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Abstract: The objective of this research was to develop a robust statistical model to estimate 
climatologies (2002–2017) of monthly average near-surface air temperature (Ta) over Mongolia 
using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) 
time series products and terrain parameters. Two regression models were analyzed in this study 
linking automatic weather station data (Ta) with Earth observation (EO) images: partial least 
squares (PLS) and random forest (RF). Both models were trained to predict Ta climatologies for each 
of the twelve months, using up to 17 variables as predictors. The models were applied to the entire 
land surface of Mongolia, the eighteenth largest but most sparsely populated country in the world. 
Twelve of the predictor variables were derived from the LST time series products of the Terra 
MODIS satellite. The LST MOD11A2 (collection 6) products provided thermal information at a 
spatial resolution of 1 km and with 8-day temporal resolution from 2002 to 2017. Three terrain 
variables, namely, elevation, slope, and aspect, were extracted using a Shuttle Radar Topography 
Mission (SRTM) digital elevation model (DEM), and two variables describing the geographical 
location of weather stations were extracted from vector data. For training, a total of 8544 
meteorological data points from 63 automatic weather stations were used covering the same period 
as MODIS LST products. The PLS regression resulted in a coefficient of determination (R2) between 
0.74 and 0.87 and a root-mean-square error (RMSE) from 1.20 °C to 2.19 °C between measured and 
estimated monthly Ta. The non-linear RF regression yielded even more accurate results with R2 in 
the range from 0.82 to 0.95 and RMSE from 0.84 °C to 1.93 °C. Using RF, the two best modeled 
months were July and August and the two worst months were January and February. The four most 
predictive variables were day/nighttime LST, elevation, and latitude. Using the developed RF 
models, spatial maps of the monthly average Ta at a spatial resolution of 1 km were generated for 
Mongolia (~1566 × 106 km2). This spatial dataset might be useful for various environmental 
applications. The method is transparent and relatively easy to implement. 

Keywords: near-surface air temperature; MODIS land surface temperature; terrain parameters; 
partial least square regression; random forest regression 
 

  



Remote Sens. 2019, 11, 2588 2 of 22 

1. Introduction 

Near-surface air temperature (Ta) is a key descriptor of the climate [1]. Ta is a critical variable to 
the effective understanding of the many physical and biological processes between the atmosphere 
and land systems [2–4] because it regulates many land surface processes such as photosynthesis, 
respiration, and evaporation [5]. As air temperature influences nearly all biotic processes [6], 
climatologies of Ta also permit a good characterization of terrestrial environmental conditions [5,7]. 
As this variable can change quickly over space, cost-efficient mapping procedures are needed that 
can depict Ta using high spatial resolution. 

Since the early 1980s, various interpolation methods have been used to estimate Ta given 
adequate sample points [8,9]. The literature shows that the most common interpolation techniques 
are global interpolators, thin plate smoothing splines and different forms of kriging [10,11], inverse 
distance weighting [12], and climatologically-aided interpolation [13]. In the comparative study of 
[14], most interpolation methods gave similar results. However, interpolation errors typically range 
between 1 and 3 °C [15,16] depending on the spatial and temporal resolution of recorded Ta data and 
the density of the station network [17]. 

Direct measurements of Ta at a height of 2 m above ground are only available from a limited 
number of meteorological stations. In many cases such as Mongolia, the spatial coverage of these 
measurements is inadequate; in addition, typical Ta time series come with many missing values [6]. 
On the contrary, satellite-derived land surface temperature (LST) data are continuous in both spatial–
temporal coverages and are relatively inexpensive. However, the satellite does not directly measure 
Ta but only the LST. 

Based on the physical linkage between LST and Ta, several authors have offered methods to 
estimate Ta using remote sensing satellite data [5,18,19]. During past decades, a large body of research 
has been collected regarding the retrieval of LST from satellite-based thermal infrared (TIR) data [20], 
in particular that related to the better understanding of emissivity and atmospheric effects [18,21,22]. 
As a result, LST can be retrieved nowadays relatively accurately from remotely sensed TIR data [23]. 
Several studies have demonstrated that Ta and LST data are highly correlated [24]. However, as 
expected, large differences have been noticed [25] which are related, for example, to physical 
properties and atmospheric conditions [26]. 

Three major approaches have been used to estimate Ta from LST data [27]: 

(1) energy-balance parameterization based on thermodynamic approaches [15,19,28], 
(2) contextual approaches based on temperature–vegetation index relations (TVX) [5,29,30], and 
(3) statistical approaches using various form of regression techniques [15,16,23,31–34]. 

Good exemplary studies estimating air temperatures with MODIS LST products using the 
aforementioned methods can be found for example in Bartkowiak et al. [35], Lu et al. [36], Zhou et al. 
[37], Janatian et al. [38], Ho et al. [39], Duan et al. [40], and Benali et al. [3]. 

