stages
(Figure 2). Such geotagged photos were useful for identifying the spatial patterns observed from satellite
data that are characteristic of the different types of oil palm plantations. Here, the canopy closure is
the feature that makes possible the discrimination between mature and young plantations: Young
plantations present an open canopy until the age of 3 to 8 years (Figure 2b,c), while the canopy in mature
plantations cover most of the surface (Figure 2d). Therefore, it was assumed that an oil palm plantation
gets to its maturity when it reaches the full canopy coverage, at a varying threshold of 3 to 8 years.
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Figure 2. (a–d) Field photos around the village of Binanga (North Sumatra). The photos depict oil
palm plantations of different ages. Note that oil palm stands reach the full canopy coverage between
the ages of 3 and 8 years (photos© Erik Meijaard).
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Industrial oil palm plantations were visually recognized through the presence of dense trail and
road networks. In flat surface plantations, the harvesting trails are usually built in straight lines and,
thus, form a rectilinear grid (Figure 3a). In contrast, the industrial plantations that are constructed
over steep terrain usually present curvy trails (Figure 3b,c). Similar trail networks can be found in
other plantations, such as pulpwood (Figure 3d). However, oil palm can be discriminated from other
plantations due to its characteristic backscatter response in radar images [8]. Smallholders, unlike
industrial plantations, can be distinguished with satellite images because they often form a landscape
mosaic, composed of different small plantations such as rubber and pulpwood (Figure 3e). Moreover,
smallholder plantations, when presented in clusters, show a less dense trail network than industrial
plantations (Figure 3f). One of the reasons for this is that, commonly, smallholder plantations are often
planted and, afterwards around the time of the first harvest, the harvesting trails are developed from
existing rural non-straight roads. Roads in industrial-scale plantations are instead developed at the
start of plantation and, therefore, equidistantly placed for optimal harvesting.
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Figure 3. Six areas in Riau province that show (a) an industrial oil palm plantation in a flat terrain,
(b) an industrial oil palm plantation in a hilly terrain, (c) industrial young plantation, (d) a pulpwood
plantation, (e) a mosaic of different types of smallholder plantations (mostly oil palm and rubber), and (f) a
homogeneous area of smallholder oil palm plantations. Images in the upper panel show Sentinel-2
composites (NIR-R-G), while the images in the lower panel are Sentinel-1 composites (VV-VH-VV).
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2.1.3. Study Area

While, oil palm plantations can be found in many parts of the tropics, they are mainly grown
in Southeast Asia, particularly in Malaysia and Indonesia. Riau province was selected as our area
of focus because the region is the largest producer of palm oil in Indonesia, and contributes up to
24% of the national production [1]. Riau province covers the central area of the island of Sumatra and
the Riau Archipelago. In this study, we considered the area of the province that covers the island of
Sumatra, which represents an area of 84,360 km2. Riau province has also a particular interest for oil
palm mapping because the growth of smallholder plantations is thought to have contributed up to the
21% increase in the overall oil palm plantation area from 2004 to 2009 [1].

2.2. Algorithm Overview

The processing chain for oil palm classification starts with the compositing of daily Sentinel-1 and
Sentinel-2 images hosted in Google Earth Engine [14]. In addition to the backscatter and spectral bands,
a feature extraction was applied to generate additional images that might improve the classification
model. A Random Forest algorithm was trained with four sets of input variables: (1) Sentinel-1
backscatter bands and features, (2) Sentinel-2 spectral bands and features, (3) Sentinel-1 and Sentinel-2
bands without features, and (4) an optimal set of Sentinel-1 and Sentinel-2 features.

