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Abstract: Algal blooms in eutrophic lakes have been a global issue to environmental ecology.
Although great progress on prevention and control of algae have been made in many lakes, systematic
research on long-term temporal-spatial dynamics and drivers of algal blooms in a plateau Lake
Dianchi is so far insufficient. Therefore, the algae pixel-growing algorithm (APA) was used to
accurately identify algal bloom areas at the sub-pixel level on the Moderate Resolution Imaging
Spectroradiometer (MODIS) data from 2000 to 2018. The results showed that algal blooms were
observed all year round, with a reduced frequency in winter–spring and an increased frequency
in summer–autumn, which lasted a long time for about 310–350 days. The outbreak areas were
concentrated in 20–80 km2 and the top three largest areas were observed in 2002, 2008, and 2017,
reaching 168.80 km2, 126.51 km2, and 156.34 km2, respectively. After deriving the temporal-spatial
distribution of algal blooms, principal component analysis (PCA) and redundancy analysis (RDA)
were applied to explore the effects of meteorological, water quality and human activities. Of the
variables analyzed, mean temperature (Tmean) and wind speed (WS) were the main drivers of daily
algal bloom areas and spatial distribution. The precipitation (P), pH, and water temperature (WT)
had a strong positive correlation, while WS and sunshine hours (SH) had a negative correlation with
monthly maximum algal bloom areas and frequency. Total nitrogen (TN) and dissolved oxygen
(DO) were the main influencing factors of annual frequency, initiation, and duration of algal blooms.
Also, the discharge of wastewater and the southwest and southeast monsoons may contribute to the
distribution of algal blooms mainly in the north of the lake. However, different regions of the lake
show substantial variations, so further zoning and quantitative joint studies of influencing factors are
required to more accurately understand the true mechanisms of algae in Lake Dianchi.
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1. Introduction

Since ancient times, human civilization has depended on water. Lake Dianchi Basin is an area
with a high population density and the highest degree of industrialization and urbanization [1],
most developed economy, and most dynamic social development in Yunnan Province of China [2].
Lake Dianchi is the only water body that can receive pollutants such as urban sewage, livestock excreta,
and agricultural fertilizer from the entire watershed [1,3]. With the accumulation of pollutants entering
the lake, the water quality began to deteriorate gradually in the 1980s and rapidly between 1987–2000 [1].
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Official data indicate that investment in the treatment of Lake Dianchi have reached 40–50 billion yuan
(5.6–7.1 billion US dollars). The “Six Major Projects” namely, (1) lake-round interception, (2) nonpoint
source control, (3) ecological restoration and construction, (4) inlet river training, (5) internal pollution
control, and (6) water diversion and saving from the outer watershed [3,4], have been implemented to
control pollution over the last 10 years [5]. Although so many considerable efforts have been exerted
by the local government and private enterprises [6], the eutrophication of the lake has not been solved
effectively [7]. Algal blooms, as the sign of extreme eutrophication in aquatic systems [8], accounting
for 66.44–90.66% of the total number of phytoplankton cells in Lake Dianchi [9], which still occur in
different scales every year [10].

The large-scale growth of algal blooms has brought a series of ecological and environmental
impacts to drinking water, cultivation, agricultural irrigation, and tourism landscape [11–14]. Among
all the algal species in Lake Dianchi, Microcystis dominated can be observed from early March
and last nearly 300 days yearly, which accounts for 35.69–87.97% of phytoplankton [9,15]. A large
number of Microcystis cells increase the pH of water bodies, lead to imbalances in the nervous system
of fish [16], and represent a prominent factor responsible for inducing liver cancer [17]. Secondly,
Aphanizomenon accounts for 0.46–30.75% of the total number of phytoplankton forms a small area of
bloom in March [18,19], which produces an alkaloid toxin that can cause animals to die from paralysis
of the respiratory muscle [20].