Within the last two decades, statistical approaches, including simple and advanced regression, 
(e.g., linear and multiple regression, and machine learning techniques) have been developed to 
estimate Ta from Moderate Resolution Imaging Spectroradiometer (MODIS) LST products with 
varying levels of success. More recently, several studies have investigated more complex and 
advanced approaches to estimate Ta from MODIS LST products, such as geographically weighted 
regression (GWR) and climate space weighted regression (CSWR) [6], spatiotemporal regression-
kriging (STRK) [31], stepwise [38,41], random forest (RF) [39,41–45], generalized boosted model 
(GBM) [45], cubist [41,45], support vector machine (SVM) [39], ordinary least squares (OLS) [39] and 
M5 model tree [46]. To ensure high modeling accuracy, several papers have highlighted the 
usefulness of multivariate and non-parametric algorithms such as RF and STRK. For instance, 
Kilibarda et al. [31] estimated mean, maximum, and minimum daily Ta with a spatial resolution of 1 
km at a global scale using STRK with MODIS 8-day time-series LST products along with elevation, 
wetness index, and geographical location. The performance of STRK to predict Ta from MODIS LST 
products was compared with the performance of the linear regression model. The results indicated 
that the root-mean-square errors (RMSEs) for predicting mean, maximum, and minimum daily Ta 
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are ±2 °C for areas with a high density of stations and from ±2 °C to ±4 °C for areas with a coarse 
station density. The lowest accuracy was 6 °C in Antarctica and at locations with high altitudes. Yoo 
et al. (2018) [43] estimated maximum and minimum daily Ta in two megacities using LST data from 
MODIS Terra/Aqua and seven auxiliary variables based on the RF machine learning method, 
resulting in an RMSE of 1.1 °C and 1.2 °C for maximum and minimum Ta, respectively, in Seoul, and 
an RMSE of 1.7 °C and 1.2 °C for maximum and minimum Ta, respectively, in Los Angeles. Several 
authors have concluded that machine learning techniques perform better than more conventional 
methods which provide multi-variables and nonlinear and nonparametric regression and 
classification [38,39,43,45,47,48]. Machine learning algorithms are particularly useful for cases where 
no deterministic model is available to solve the problem. Our research objective was to develop a 
robust empirical model to estimate climatologies of average monthly Ta across Mongolia at 1 km 
spatial resolution using time-series of MODIS Terra LST products, terrain parameters (elevation, 
slope, and aspect), and other ancillary information. 

2. Study Area 

The area studied in this work covers the entirety of Mongolia with a total area of approximately 
1566 × 106 km2. Mongolia is the eighteenth largest and most sparsely populated country in the world. 
Mongolia extends between the latitudes 41°35′ N–52°09′ N and the longitudes 87°44′ E–119°56′ E, 
with an average land surface elevation of 1580 m above sea level [49]. The elevation ranges between 
524 m to 4320 m above sea level (Figure 1a). Its continentality increases from east to west. The climate 
conditions are extreme continental with semiarid and arid regions (Figure 1b). The “blue sky” 
country counts on average 260 sunny days per year and is characterized by a long cold winter and a 
short dry-hot summer with generally low precipitation [50]. The country’s average annual 
temperature varies between –8 °C and 6 °C [49] with strong temperature gradients. Annual total 
precipitation ranges between 50 mm in the desert steppe and desert regions to 500 mm in the high 
mountain regions. Generally, precipitation gradually increases from south to north. 

 

 
Figure 1. Mongolia: (a) Topography and location of meteorological stations (n = 63) for which 
reference air temperature information from automatic weather stations was available. The digital 
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elevation model (DEM) was derived from the Shuttle Radar Topography Mission (SRTM-DEM) with 
a resolution of 90 m. (b) Köppen climate classification of Mongolia based on long-term meteorological 
conditions (>30 years) [51].  

According to the Köppen climate classification, Mongolia can be divided into seven climatic 
regions (Figure 1b). The most prevalent climates are BWk, BSk, and Dwc. By contrast, Dfc, Dsc, Dwb, 
and Dsb are less prevalent. Exemplary temperature and precipitation charts for the three most 
prevalent climates are shown in Figure 2, demonstrating a large variation in precipitation and 
temperature variation. 

 

 

 
Figure 2. Climate graphs of the three most prevalent climatic zones in Mongolia [52]. (a) Dalanzadgad 
with cold desert climate (BWk), (b) Ulaangom with cold semi-arid climate (BSk), and (c) Sukhbaatar 
with cool continental climate/subarctic climate (Dwc). Information about altitude, average annual air 
temperature, and total precipitation is provided in each sub-plot. The data reflect long-term averages 
(>30 years). 
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3. Data and Methods 

3.1. Remote Sensing Data 

MODIS LST products are distributed by the Land Processes Distributed Active Archive Center 
(LP DAAC) in a hierarchical data format or HDF file. We used observations from MOD11 from the 
Terra satellite. MODIS generates two daily observations which involve one for daytime (LSTd) and 
one for nighttime (LSTn) at approximately 10:30 and 22:30 local time, respectively. The new collection 
6 (c006) of MODIS LST products have been used to estimate Ta [53]. This dataset was made available 
in 2016. It covers the entire period (2002–2017) and data are of higher quality compared to the earlier 
collection(s), which had been used for previous studies such as [3,17,46,47,54,55]. The LST accuracy 
of the c006 products is reported as being approximately twice as good as collection 5 (c005) due to 
the incorporation of the emissivity adjustment model in the MODIS split-window algorithm [53]. For 
instance, the c006 LST product reduced the RMSE of bare soil sites of the c005 LST product by 1.24 
°C during the day and 0.58 °C at night ([53], p. 88). 

To cover the land surface of Mongolia, seven tiles of granules with horizontal (h) and vertical 
(v) title numbers h23v03, h23v04, h24v03, h24v04, h25v03, h25v04, and h26v04 had been used. The 
MODIS MOD11A2 c006 data were obtained through the online Data Pool at the National Aeronautics 
and Space Administration (NASA), the LP DAAC, and the United States Geological Survey (USGS) 
Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota. The retrieved 
MODIS LST used the generalized split-window algorithm [56] to derive surface temperature from 
the recorded at-satellite radiances. 

For this study, we used the MODIS Terra 8-day LST product (MOD11A2) at a spatial resolution 
of 1 km, gridded in the Sinusoidal projection intervals, and covering the period 2002–2017. The HDF 
file for the MOD11A2 product includes 12 different scientific data sets (SDSs), as shown in Table 1. A 
detailed description of SDSs is given in [57,58]. This MOD11A2 product includes daytime and 
nighttime LST data (LSTd and LSTn), quality information (QCd and QCn), observation information 
(DvA, NvA, DvT, and NvT), emissivity data (Em31 and Em32), and clear sky coverage (CsD and 
CsN). The HDF file for this product also contains associated quality science dataset layers which 
provide users with information regarding the usability and usefulness of the data products. The 
MODIS LST quality science dataset layers are binary encoded and bit packed. The quality assurance 
(QA) layer containing integer values had been converted to a bit binary value for interpretation 
[59,60] (p. 19). The quality controls (QC) are defined by bit flags such as mandatory quality 
assessment (QA) flags, data quality flags, emissivity quality flags, and cloud error flags. 