Three classification setups were considered depending on the number and typology of classes.
Setup I considers the 5 classes explained in the ‘Study area’ section: 1. Industrial mature plantation,
2. Industrial young plantation, 3. Smallholder mature plantation, 4. Smallholder young plantation,
and 5. Other land uses. The classification setup II considers three classes: Mature industrial plantations,
mature smallholder plantations, and other land uses including young oil palm plantations. Lastly,
the setup III is a binary classification that distinguishes between mature oil palm plantations, without
differentiating typology, and the rest of land uses. Figure 4 shows a representation of the algorithm.
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2.2.1. Sentinel-1 and Sentinel-2 Compositing

The composite images are based on the median value of daily images during a six-month period
in Sentinel-2 (year1), and two six-month periods in Sentinel-1 (year1 and year1-i). For our case study,
the second half of the year 2018 was used for both Sentinel-1 and Sentinel-2, and the second half of the
year 2017 for Sentinel-1. The size of the compositing window was set to six months because it was the
minimum window size that could produce a cloud-free composite in Riau province.

For Sentinel-1, two backscatter bands were used: Dual cross-polarization band VH (vertical
transmit/horizontal receive) and the single co-polarization band VV (vertical transmit/vertical receive).
These bands were previously corrected with the local incident angle and using the 30-meter Shuttle
Radar Topography Mission (SRTM) dataset as the elevation data. For the Sentinel-2 composite,
we firstly masked the daily images with the quality band QA60, available in the product level-1C.
Additionally, the clouds were masked with a cloud-score algorithm adapted for Sentinel-2 [16]. Since
GEE does all its computations at a given scale, regardless of the spatial resolution of the original image,
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we computed all the composite band images at 10 meters, although the Sentinel-2 bands 6, 7, 8A, 11,
and 12 have 20 meters of spatial resolution.

2.2.2. Feature Extraction

Feature extraction is a process that aims to improve the accuracy in classification models by
generating a set of informative variables (features) from an original dataset. We derived several
additional predictive features out of the Sentinel-1 backscatter and Sentinel-2 spectral bands using
the median filter and texture analysis based on the Gray-Level Co-Occurrence Matrix (GLCM) [17,18].
The feature extraction resulted in 179 features. Table 1 shows the different convolutional operations,
the input bands, and the kernel size used in the convolution.

Table 1. Convolutional operations applied to Sentinel-1 and Sentinel-2 to extract additional
predictive features for the classification models. Vertical transmit/horizontal receive (VH) and vertical
transmit/vertical receive (VV) are the cross-polarization bands of Sentinel-1. Bi represents the spectral
bands of Sentinel-2, where i is the number of the band. The kernel size is the radius in pixels of a
squared kernel.

Operation Abbreviation Input Bands Kernel Size
(Pixels) Ref.

Median smooth VH, VV, B2, B3, B4, B6, B7, B8, B8A, B11, B12, evi 2, 5, and 10

GLCM asymmetry asm
GLCM contrast contrast

GLCM correlation corr
GLCM variance var

GLCM inv. dif. moment idm
GLCM sum average savg
GLCM sum variance svar VV_smooth_ksize5, VH_smooth_ksize5 10 and 30 [17]
GLCM sum entropy sent VV, B4, B7, B8, B11, evi

GLCM entropy ent
GLCM difference variance dvar
GLCM difference entropy dent

GLCM correlation 1 imcorr1
GLCM correlation 2 imcorr2

GLCM max. correlation coef. maxcorr

GLCM dissimilarity diss
GLCM inertia inertia VV_smooth_ksize5, VH_smooth_ksize5 10 and 30 [18]