Based on the above-recognized information, studies on algal blooms in Lake Dianchi have
gradually increased in recent years [5,17,18,21–26]. Most of these studies used fixed-point chlorophyll-a
data as the response parameter for algal blooms [17,19,26–28], which has spatial and temporal
discontinuities. Remote sensing data characterized by large-area simultaneous observations, strong
timeliness, and dynamic continuity, are increasingly used in algal blooms monitoring and identification
research [29–36]. Compared with the two other top priority lakes in China, Lake Taihu and Lake
Chaohu, the remote sensing monitoring of algal blooms in Lake Dianchi has been very limited [5,22]
and used mostly for short-term monitoring [25,37,38]. Zhao et al. [39] performed long-term algal
blooms monitoring based on Landsat data with a 30 m spatial resolution from 1986 to 2016 in Lake
Dianchi. Although the algal blooms’ information of this study was more accurate than previous studies,
the 16-day temporal resolution was insufficient to characterize rapid changes in algal blooms. Jiang [13]
used Moderate Resolution Imaging Spectroradiometer (MODIS) data with an extremely high temporal
resolution from 2000 to 2015 to monitor Dianchi algae, however, due to the limited spatial resolution
of this study, mixed pixels were relatively common. Compared with other nonlinear identification
methods such as the normalized difference vegetation index (NDVI) and enhanced vegetation index
(EVI), floating algae index (FAI) is not easily affected by the aerosol thickness and observation angle,
which can penetrate thin clouds more effectively. This index has been widely applied to monitor algal
blooms [32,35,39–43]. Based on the low sensitivity of the FAI, the algae pixel-growing algorithm (APA)
is combined to calculate the algal bloom area to sub-pixels [44]. It has been applied to Lake Taihu and
Lake Chaohu, which has been proved to be more objective and accurate in real-time monitoring and
historical analysis [30,45,46].

This study, therefore, aims to explore the temporal-spatial distribution of algal blooms in
Lake Dianchi from 2000 to 2018 more precisely by APA on MODIS. After analyzing the effects of
meteorological, water quality, and human activities on algal blooms at different time scales, we recognize
the major influencing factors and quantify their impacts. The results of this study may provide a
theoretical basis of the eutrophication of Lake Dianchi, and offer some valuable information on algal
blooms prediction and corresponding mitigation and control methods for other lakes.
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2. Data and Methods

2.1. Study Site

Lake Dianchi (102◦29′9”–103◦0′51”E, 24◦28′10”–25◦27′24”N) is located in the southwest of
Kunming City, the capital of Yunnan Province in southwest China. It extends 39.4 km from north to
south and 12.66 km from west to east and is slightly arched back to the east (Figure 1). The lake covers
an area approximately 310 km2 with an average depth of 4.9 m [3], which is the largest lake in the
Yunnan-Guizhou Plateau and used to be called the “pearl of the highland” because of its picturesque
scenery [47]. Lake Dianchi has been divided into two parts by the Xiyuan Tunnel since 1996: Caohai
(north, 2.5% of the entire lake) and Waihai (middle and south, 97.5% of the entire lake) [48].
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Figure 1. Location of Lake Dianchi, China. (a) Location of Lake Dianchi Basin in China; (b) distribution
of the water body and Lake Dianchi Basin in Kunming City; (c) distribution of the water body in the
basin; and (d) Lake Dianchi.

The water of Lake Dianchi is completely mixed and does not freeze during the year due to the
monsoon climate and wind disturbances in the subtropical plateau [1], which create natural conditions
that promote occurring algae. Also, developed economy, dense population, high-level urbanization,
and serious water quality problems of Lake Dianchi Basin create favorable social conditions for algal
blooms [3]. Under the combined effects of various factors, the algal blooms explode different degrees
every year.