To retrieve and pre-process the products, the MODIS R-package (MODIS acquisition and 
processing package v1.1.4) was used [61]. The package is run in the R software system and 
environment for statistical computing and graphics [62]. The MODIS R-package allows automatic 
downloading of data and processing such as changing file format, mosaicking, subsetting, and time-
series filtering [63]. Using the package, digital numbers (DN) of MODIS Terra LST products were 
converted into LST (Table 1). Additionally, three terrain parameters (elevation, slope, and aspect) 
originating from SRTM-DEM [64] were retrieved. All raster data were re-projected to MODIS 
sinusoidal projection. 

Table 1. Description of Moderate Resolution Imaging Spectroradiometer (MODIS) land surface 
temperature (LST) products used in this study (source: Land Processes Distributed Active Archive 
Center (LP DAAC), 2019). 

Variable Type Acronym Units Data Type Fill 
Value 

Valid Range 
(VR) 

Scale 
Factor 
(SF) 

Additional 
Offset (AO) 

Daytime LST LSTd Kelvin 16 bit 0 7500 to 65,535 0.02 N/A 
Nighttime LST LSTn Kelvin 16 bit 0 7500 to 65,535 0.02 N/A 
Day clear sky coverage  CsD N/A 16 bit 0 1 to 65,535 0.0005 N/A 
Night clear sky coverage CsN N/A 16 bit 0 1 to 65,535 0.0005 N/A 
View zenith angle of daytime DvA Degree 8 bit 255 0 to 130 1.0 –65 
View zenith angle of nighttime NvA Degree 8 bit 255 0 to 130 1.0 –65 
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Time of daytime (local solar) DvT Hours 8 bit 255 0 to 240 0.1 N/A 
Time of nighttime (local solar) NvT Hours 8 bit 255 0 to 240 0.1 N/A 
Emissivity band 31 Em31 None 8 bit 0 1 to 255 0.002 0.49 
Emissivity band 32 Em32 None 8 bit 0 1 to 255 0.002 0.49 
Quality controls of day LST QCd Bit 8 bit N/A 0 to 255 N/A N/A 
Quality controls of night LST QCn Bit 8 bit N/A 0 to 255 N/A N/A 

Note: Digital number (DN) = VR × SF − AO. 

3.2. In Situ Meteorological Data 

Sixty-three synoptic weather stations are present in Mongolia. Their geographical locations are 
indicated in Figure 1a. The weather stations provide Ta every 3 h, i.e., eight times a day. Air 
temperature data between 2002 and 2004 were obtained from the Mongolian Information Research 
Institute of Meteorology, Hydrology, and the Environment (IRIMHE). Data from 2004 to 2017 was 
downloaded from the “Reliable Prognosis (RP5)” website (https://rp5.ru). From the three-hourly 
meteorological data, the average air temperature was calculated for every 8 days of MODIS LST, 
taking into account the eight daily observations. This led to a total of 8544 meteorological data-points 
from 63 automatic weather stations covering the same period as the MODIS LST products, allowing 
for the development of prediction models between the remotely sensed data and Ta. The frequency 
distribution of the measured Ta reference data from 63 weather stations for the period 2002–2017 is 
shown in Figure 3 (n = 8544). The value of measured Ta ranged from –36.6 °C to 27.2 °C with a mean 
value of 0.7 °C and a standard deviation of 14.6 °C. 

 
Figure 3. Frequency distribution of measured average 8-day air temperature reference data (n = 8544) from 
the 63 automatic weather stations for the years 2002–2017. Monthly statistics are depicted in Table 2. 

3.3. Random Forest and Partial Least Square Regression 

RF and PLS models were trained to predict Ta using up to 17 predictor variables. The use of two 
competing approaches permits the evaluation of the benefits of using non-linear machine learning 
approaches (e.g., RF) compared to classical linear regression models (e.g., PLS). Twelve of the 
seventeen variables were derived from LST time-series products of the Terra MODIS for the period 
2002–2017 (Table 1). The five remaining variables were elevation, slope, and aspect (extracted from 
SRTM-DEM), and geographical location (latitude and longitude) of weather stations (extracted from 
vector data). Summary descriptive statistics of the response and the 17 predictor variables are 
reported in Table 2. Longitude was included as this indirectly depicts (for Mongolia) distance to sea 
[65]. 
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Table 2. List of response/predictor variables and corresponding descriptive statistics (period 2002 to 
2017). The list includes the measured air temperature (Ta) reference data at the weather station level 
(n = 712 for each of the twelve months) as well as the corresponding seventeen predictor variables 
extracted from satellite and other geo-data. For the acronyms of the variables, see Table 1. 