GLCM cluster shade shade VV, B4, B7, B8, B11, evi
GLCM cluster prominence prom

2.2.3. Feature Selection

The 179 extracted features plus the original bands were analyzed with three different feature
selection methods in order to rank the most relevant features in the classification model and filter
redundant and non-informative data. The feature selection was only applied to the classification setup
that distinguishes among the 5 classes; industrial young and industrial mature plantations, smallholder
young and smallholder mature plantations, and other land uses. The three feature selection methods
included: (1) Sequential feature selection [19] or wrapper method, which is a greedy search algorithm
that evaluates the accuracy of a subset of features. We used the forward feature selection, which first
evaluates the model accuracy obtained with each single feature and then selects the feature f1 with
the highest accuracy. The kappa coefficient was used as the accuracy metric. Afterwards, the model
accuracy of each combination of feature f1 with the rest of the features is evaluated. The method
then selects the combination of features f1 and f2 with the highest accuracy. This sequential step is
repeated until the feature fn−1. (2) Gini importance [20,21], which is an implicit method in Random
Forest classification. We estimated the Gini coefficient with the implementation of Random Forest
in the Scikit-learn library. The Gini coefficient is calculated as the total decrease in node impurity
averaged over all decision trees of the Random Forest. The impurity measure is estimated with the
Gini index [20]. (3). Permutation analysis [21], which is a feature selection technique that assesses
the relevance of the features by testing the accuracy decrease when permuting the values of a single
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variable in each decision tree. The features are ranked by their accuracy decrease (kappa coefficient)
compared to the accuracy without permutation. The n features that show the highest accuracy decrease
are selected for the training stage of the model.

2.2.4. Random Forest Classification

The Random Forest classification algorithm [20] was selected for its fast computing times in model
training and prediction of samples. In this study, a fast implementation is particularly important for
the huge amount of data that is processed. Another particular advantage of Random Forest is the low
requirement for pre-processing the training data and the ability to predict data when an observation
presents missing values. Lastly, Random Forest presents a low tendency for overfitting due to the
random procedure during the training of the decision trees [20].

Random Forest is categorized as an ensemble classifier since it involves the training of several
decision trees h =

{
h1(x), . . . , hk(x)

}
. A decision tree itself is a classification algorithm, which builds a

model with a tree-like structure. The decision tree algorithm first finds the feature fi that best splits a
training set (X, Y) in two groups. The selection of feature fi is based on a measure of homogeneity in
the split groups. The Gini impurity was used as the measure of homogeneity. The algorithm iteratively
splits the training set until it reaches a stopping criterion, which is defined by the user with a set
of parameters. The parameters include the maximum depth of the tree, the minimum number of
training samples to split a node, and the number of features to consider a split [22]. In random forest,
given a training set (X, Y), each decision tree hi is trained with a random sampling of the training
data D =

{
(x1, y1), . . . , (xn, yn)

}
in each decision tree. Furthermore, the subset of the training data D

considers a random selection of features F =
{

f1, . . . , f j
}
. The final prediction class of a given sample

(xt, yt) is the mode (majority vote) of the resulting class predictions in the k decision trees.
Other supervised classification models were tested to further justify the choice of Random Forest.

We compared the performance of Random Forests (RF), k-Nearest Neighbors (k-NN), Support Vector
Machine (SVM), Classification and Regression Tree (CART), Naive Bayes (NB), and Minimum Distance
(MD) [23]. The comparison was done with a forward feature selection, in which the kappa coefficient
was evaluated for the 26 most relevant features of each model. For this analysis, the models were
trained without cross-validation using 30% of the samples for training and the remaining 70% for
validation. Although, the evaluation of the models was done with the Scikit-learn library, we chose
these classification models because these are implemented in GEE, except k-NN, and thus the model
comparison may serve for GEE users in future studies.

2.3. Accuracy Assessment and Model Selection

Each classification setup (I, II, and III) was evaluated with the kappa coefficient and the overall
accuracy. We also assessed the impact of the four sets of input variables. The models were evaluated with
a 10-fold cross-validation, using one fold for training and nine folds for validation. The cross-validation
generated a mean accuracy metric and its standard deviation, which gave us guidance on model
performance. However, the cross-validation technique can be misleading in model comparison because
it overestimates the true positive error. Thus, we used McNemar’s test [24] to test pairwise if the
performance of the best model in a classification setup was significantly higher than the rest of
the models.