2.2. Satellite and Other Data

2.2.1. Satellite Data Acquisition and Pre-Processing

A total of 1309 of at least 75% cloud-free MODIS Level-0 data (Terra and Aqua) covering the
years 2000–2018 over Lake Dianchi were collected from the NASA EOS Data Gateway (EDG). Then,
the calibrated radiance data (Level-1B) were obtained by SeaDAS (version 7.2). The data were
georeferenced to the Universal Transverse Mercator (UTM) projection with an error of fewer than
0.5 pixels. The ground 500 m resolution of the MODIS data (1240 nm) was resampled to 250 m
resolution to match the resolution at 645 nm by using the nearest neighbor method in ENVI (version
5.3). The Rayleigh-corrected reflectance (Rrc, dimensionless) was derived after the Level-1B data were
corrected for gaseous absorption (mainly by ozone) and Rayleigh (molecular) scattering effects using
the routines and look up tables (LUTs) available in SeaDAS (version 7.2) [45].
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Six quasi-synchronized cloudless Landsat TM/ETM+ Level-1 images (09/15/2000, 11/02/2000,
10/07/2002, 04/06/2005, 08/04/2005, and 08/15/2006) of Lake Dianchi in the presence of algae were
downloaded from the Earth Resources Observation and Science (EROS) Center (http://glovis.usgs.gov).
The geometric correction was applied to these images using a 1:50000 topographic map within an
error of fewer than 0.5 pixels. Subsequently, these images were processed by the same atmospheric
correction to get Rrc, which followed the calculation requirements and steps strictly of the floating
algae index (FAI) by Hu et al. [40,49].

2.2.2. Other Data

Meteorological, water quality, and human activities data of Lake Dianchi were collected and
analyzed in this study [3,50–53]. Meteorological data include the daily mean air temperature (Tmean),
maximum air temperature (Tmax), minimum air temperature (Tmin), wind speed (WS), wind direction
(WD), sunshine hours (SH, the duration from sunrise to sundown, minus the cloudy hours), and 20–20 h
precipitation (P, the amount of precipitation from 20:00 on one day to 20:00 on the next day) of the Lake
Dianchi Basin from 2000 to 2018. These data were obtained from the Kunming Meteorological Station
(station no. 56778, 25◦N, 102◦23′24”E, 1888. 1 m altitude) on the website of the China Meteorological
Data Service Center (CMDC) (http://data.cma.cn/en).

The water quality data mainly include the yearly and monthly mean pH, total nitrogen (TN),
total phosphorus (TP), nitrogen-phosphorus ratio (TN/TP), dissolved oxygen (DO), chemical oxygen
demand (CODMn), ammonia-nitrogen (NH3–N), and water temperature (WT). TN, TP, and TN/TP
data for 2000–2015 and WT for 2005–2015 were obtained from published literature [5,54]. The weekly
average pH, DO, CODMn, and NH3–N values from 2006 to 2018 were obtained from the China National
Environmental Monitoring Centre (CNEMC) (http://www.cnemc.cn/).

The monthly values were obtained by averaging the data of all the corresponding days in each
given month, and the annual values were obtained by averaging all the monthly values in each
particular year. Monthly meteorological and water quality changes were analyzed through average
data sets for specific months from 2000 to 2018.

The socioeconomic data, including Kunming City’s total population (TPop), gross domestic
product (GDP), and total wastewater discharge (TW), were downloaded from the Yunnan Statistical
Yearbook (YSY) (www.stats.yn.gov.cn). Table 1 shows the specific parameters of the influencing factors.

Table 1. Influencing factors used in this study.

Category Parameter Abb. a Unit Available
Time Span Data Type Data Source

Meteorological
factors

Mean air temperature Tmean °C

2000–2018
Daily;

monthly;
yearly

CMDC b

Maximum air temperature Tmax °C
Minimum air temperature Tmin °C

Wind speed WS m/s
Wind direction WD –
Sunshine hours SH H

20–20 h Precipitation P mm

Water quality
factors

Total nitrogen TN mg/L
2000–2015

Monthly;
yearly

Guo et al., 2017;
Wang et al., 2019 [5,55]Total phosphorus TP mg/L

Nitrogen–phosphorus ratio TN/TP –

pH pH –

2006–2018
Weekly;
monthly;

yearly
CNEMC cDissolved oxygen DO mg/L

Chemical oxygen demand CODMn mg/L
Ammonia-nitrogen NH3–N mg/L

Water temperature WT °C 2005–2015 Monthly;
yearly Wang et al., 2019 [5]

Socioeconomic
factors

Total population TPop 104 persons
2000–2017 Yearly YSY dGross domestic product GDP 1010 CNY

Total wastewater discharge TW 107 tons

Notes: a Abb. = Abbreviation, b CMDC = China Meteorological Data Service Center, c CNEMC = China National
Environmental Monitoring Centre, d YSY = Yunnan Statistical Yearbook.