Variable No. of Samples (n)Minimum Maximum Mean Standard Deviation
Ta01 712 –36.60 –6.60 –20.83 5.36 
Ta02 712 –35.10 –0.60 –16.60 5.38 
Ta03 712 –20.50 4.80 –6.73 4.22 
Ta04 712 –7.60 12.40 3.92 3.32 
Ta05 712 2.80 19.30 10.75 3.05 
Ta06 712 9.20 24.90 16.98 3.06 
Ta07 712 11.60 27.20 19.49 3.21 
Ta08 712 8.70 25.60 17.16 3.34 
Ta09 712 2.60 19.70 10.48 3.07 
Ta10 712 –8.20 11.70 1.49 3.08 
Ta11 712 –22.70 0.30 –9.62 3.76 
Ta12 712 –31.50 –6.10 –17.85 4.40 

LSTd 8544 –36.90 48.60 13.43 20.08 
LSTn 8544 –42.50 24.40 –5.75 14.47 
CsD 8544 0.00 0.13 0.06 0.02 
CsN 8544 0.00 0.13 0.07 0.02 
DvA 8544 –55.00 62.00 5.04 –52.35 
DvT 8544 10.40 12.10 11.82 0.71 

Em31 8544 0.96 0.99 0.98 0.50 
Em32 8544 0.97 0.99 0.98 0.49 
NvA 8544 –65.00 56.00 –0.48 –56.47 
NvT 8544 20.80 22.70 21.90 1.29 
QCd 8544 2.00 133.00 61.98 16.58 
QCn 8544 2.00 145.00 55.14 19.70 

Elevation 63 667.00 2255.00 1369.10 411.70 
Slope 63 0.08 19.60 N/A N/A 

Aspect 63 6.34 358.10 N/A N/A 
Latitude 63 42.97 51.11 N/A N/A 

Longitude 63 89.93 118.67 N/A N/A 

The correlation matrix (Figure 4) reveals a strong correlation between Ta and daytime/nighttime 
LST of MODIS, as well as several other correlations and redundancies. Based on these 
intercorrelations and taking into account that the number of variable sets should be relatively small, 
the predictor variables were grouped into seven different groupings (Table 3). 

 

Figure 4. Correlation matrix between response and predictor variables (n = 8544). The saturation of 
the colors indicates the strength of the correlations. Positive correlations are shown in blue and 
negative correlations in red. In this graph, the air temperature data has been pooled across the twelve 
months. For the abbreviations, see Table 1. 
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Table 3. Seven model subsets studied. The seven groups were generated to study the relations 
between responses and up to 17 predictor variables. Nvar indicates the number of predictor variables 
in each group. 

 Acronym Variables Nvar 
Group 1 G1 LSTd and LSTn 2 
Group 2 G2 LSTd, LSTn, and elevation 3 
Group 3 G3 Elevation, slope, aspect, latitude, and longitude 5 
Group 4 G4 Combined G1 and G3 7 
Group 5 G5 CsD, CsN, DvA, DvT, Em31, Em32, NvA, NvT, QCd, and QCn 10 
Group 6 G6 Combined G1 and G5 12 
Group 7 G7 Combined G1, G3, and G5 17 

3.3.1. RF Regression 

The well-known random forest regression method [42,44] was chosen as the main approach to 
model the relation between our response variable (Ta) and the predictor variables listed in Tables 2 
and 3 (LST MODIS products plus elevation, slope, aspect, latitude, and longitude). RF is a non-linear 
statistical ensemble method that leverages uncorrelated decision trees for regression. Developed by 
Breiman [66], it is capable of modeling discrete and/or continuous data sets [67,68]. RF predictions 
are obtained by aggregating a large number of individual regression decision trees where each 
decision tree is built from bootstrapped training samples (as in bagging) and variables are randomly 
selected at each decision node. The algorithm then randomly selects a subset of the predictors as 
candidates for splitting [66,69]. To obtain the final regression model, the results of all the individual 
trees are averaged. Good examples of the benefits and drawbacks of RF are given in [70–72]. 

The RF algorithm provides out-of-bag error (OOB) estimates and variable importance rankings 
[73,74], as not all observations are included in the respective bootstraps of the individual trees. In 
each tree at each split, the enhancement in the split-criterion importance measure is characterized by 
the splitting variable and aggregates individually all the trees in the forest for each variable [75]. 
Variable importance is measured by computing the increase in mean square error (MSE) when the 
OOB data for each variable are again computed but without the left-out variable [66,76]. The variable 
importance measures can assist in defining which variables are most important in the reduction of 
prediction error [71]. Two kinds of variable importance measures widely use the “randomForest” 
package in R [69,77]: (1) percent increase in the mean square error (%IncMSE) and (2) increase in node 
purity (IncNodePurity). From these, our analysis computed and analysed %IncMSE. However, we 
also checked the IncNodePurity indicator, but found similar results (not shown). In our research, the 
basic algorithm shown in Equation (1) was used to build the RF predictor for regression [75]: 𝑓መ ሺ𝑥ሻ = 1𝐵෍ 𝑇௕஻௕ୀଵ ሺ𝑥ሻ (1) 

A new bootstrap sample for each decision tree Tb that includes X = x1…… xi with responses Y = 
y1…… yi bagging repeatedly (B times) selects a random sample from training data and each unpruned 
decision tree is increased in the sample. To increase each individual tree Tb, the following steps are 
repeated at each terminal node of the tree: 

• Randomly select m variables from p variables 
• Pick the variable that best splits and the corresponding split point 
• Split the node into two nodes. 

As mentioned above, to implement the RF regression model, two parameters must be set: the 
number of decision trees (ntree) and the number of variables to select for the best split (mtry). For both 
hyperparameters, standard settings have been chosen. Each decision tree is independently increased 
to its maximum size, focusing on a new bootstrap sample from the training data (2/3 of samples). The 
remaining 1/3 of the samples, not used to fit the given decision tree, are referred to as the out-of-bag 
sample. The OOB sample is used to calculate the OOB error rate and variable importance. For 
quantifying the OOB error (prediction error) for each RF decision tree, we used Equation (2), i.e., 
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𝐸𝑟𝑟𝑜𝑟ைை஻ =  1𝑛෍ (𝑦௜ − 𝑦ො௜)ଶ   ௡௜ୀଵ  (2) 

where 𝑦ො௜ is the estimated output of OOB samples, 𝑦௜ is the actual output, and n is the total number 
of OOB samples. RF regression is flexible and easy to use in comparison to other machine learning 
algorithms, even without hyper-parameter tuning. 