2.4. Post-Processing

A post-classification procedure was applied to improve the appearance of the classification setup
I, with Sentinel-1 and Sentinel-2 optimal features as input variables of the model. The purpose
of the post-processing is only to enhance the visual appeal of the product. Thus, the accuracy
assessment and model comparison reported is based on the classification image before post-processing.
The post-processing consisted of the following steps:
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1. Morphology operations (closing) to remove misclassifications of mature smallholder plantations,
particularly inside the mature industrial plantations.

2. Reclassification of smallholder young plantations misclassified as industrial young plantations.
We reclassified the disconnected patches with a size lower than 150 pixels.

3. Mode filter to remove salt-and-pepper effects with a squared-kernel of 3 pixels of diameter.

3. Results

The performance of the models for the different classification setups is shown in Figure 5. Random
Forest was the model with the best accuracy in the three setups (kappa = 92.8%, 93.1%, and 95.8%),
followed by Support Vector Machine in setup I and II (kappa = 89.8% and 89.5%) and k-NN in setup
III (kappa = 95.6%). Except Naive Bayes and Minimum Distance in setups I and II, the models show a
similar performance with a kappa above 80% in the three setups. The number of features in which the
kappa accuracy saturated lies around 15 features in setup I, 10 features in setup II, and 5 features in
setup III.
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Figure 5. Results of the forward feature selection for six supervised classification models: Random
Forest (RF), k-Nearest Neighbors (k-NN), Support Vector Machine (SVM), Classification and Regression
Tree (CART), Naive Bayes (NB), and Minimum Distance (MD). Each plot is the results of a different
classification setup: (a) 1. Industrial mature oil palm, 2. Industrial young oil palm, 3. Smallholder
mature oil palm, 4. Smallholder young oil palm, and 5. Other land uses, (b) 1. Industrial mature oil
palm, 2. Smallholder mature oil palm, and 3. Other land uses, and (c) Mature oil palm, and 2. Other
land uses. The models were trained with 30% of the samples and tested with the remaining 70%.

Figure 6 shows the 26 most relevant features picked by the sequential feature selection,
the permutation analysis, and the Gini coefficient. The three methods selected features derived
from both Sentinel-1 and Sentinel-2 (Sentinel-1/Sentinel-2 features: 9/17 in sequential feature selection,
12/14 in Gini coefficient, and 10/16 in permutation analysis). The three methods tended to select only
extracted features, although the median features Bi_smooth_ksized are highly correlated with the
original spectral bands.
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Figure 6. Ranking of features that resulted from the three feature selection methods: (a) Sequential
feature selection, (b) Gini coefficient, and (c) permutation analysis. Features with a grey bar are
Sentinel-1 features, while features with a blue bar are derived from Sentinel-2 bands. The feature
selection method that shows the best accuracy is the sequential feature selection, which saturates from
the 15th feature with a kappa coefficient of 87.2 ± 2.2%. The accuracies are averaged kappa coefficients,
obtained with a 10-fold cross-validation with 10% of the samples for training and the remaining 90%
for validation.

The set of features that showed the highest kappa with the lowest number of features was selected.
The kappa coefficients obtained with the 26 most relevant features in each method are 87.3 ± 1.7% for
the sequential feature selection, 84.5 ± 1.3% for Gini coefficient, and 84.8 ± 2.0% for the permutation
analysis. The sequential feature selection shows the highest kappa coefficient, which already saturates
when adding more than 15 features. For this reason, we selected the first 15 features of the sequential
feature selection due to its high performance (kappa = 87.2 ± 2.2%) with a lower number of features
than the other methods.