http://glovis.usgs.gov
http://data.cma.cn/en
http://www.cnemc.cn/
www.stats.yn.gov.cn
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2.3. Algal Bloom Area Calculation Methods

2.3.1. FAI Algorithm

Under the MODIS band setting, the greatest difference between algal-bloom and non-algal-bloom
areas of a water body occurs when the 645 nm and 1240 nm bands are used as the base point of
both ends, and the 859 nm band is the central wavelength. Based on this feature, the FAI [40,41] was
calculated as:

FAI = Rrc,NIR −R′rc,NIR (1)

R′rc,NIR = Rrc,RED + (Rrc,SWIR −Rrc,RED) × (λNIR − λRED)/(λSWIR − λRED) (2)

where Rrc,RED, Rrc,NIR, and Rrc,SWIR represent the red, near-infrared, and short-wave infrared reflectances,
respectively, after Rayleigh scattering is removed. λRED, λNIR, and λSWIR indicate the corresponding
wavelengths of MODIS (λRED = 645 nm, λNIR = 859 nm, and λSWIR = 1240 nm). R’rc,NIR is the baseline
reflectance of the 890 nm band based on the linear interpolation of the 645 nm and 1240 nm bands.

2.3.2. Thresholds of Pure-Algae and None-Algae Pixels

The high difference between algae and none-algae areas of water bodies leads to sharp changes,
with a large gradient among the pixels. After the FAI values of MODIS images were generated
automatically, according to the sum of FAI difference between each pixel and its adjacent three by
three pixels on the boundary, the gradient distribution histogram was drawn to determine the algal
threshold of each image. Then subtracted twice the standard deviation from the average threshold of
FAI of all 1309 images, the threshold of none-algae pixels was defined as −0.004. Assuming that the
algal blooms in the Landsat TM/ETM+ images were pure, we mapped them to synchronous MODIS
images and obtained the FAI distribution of pure algae. The threshold of the pure-algae pixels was
determined to be 0.05 after minus the standard deviation from the average FAI [44].

2.3.3. Calculation of Algal Coverage of Mixed Pixels via APA

We defined algal coverage (α) as the proportion of mixed pixels covered by algae and divided the
MODIS image pixels of Lake Dianchi into three categories: Pure-algae (α = 100%), none-algae (α = 0),
and mixed pixels [44–46].

The APA [44] was based on pure pixels of the FAI and the computations of two hypotheses:
Hypothesis 1: In every three by three pixel window, the FAI value of the center pixel can be utilized

as a linear combination of the maximum and minimum FAI values of the eight surrounding pixels:

FAIcenter = γFAImax + (1− γ)FAImin (3)

where γ is the decomposition coefficient in the three by three pixel, determined based on the linear
relationship between known FAI values (FAIcenter, FAImax, and FAImin).

Hypothesis 2: The FAI of any mixed pixel can be decomposed into a linear combination of the
pure-algae and none-algae pixels:

FAImixed = αFAIthresh
algae + (1− α)FAIthresh

none−algae

=
(
FAIthresh

algae − FAIthresh
none−algae

)
α+ FAIthresh

none−algae

(4)
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where FAIthresh
algae and FAIthresh

none−algae represent the FAI thresholds of pure-algae and none-algae pixels,
respectively, and α is the algal coverage of the mixed pixels. The following can be obtained based on
Formula (4):

FAI = mα+ k (5)

where m and k are constants (m = FAIthresh
algae − FAIthresh

none−algae, k = FAIthresh
none−algae). FAImin = mαmin + k and

FAImax = mαmax + k are substituted into Formula (5),

mαcenter + k = γ(mαmax + k) + (1− γ)(mαmin + k) (6)

that is:
αcenter = γαmax + (1− γ)αmin (7)

where αmax and αmin are the algae coverages of pixels with maximum and minimum FAI values in a
three by three window, respectively. When α is not zero, the algal bloom areas in the pixels is 0.25 by
0.25 by α. Then, the algal area of the entire lake can be calculated by 0.25 × 0.25 ×

∑i
1 αi (where i is the

number of pixels).