3.3.2. PLS Regression 

For comparison—and to assess the differences between linear and non-linear models—a 
prominent linear modeling technique was used: partial least square regression. PLS is widely used 
by the remote sensing community for vegetation analysis [78–80], soil related studies [81–83], and 
climate and ecological studies [84–87] amongst others. 

PLSR is a multivariate linear regression method used to predict a set of dependent variables 
from a set of independent variables or predictors [88]. PLSR was originally developed for 
econometrics and chemometrics [89], where commonly a large number of strongly correlated 
predictor variables exist [90]. PLSR reduces the variables to a smaller set of uncorrelated components 
and performs least squares regression on these components instead of on the original data. Compared 
to other techniques, PLSR is more robust and less susceptible to data redundancy and over-fitting 
[91]. 

PLSR extracts a set of latent variables that explain the correlation between dependent and 
independent variables. The optimum number of latent variables for each generated model are 
implemented using the minimum value of residual mean squared error and the leave-one-out-cross-
validation (LOO-CV) methods, e.g., jackknife and bootstrap [92]. To assess which variables are most 
contributing to the PLS model, we used the variable importance in projection (VIP) method [90], as 
seen in Equation (3), i.e., 

𝑉𝐼𝑃௝ = ඨ∑ 𝑤௝௙ଶ  𝑆𝑆𝑌௙ 𝐽ி௙ୀଵ𝑆𝑆𝑌௧௢௧௔௟ 𝐹  (3) 

where 𝑉𝐼𝑃௝  is a measure of the contribution of the j variable in the PLSR model, 𝑊௝௙  is the weight 
value for the j variable and f latent variables (components), 𝑆𝑆𝑌௙ is the sum of squares of explained 
variance for the 𝑓 latent variable and 𝐽 number of the predictor (independent) variables, 𝑆𝑆𝑌௧௢௧௔௟  
is the total sum of squares explained as the response (dependent) variables, and F is the total number 
of latent variables. The VIP values determine the contribution of the predictor variables to the PLSR 
latent variables. A VIP value greater than 0.80 ensures that only relevant variables are considered 
[90]. In [93] the VIP threshold of predictor variables that were identified as the most relevant variables 
ranged between 0.83 and 1.21. Predictor variables with ≤0.80 VIP values were classified as less 
important while variables with VIP values ≥1.20 were considered the most influential. 

3.3.3. Model Evaluation and Statistics 

Two widely used statistics were calculated to assess the accuracy of the models [94], including 
the R2 and the RMSE. The R2 describes the percentage of explained variance whereas the RMSE 
summarizes the deviations of predictions from the one-to-one line. 

As both models provide quantitative information about the importance of different variables, 
we also report these findings. For the RF regression model, we assessed the importance of the 
individual predictors in Ta estimates focused on the %IncMSE [39]. For the PLS regression model, we 
used the VIP method [95,90,93]. 

4. Results 

4.1. Comparison of RF and PLS Models: Variable Importance and Prediction Accuracy 
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The estimated importance of the 17 predictor variables in the RF regression model is shown in 
Figure 5 for each of the twelve months. Under the top three in each month, LSTn appeared 12 times, 
LSTd 11 times, elevation 7 times, latitude 5 times and aspect once. The remaining variables were 
never found under the top three in those rankings. Strong seasonality in the ranking can also be 
observed. For example, the warm season Ta (April to October) was strongly dependent on elevation. 
Conversely, the cold season Ta was more heavily affected by latitude. Using all 17 predictor variables 
led to R2 values in the range from 0.83 (April) to 0.96 (August), while RMSE were between 0.91 °C 
(September) to 1.92 °C (February) (see Table 4, column G7). 

    

    

    

Figure 5. Random forest (RF) variable importance for each month. The importance is here given as 
the percentage increase in mean square error (%IncMSE). 

Similar results were obtained for the PLS models (Appendix A Figure A1). Using PLS regression, 
the variables most often listed under the top three were LSTn (12 times), LSTd (12 times), elevation 
(4 times), latitude (4 times), and emissivity (4 times). Again, the ranking was season-dependent. The 
variables LSTn, LSTd, and latitude were the most important variables for estimating Ta in autumn 
and winter (September to February). The Ta for spring (March–May) was strongly dependent on 
LSTn, LSTd, and emissivity. For the summer months (June–August), LSTn, LSTd, and elevation were 
strongly influenced by the estimation of Ta for summer. 

Using the entire set of 17 predictor variables for estimating the monthly average air 
temperatures, accuracies of PLS models were constantly lower compared to the RF models. The PLS 
models gave R2 a measured and estimated monthly Ta between 0.74 and 0.86 and RMSE from 1.20 
°C to 2.19 °C (Appendix A Table A2, column G7). 

Concerning variable importance, the three variables LSTn, LSTd, and elevation were identical 
for PLS and RF regression models. This shows that LSTn, LSTd, and elevation play a key role in 
modeling Ta, with all other variables having a significantly smaller impact. 

To further study the impact of the different predictor variables, the seven variable groupings 
highlighted in Table 3 were analyzed in more detail. Results for each month and the annual average 
air temperature are shown in Table 4 for the RF models. Compared to the full set of 17 variables 
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(column G7), the reduced set with only three predictor variables LSTn, LSTd, and elevation (G2) 
achieved comparable results, again highlighting and confirming the importance of these three 
predictor variables. None of the other five groupings (G1 and G3 to G5) were able to yield similar 
model performances. The same findings also hold for the PLS models (Appendix A Table A2 for 
details) but with constantly lower accuracies compared to the RF models. PLS models and groupings 
G1 to G7 were, therefore, skipped for the remainder of the study. 