The accuracy assessment shows the added value of combining Sentinel-1 and Sentinel-2 data for
the classification of oil palm plantations. Table 2 shows the overall accuracy and kappa coefficient
for the classification models trained with Sentinel-1 features, Sentinel-2 features, the 15 selected
features of the sequential feature selection (Figure 6), and with Sentinel-1 and Sentinel-2 original
bands. The classification models trained with the selected features show the best performance in all
classification setups. The models trained with the selection of optimal features excel particularly for the
3-class (OA = 92.6% and kappa = 88.6%) and the 5-class models (OA = 90.2% and kappa = 87.2%), while
the performance of the 2-class models is similar to the results obtained with the other configurations of
input variables.
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Table 2. Overall accuracy (OA) and kappa coefficient of the three classification setups. Each setup
considers a different number of output classes. We trained four models for each classification setup
with different sets of input variables: (a) Models trained with the backscatter bands and all derived
features of Sentinel-1, (b) models trained with the spectral bands and all derived features of Sentinel-2,
(c) models trained with an optimal set of Sentinel-1 and Sentinel-2 features, and (d) models trained only
with the Sentinel-1 backscatter bands and Sentinel-2 spectral bands. The accuracies are averaged OA
and kappa coefficients, obtained with a 10-fold cross-validation with 10% of the samples for training
and the remaining 90% for validation.

(a) Sentinel-1 (b) Sentinel-2 (c) Sentinel-1 &
Sentinel-2

(d) Sentinel-1 &
Sentinel-2

(All Bands
and Features)

(All Bands
and Features)

(Selected Bands
and Features)

(All Bands—
without Features)

Classification
Setup OA (%) Kappa (%) OA (%) Kappa

(%) OA (%) Kappa
(%) OA (%) Kappa (%)

5 classes 1 78.2 71.5 79.4 73.1 90.2 87.2 78.2 71.5
3 classes 2 82.6 73.4 81.6 71.5 92.6 88.6 80.2 69.7
2 classes 3 93.5 86.9 90.3 80.5 95.3 90.5 94.3 88.6
1 Classes: 1. Industrial mature oil palm, 2. Industrial young oil palm, 3. Smallholder mature oil palm, 4. Smallholder
young oil palm, and 5. Other land uses. 2 Classes: 1. Industrial mature oil palm, 2. Smallholder mature oil palm,
and 3. Other land uses. 3 Classes: 1. Mature oil palm and 2. Other land uses.

The confusion matrices of the best models (Figure 7), along the user’s (UA) and producer’s
(PA) accuracies, show a high thematic accuracy for all the classes (UA and PA > 85%) in the three
classification setups, apart of class 4 Smallholder young oil palm in setup I, which shows a low
producer’s accuracy (PA = 64.5%). Although, the partial accuracies are high, the industrial and
smallholder mature plantations present higher confusion compared to the other classes in setups I
and II. We also observe that the models could distinguish the oil palm classes, regardless of the age or
typology, from other land uses; Other land uses presents a UA and PA above 93% in the three setups.
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Figure 7. Confusion matrices of the models that were trained with the selection of relevant Sentinel-1 and
Sentinel-2 features. Each confusion matrix is the result of a different classification setup, which considers
a different number of output classes: (a) 1. Industrial mature oil palm, 2. Industrial young oil palm,
3. Smallholder mature oil palm, 4. Smallholder young oil palm, and 5. Other land uses, (b) 1. Industrial
mature oil palm, 2. Smallholder mature oil palm, and 3. Other land uses, and (c) 1. Mature oil palm,
and 2. Other land uses.

McNemar’s test [24] was applied to assess whether the accuracy of the best model (the model
trained with the selected features) is significantly higher than the rest of the models in each classification
setup with a significance level lower than 1%. The null hypothesis was rejected for all cases except the
classification setup III trained with Sentinel-1 and Sentinel-2 without added features (p-value = 0.747).
This means that the proportion of errors in the model trained with all the features of Sentinel-1 and
Sentinel-2 is not significantly higher than the model trained without the features when detecting oil
palm trees.
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The post-classification step improved the appearance of the classification. Based on the visual
comparison with Sentinel-1 and Sentinel-2 composites (Figure 8a,b), we confirmed that the step
corrected the major issues of the classification. Figure 8 exemplifies the improvement before (Figure 8c)
and after (Figure 8d) the post-classification in setup I model trained with the optimal features. Despite
these improvements, the accuracy did not increase remarkably after the post-classification, with an
improvement of 1.2%.
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Figure 8. Example of the improvements of the post-classification step. Images (a) and (b) show the
Sentinel-1 and Sentinel-2 composites respectively. Image (c) shows the resulting raw classification
image, and image (d) shows the classification image after the post-classification step.

Figure 9 shows the map of oil palm plantations in Riau province for classification setup I, using the
set of optimal features from Sentinel-1 and Sentinel-2. The total amount of oil palm is 31,020 km2, which
represents 36.8% of the land surface of Riau on the Sumatran mainland. Within the total surface of oil
palm plantations, 37.8% is industrial mature, 12.3% is industrial young, 42.0% is smallholder mature,
and 7.9% is smallholder young. Thus, the ratio of smallholders is 49.9% over all oil palm plantations.
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4. Discussion

The study aimed to show the feasibility of distinguishing smallholder and industrial oil palm
plantations with satellite images. The importance of optical and SAR data in the classification of oil
palm plantations was analyzed. The results showed that a combined use of Sentinel-1 and Sentinel-2,
with a set of optimal additional features, led to the highest accuracy when classifying smallholders and
large plantations. The code that generates the results of this study is available at [25]. To our knowledge,
this is the first study that aimed to distinguish smallholder and industrial oil palm plantations using
state-of-the-art satellite remote sensing data. The fusion of the employed Sentinel-1 and Sentinel-2
bands is also unprecedented in this topic and presents a further step, compared to previous studies
that used ALOS PALSAR or only Sentinel-1 scenes.

The high accuracy obtained using only Sentinel-1 (OA = 93.5% and kappa = 86.9%), for oil palm
classifications, without distinguishing between smallholders and industrial plantations, are comparable
to the user’s accuracy of 95.6% obtained in a recent study [26] for an oil palm class. The results of the
Riau case study confirmed the usefulness of SAR data for mature oil palm mapping [8]. The detection
of oil palms, without distinction of typology, can still be improved with optical imagery (Sentinel-2).
The results also show that feature extraction is not necessary when detecting mature oil palm trees.
This is particularly relevant for further studies that aim to detect roughly the oil palm plantations at a
regional scale, without distinction of typology and computationally expensive algorithms.

The characteristic canopy of oil palm plantations might explain the high relevance of Sentinel-1 in
the models. The shape of palm-like trees produces a characteristically high backscatter response in the
dual-band VH. Evidence of the importance of Sentinel-1 is the high relevance of the VH band and its
features in the three feature selection methods. Despite good results for Sentinel-1 in mature oil palm
mapping, Sentinel-1 solely cannot distinguish smallholders and industrial plantations. A distinction
between smallholders and industrial plantations necessarily requires additional features derived
from Sentinel-1 and Sentinel-2 images, which are effective in capturing the shape and density of the
harvesting trail networks in industrial oil palm plantations.

The results do not corroborate the study of Oon and colleagues [11], which concluded that the
sole use of Sentinel-1 dual bands can distinguish smallholder and industrial plantations in peatlands.
The findings of the Riau case study suggest that Sentinel-1 bands show a low accuracy (OA = 82.6%
and kappa = 73.4%) for such classification problems. One possible explanation for this is that the
conclusions by Oon et al. are based on the results obtained from an insufficient number of training
and testing points (98 points) that may overfit to its small study area (<50 km2). In contrast, the
present study uses a larger training dataset (3,448 points) that covers an extensive heterogeneous
area across Riau province. The training dataset used in the present study serves as evidence that the
distinction between smallholders and industrial plantations is a challenging problem that requires
additional features, based on textural analysis, that capture distinctive contextual information of the
oil palm plantations.