Table 4. Modeling results obtained using the RF regression. Reported are the monthly summary 
statistics (coefficient of determination (R2) and root-mean-square error (RMSE)) for Ta prediction 
models for each of the seven groups of variables. For details of groupings G1 to G7, see Table 3. 

 n 
G1 G2 G3 G4 G5 G6 G7 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 
January 712 0.85 2.07 0.91 1.59 0.52 3.71 0.89 1.77 0.40 4.14 0.88 1.86 0.90 1.71 

February 712 0.83 2.24 0.87 1.93 0.49 3.83 0.86 2.05 0.46 3.95 0.85 2.06 0.88 1.92 
March 712 0.76 2.09 0.85 1.64 0.55 2.84 0.83 1.77 0.46 3.12 0.81 1.83 0.85 1.67 
April 712 0.77 1.59 0.82 1.41 0.47 2.42 0.80 1.47 0.38 2.62 0.79 1.51 0.83 1.40 
May 712 0.76 1.48 0.88 1.05 0.75 1.52 0.84 1.07 0.39 2.37 0.81 1.34 0.88 1.08 
June 712 0.77 1.45 0.88 1.04 0.76 1.50 0.88 1.07 0.31 2.53 0.81 1.33 0.88 1.07 
July 712 0.84 1.29 0.93 0.84 0.81 1.41 0.91 0.97 0.32 2.65 0.87 1.17 0.87 0.93 

August 712 0.83 1.38 0.95 0.92 0.83 1.37 0.90 0.97 0.35 2.68 0.86 1.27 0.96 0.92 
September 712 0.81 1.32 0.91 0.91 0.84 1.22 0.88 1.05 0.40 2.37 0.85 1.19 0.91 0.91 

October 712 0.83 1.28 0.90 0.99 0.70 1.68 0.88 1.08 0.47 2.23 0.85 1.22 0.89 1.03 
November 712 0.81 1.65 0.87 1.34 0.54 2.55 0.85 1.47 0.42 2.86 0.84 1.52 0.86 1.39 
December 712 0.84 1.76 0.89 1.44 0.60 2.79 0.88 1.55 0.40 3.43 0.86 1.64 0.89 1.49 

4.2. Maps of Predicted Air Temperatures Using RF Models with the Reduced Feature Set 

Both the results of the variable importance rankings (Figure 5) and the grouping of variables 
(Table 4) indicate that relatively simple RF prediction models can be built to estimate Ta using only 
daytime/nighttime LST and elevation information. Scatterplots between measured and estimated 
monthly average air temperatures using only these three predictor variables are shown in Figure 6. 
Corresponding maps of modeled air temperatures at 1 km spatial resolution and covering the entire 
land-mass of Mongolia are shown in Figure 7a (see Figure A2 and Table A3 in the Appendix A for 
corresponding scatterplots and maps generated using PLS models). 
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Figure 6. Comparison between measured and estimated monthly average Ta using LSTd, LSTn, and 
elevation for the RF regression model. 
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Figure 7. Estimated monthly average Ta based on RF regression model using LSTd, LSTn, and 
elevation as predictor variables. (a) Spatial maps of estimated monthly average Ta over Mongolia at 
1 km spatial resolution. (b) Monthly statistics of R2 (blue) and RMSE (red) between observed and 
predicted air temperature. 

The scatterplots in Figure 6 reveal that the RF-predicted Ta is well distributed around the 1-to-1 
line, with no apparent systematic deviations. In particular, we do not see any autocorrelation in the 
errors, nor saturation effects. The errors are generally low and the explained variance (R2) mostly 
above 0.85. Generally, however, the RMSE increases slightly during the colder months (Figure 7b). 

The maps in Figure 7a depict in high spatial detail the model predictions. As expected, the 
predicted air temperatures decrease with elevation (Figure 1) but reveal additional detail and 
information. Monthly analyses of the coefficient of determination (R2; in blue) and root mean square 
error (RMSE; in red) for the period 2002–2017 are shown in Figure 7b. Overall, a good agreement 
between observed and estimated Ta values was found but reflected again the afore-mentioned 
seasonal pattern. Large discrepancies were found to occur in transition months, such as the start or 
end of seasons. 

The PLS-generated maps of monthly average air temperatures are generally similar to the maps 
derived from RF models (see Appendix A Figure A2b). However, a more detailed analysis reveals 
sometimes larger differences, even if modeled air temperatures are averaged by season. For example, 
Figure 8 clearly shows that large method-specific differences occur (maps in the third column). The 
differences show large seasonal fluctuations. The deviations moreover show a clear north–south 
gradient with generally lower Ta estimated using PLS compared to RF (reddish colors). The 
deviations are usually strongest during the warmer months. As the RF model outperformed the PLS 
model when evaluated against the observed air temperatures (Table 4 for RF and Appendix A Table 
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A2 for PLS), we interpret these findings as mainly being the result of a systematic underestimation 
of Ta by the PLS model. 

 

Figure 8. Estimated average Ta per season using LSTd, LSTn, and elevation as predictor variables. 
(a) Spatial maps of seasonal-average Ta over Mongolia at 1 km spatial resolution using the RF (first 
column) and partial least squares (PLS) regression models (second column). In the last column, the 
difference between the two model outputs is shown. 

5. Discussion 

Using relatively simple RF models driven by a few predictor variables, climatologies of monthly 
air temperatures in Mongolia could be obtained in this study with high accuracy (RMSE of about 
0.84–1.93°C). Without any hyperparameter tuning, the non-linear RF models outperformed linear 
PLS models in accordance with other studies [43,55,96,97]. Amongst the variables studied, the 
MODIS-derived land surface temperatures (day and night) together with elevation were the three 
most important predictors. The studies of Noi et al. [41] and Kilibarda et al. [31] have also reported 
the high importance of day- and nighttime LST observations as well as elevation. 

As LST (both day and night) and elevation can be readily produced at 1 km spatial resolution, 
the models calibrated against weather station data permitted the creation of maps of average air 
temperature for each of the twelve months in unprecedented detail and accuracy. Although the RF-
generated maps often follow elevation, the inclusion of remotely sensed land surface temperature 
from MODIS improved the accuracy and spatial detail. 

The results of the importance analysis indicated that nighttime LST was slightly more important 
compared to LSTd. The same result has been noted in China [42] and in Portugal [3]. In accordance 
with these studies, we argue that nighttime observations are probably more predictive because LSTn 
is not affected by reflected solar radiation when using TIR sensors [17]. The daytime land surface 
temperature was nevertheless found to be important, as it reveals the strength of the latent heat flux 
and the energy available for generating sensible heat [42]. 

Other studies have confirmed that Ta predictions are possible using satellite observations and 
that there is a strong relationship between Ta, LSTn, and LSTd [32]. Several studies have produced 
Ta estimations using MODIS LST data using multivariate linear and non-parametric regression 
methods [39,41-45,93]. These already published studies have showed different levels of success. The 
performance of multivariate and non-parametric regression models has been strongly dependent on 
environmental parameters such as vegetation cover, slope, aspect, elevation, quality of MODIS LST 
products, and applied filter techniques. For instance, the accuracy of the MODIS LST has been found 
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to depend on the employed split-window algorithm, cloud cover, and terrain parameters [32]. 
Nonetheless, estimation of Ta derived from MODIS LST studies using multivariate and non-
parametric algorithms is suitable for generating results at high accuracy. For instance, [42] estimated 
monthly average Ta for the territory of China at a spatial resolution of 1 km using RF regression with 
MODIS LST, normalized difference vegetation index (NDVI), nighttime light and elevation. Using 
this dataset, the RMSE of the monthly average Ta ranged between 1.57 °C to 1.99 °C. Our study has 
showed that monthly average Ta can be accurately estimated using LSTn, LSTd, and elevation with 
similar RMSE ranging from 0.91 °C to 1.93 °C. The method is relatively easy to implement provided 
that there is a sufficient amount of training data with corresponding EO time-series observations [96]. 

6. Conclusions 

In this study, PLS and RF regression models were applied to estimate monthly average Ta in 
Mongolia for the period 2002–2017 using MODIS LST time-series products and terrain parameters. 
Meteorological data from 63 automatic weather stations were used to calibrate and validate the PLSR 
and RF models. Both models were trained to predict Ta using up to 17 variables as predictor variables. 
Twelve variables were derived from LST time-series products of Terra MODIS and three variables 
were extracted from an SRTM DEM (elevation, slope, and aspect). The geographical location 
(longitude and latitude) was used as an additional variable. For training, a total of 8544 
meteorological data points from 63 automatic weather stations and corresponding MODIS LST were 
used. Both datasets covered the period 2002–2017. Using only day/nighttime LST and elevation as 
predictor variables, the correlation between measured and estimated monthly average Ta RMSE 
ranged from 1.20 °C to 2.19 °C for the PLSR and 0.84 °C to 1.93 °C for the RF. The significantly lower 
errors of the RF models confirm the benefits of this machine learning approach compared to 
traditional (linear) modeling techniques (e.g., PLSR). We therefore recommend the use of RF models 
for similar studies. 

Concerning the MODIS land surface temperature data, we found that this information 
contributed significantly to the modeling of air temperature. For example, it was not possible to 
obtain similarly low errors in the modeled air temperature using only terrain parameters as 
predictors. It is recommended that day- and nighttime LST be used simultaneously as both variables 
scored high in the feature importance metric. 

Both machine learning models (RF and PLSR) represented well seasonal and spatial variations 
in Ta when time-series of LST were included as predictor variables. Using the models, maps of the 
monthly average Ta of Mongolia were developed at a spatial resolution of 1 km which were 
representative for the period 2002–2017. Although errors in the predicted Ta were generally low, the 
residual errors showed a significant seasonality; the warmer months were generally better modeled 
compared to the extremely cold winter months. Probably, the increased errors during the winter 
months reflect a lower accuracy in the input (LST) data. Further research is warranted to better 
understand the seasonality of the model quality. 

Despite these trends, we firmly believe that this spatial dataset may be useful for various 
environmental applications; for instance, it may be useful for better assessing bioclimatic variations 
within the huge land-mass of Mongolia. The developed methodology is relatively easy and 
transparent and can be applied in different geographic regions, provided that enough weather 
stations are available to permit a model calibration. The spatial resolution of the final map product 
mainly depends on the ground sampling distance of the employed satellite sensors. As sensor 
technology advances at a rapid pace, the current 1 km spatial resolution can be further improved in 
the near future. 
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Figure A1. Variable importance in projections (VIPs), R2, and RMSE for the 17 predictor variables in 
the twelve-monthly PLSR models. 
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Table A1. Model coefficients for the twelve-monthly PLS regression models including all 17 predictor 
variables. In the last column, the model of the annual average Ta is also included. 