The study also highlights the usefulness of cloud computing for regional and global environmental
studies that make use of large satellite datasets and require high processing speed. In our study,
the algorithm uses 217 daily Sentinel-1 images and 827 daily Sentinel-2 images. The processing of the
10-meter resolution oil palm map of Riau province, which covers an area of 84,360 km2, was processed
in the cloud platform and took about 11 hours. This processing includes the image compositing of
Sentinel-1 and Sentinel-2, the extraction of the selected features, the training of the Random Forest,
and the image classification. The code and algorithms written in Google Earth Engine can be easily
shared and run among different users. For instance, a demo code is available for oil palm mapping [27]
and for the visualization of the results of setup I [28] in GEE. The shareability of code can be useful,
not only for code development, but also for obtaining quick results for environmental and land use
monitoring. For instance, in our case study, the classification in Riau province revealed an unexpectedly
high ratio of smallholders, which represent the 49.9% of all palm oil plantations in Riau province
in 2018.
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The model comparison emphasized the usefulness of Random Forests for fast modeling and image
classification, even in cloud-based platforms, such as GEE. Random Forest delivered higher accuracy
numbers, compared to other supervised classification models, that are implemented in GEE. Although,
SVM and other kernel-based classification methods may excel at drawing the decision boundary
between classes, their use requires expert knowledge of data pre-processing and hyperparameter
tuning in the training stage. Instead, RF is a fast and easy-to-use classification model that requires less
parameterization to control overfitting and, thus, can be used more broadly by the scientific community
or industry.

The algorithm we used showed good performance, particularly for distinguishing smallholders
and industrial plantations in Riau province. However, the level of performance might differ in other
parts of the world, particularly for such classification setup, that considers the typology and age
of the plantations. The industrial oil palm plantation in other regions might present a different
construction design and trail network that would lead to a different set of relevant features for the
classification model. Moreover, other palm-like plantations, such as sago plantations in Papua, might
get misclassified as oil palm. The similar canopy of oil palm and other palm-like species entails a
similar backscatter response, which in turn leads to a high confusion between oil palm and other
palm-like plantations. Therefore, our recommendation is that the classification model should be trained
again with a different sample dataset collected around the new study area. The last shortcoming we
observed is the high confusion between young palm trees and bare soil, which is also reported in [29].
The classification of young (<3 year-old) plantations is very challenging due to the low canopy coverage
of young palm trees. Young plantations seem to be unplanted from space even with 10-meter optical
imagery. Recent use of Convolutional Neural Networks has proven its usefulness in similar remote
sensing studies [30,31], and the more extensive use of contextual information in deep learning may
lead to a more accurate classification of young and mature oil palm plantations. Future studies should
address these limitations and opportunities to accurately map oil palm plantations at global scale.

5. Conclusions

The present study aimed to show the suitability of optical and SAR satellite data to classify oil
palm plantations. The results showed that the combined use of Sentinel-1 co-polarization bands and
Sentinel-2 spectral bands allows the detection of oil palm stands. The detection of mature oil palm
stands is possible thanks to the characteristic backscatter response of the palm canopy. However, the
Sentinel-1 and Sentinel-2 raw images are not enough for a classification problem that aims to distinguish
between smallholders and industrial oil palm plantations, or a distinction between young and mature
plantations. Such classification setup requires a set of additional relevant features, such as texture
and convolutional operations, that capture the spatial patterns that are characteristic in industrial
plantations. The most significant pattern in industrial plantations is the dense trail network, which
tends to be non-existent in smallholder plantations.

The study was carried out with Google Earth Engine, a cloud-based platform that allows the
rapid classification of Sentinel-1 and Sentinel-2 data for a given study area. The shareability of our
algorithm and the possibility to run a trained classification model everywhere in the world makes GEE
(or other cloud-based processing systems) a suitable tool for environmental monitoring. Researchers
and environmentalists can easily reproduce the classification model for mapping oil palm trees over
large regions and detect new plantations in sensitive and protected areas. It is our aim that this study
will eventually lead to an automated and standardized global map of oil palm and its various categories
that can be used by the various parties involved in palm oil, such as the Round Table for Sustainable
Palm Oil (RSPO), Governments, NGOs, companies, and other stakeholders.
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