Variable Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year 
Intercept -52.83 -93.62 26.17 55.52 93.68 89.37 97.27 45.11 68.76 62.92 53.54 22.17 82.62 

LSTd 0.255 0.219 0.208 0.185 0.159 0.146 0.137 0.178 0.150 0.128 0.197 0.234 0.319 
LSTn 0.420 0.457 0.425 0.265 0.223 0.232 0.227 0.284 0.210 0.196 0.344 0.407 0.464 
CsD 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 
CsN -0.014 -0.003 0.007 0.000* 0.001 0.001 0.002 0.000* 0.004 0.000* 0.000* -0.011 0.000* 
DvA 0.015 0.015 0.007 -0.002 0.005 0.008 0.011 0.021 0.006 0.022 0.003 0.004 -0.007 
DvT 0.094 0.109 -0.015 -0.130 -0.072 -0.041 -0.019 0.003 -0.105 0.061 -0.044 -0.021 0.095 

Em31 0.069 0.104 0.021 -0.152 -0.133 -0.126 -0.131 -0.050 -0.127 -0.125 -0.047 0.006 -0.079 
Em32 0.101 0.158 0.003 -0.012 -0.208 -0.198 -0.209 -0.096 -0.199 -0.195 -0.087 -0.009 0.007 
NvA –0.019 -0.034 -0.034 -0.012 -0.009 -0.002 -0.007 -0.017 0.007 -0.004 -0.017 -0.028 -0.038 
NvT 0.031 0.100 -0.114 0.045 0.053 0.050 0.034 0.029 0.169 0.083 -0.030 -0.038 -0.413 
QCd 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 
QCn 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 

Elevation 0.000* 0.000* -0.001 -0.001 -0.001 -0.001 -0.001 -0.002 -0.001 -0.001 -0.001 0.000* -0.001 
Slope –0.021 0.028 -0.009 -0.061 -0.059 -0.062 -0.065 -0.047 -0.051 -0.037 -0.025 -0.031 0.026 

Aspect –0.002 -0.001 -0.001 -0.002 -0.002 -0.001 -0.002 -0.001 -0.002 -0.002 -0.003 -0.003 0.003 
Latitude –0.411 -0.401 -0.248 -0.268 -0.236 -0.214 -0.246 -0.244 -0.260 -0.248 -0.241 -0.393 0.336 

Longitude 0.099 0.106 0.039 0.023 0.042 0.046 0.052 0.065 0.048 0.032 0.016 0.062 0.012 

* <0.0001. 

Table A2. PLS regression results. Summary statistics (R2 and RMSE) for the monthly Ta prediction 
models, including six groups of variables. 

 n 
G1 G2 G3 G4 G5 G6 G7 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 
January 712 0.87 1.96 0.87 1.95 0.34 4.34 0.82 2.26 0.39 4.17 0.86 2.01 0.85 2.10 

February 712 0.83 2.19 0.83 2.19 0.32 4.40 0.79 2.45 0.37 4.26 0.85 2.05 0.84 2.19 
March 712 0.80 1.89 0.74 1.94 0.36 3.40 0.77 2.04 0.39 3.32 0.81 1.84 0.81 1.83 
April 712 0.79 1.51 0.79 1.53 0.48 2.39 0.77 1.58 0.32 2.73 0.75 1.67 0.74 1.69 
May 712 0.76 1.48 0.79 1.41 0.74 1.54 0.80 1.37 0.31 2.52 0.76 1.50 0.77 1.47 
June 712 0.78 1.44 0.80 1.38 0.75 1.52 0.79 1.41 0.26 2.63 0.78 1.45 0.76 1.51 
July 712 0.83 1.33 0.86 1.20 0.79 1.48 0.84 1.28 0.28 2.71 0.82 1.34 0.80 1.44 

August 712 0.84 1.36 0.87 1.23 0.81 1.44 0.85 1.28 0.30 2.80 0.83 1.37 0.86 1.25 
September 712 0.81 1.35 0.84 1.24 0.82 1.30 0.83 1.26 0.32 2.53 0.80 1.37 0.79 1.42 

October 712 0.83 1.27 0.83 1.26 0.68 1.73 0.82 1.31 0.41 2.36 0.81 1.32 0.77 1.47 
November 712 0.83 1.54 0.83 1.57 0.37 2.97 0.79 1.70 0.40 2.92 0.82 1.59 0.81 1.65 
December 712 0.86 1.68 0.86 1.67 0.36 3.53 0.82 1.89 0.34 3.58 0.85 1.74 0.83 1.82 
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Figure A2. Estimated monthly average Ta based on the PLS regression model and using LSTd, LSTn, 
and elevation as predictor variables. (a) Spatial maps of estimated monthly average Ta over Mongolia 
at 1 km spatial resolution. (b) Monthly statistics of R2 (blue) and RMSE (red) between observed and 
predicted air temperature. 

 

Table A3. Model equations obtained from the PLS regression models using three variables: LSTd, 
LSTn, and elevation. The months are numbered from 01 to 12. 

Regression Models R2 RMSE 
Ta01 = –2.137 + 0.347 × LSTd + 0.497 × LSTn + 0.00033 × elevation 0.87 1.95 
Ta02= –3.037 + 0.297 × LSTd + 0.493 × LSTn + 0.00019 × elevation 0.83 2.19 
Ta03 = –1.986 + 0.252 × LSTd + 0.477 × LSTn – 0.001 × elevation 0.74 1.94 
Ta04 = 0.516 + 0.296 × LSTd + 0.424 × LSTn − 0.002 × elevation 0.79 1.53 
Ta05 = 3.863 + 0.272 × LSTd + 0.383 × LSTn − 0.002 × elevation 0.79 1.41 
Ta06 = 7.060 + 0.242 × LSTd + 0.384 × LSTn − 0.002 × elevation 0.80 1.38 
Ta07 = 8.440 + 0.241 × LSTd + 0.398 × LSTn − 0.002 × elevation 0.86 1.20 
Ta08 = 7.644 + 0.253 × LSTd + 0.419 × LSTn − 0.002 × elevation 0.87 1.23 
Ta09 = 5.294 + 0.291 × LSTd + 0.407 × LSTn − 0.002 × elevation 0.84 1.24 
Ta10 = 3.418 + 0.266 × LSTd + 0.406 × LSTn − 0.002 × elevation 0.83 1.26 
Ta11 = –0.912 + 0.271 × LSTd + 0.411 × LSTn − 0.001 × elevation 0.83 1.57 

Ta12 = –2.560 + 0.314 × LSTd + 0.463 × LSTn + 0.00037 × elevation 0.86 1.67 
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