2.4. Temporal-Spatial Characteristic Determination

We identified the spatial distribution of bloom frequency and the annual initiation date and
duration to describe the dynamic characteristics of algal blooms.

Based on further classification (year and month), the monthly and annual frequencies of the algal
bloom of each pixel were calculated as:

Fi, j =
Ci, j

TC j
(8)

where Fi,j is the bloom frequency of pixel i over j days, Ci,j is the bloom occurrence count, and TCj is
the total count of MODIS images.

Based on the cyclic changes in annual temperature and precipitation (Figure 2) of Lake Dianchi
Basin for 2012–2016, the period of this study was determined to be from January 1 to December 31 of
the same year. Algal bloom initiation was defined as the first moment after January 1 that the algal
bloom coverage value was greater than 5% (15 km2) of the entire lake. Furthermore, we defined bloom
duration as the number of days between the initiation and last date that the algal bloom area was
15 km2. For the entire lake, the significant algal bloom initiation and final date were defined as the first
and last moments in the lake district when > 10% (30 km2) of the pixels showed none-zero algal bloom
coverage. Initiation dates were transformed into a Julian date format [45].
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2.5. Statistical Methods

In this study, the validation of the APA and the spatial-temporal distribution and drivers of the
long-time sequence of algal blooms in Lake Dianchi were determined by several multivariate statistical
methods. Table 2 lists these methods in detail.

Table 2. Statistical methods for determining the spatial-temporal distribution and environmental
drivers of the long-term sequence of algal blooms in Lake Dianchi.

Method Content Software

Root mean square error (RMSE)
Relative error (RE)

Validation of the APA Excel

Ward’s minimum variance
Hot spot analysis

Trajectory data mining

Temporal-spatial distributions of
pixel-bloom frequency

RStudio
ArcGIS

principal component analysis (PCA)
redundancy analysis (RDA)

Influencing drivers of algal
blooms at daily, monthly, and

inter–annual scales

Canoco

3. Results

3.1. Validation of the APA

As a result of satellite remote sensing inversion, in situ data or higher-resolution images are
usually used for verification. However, it is difficult or impossible to verify the range and area of the
planar distribution of algal blooms in Lake Dianchi using fixed-point data. Therefore, this study used
higher-resolution Landsat TM/ETM+ data (spatial resolution 30 m) to evaluate the accuracy of the
MODIS (spatial resolution 250 m) algal bloom monitoring results. We assumed that there were only
pure-algae and none-algae pixels existing in Landsat images, then we use FAI, which has been widely
used with high precision [13,41,43], to extract algal bloom areas. The spatial distributions of these six
comparison images were roughly the same (Figure 3), there was a little inconsistent distribution of
algal bloom area in the north of the lake in 08/04/2005, which may be related to the difference of transit
time on MODIS/Aqua and Landsat. Meanwhile, it can be seen from this picture that APA did not
mistake the thin cloud for algal blooms. Further quantitative analysis of the algal bloom areas indicated
that both results were near the bloom contour, and the root mean square error (RMSE) was 2.27 km2,
and the relative error (RE) was 5.63% (Figure 4). Given the small error, the APA was deemed accurate,
reliable, and able to provide data support for the scientific decision-making of relevant management
departments in Lake Dianchi.



Remote Sens. 2019, 11, 2582 8 of 28
Remote Sens.2019, 11,x FOR PEER REVIEW 8 of 27 

 

 

 Figure 3. Cont.



Remote Sens. 2019, 11, 2582 9 of 28
Remote Sens.2019, 11,x FOR PEER REVIEW 9 of 27 

 

. 

Figure 3. Comparison between algae pixel-growing algorithm (APA) results and Moderate 
Resolution Imaging Spectroradiometer (MODIS), TM/ETM+ false color composites. 
Figure 3. Comparison between algae pixel-growing algorithm (APA) results and Moderate Resolution
Imaging Spectroradiometer (MODIS), TM/ETM+ false color composites.



Remote Sens. 2019, 11, 2582 10 of 28
Remote Sens.2019, 11,x FOR PEER REVIEW 10 of 27 

 

 
Figure 4. Comparison between the APA results on MODIS and the corresponding six–floating algae 
index (FAI) results on TM/ETM+ images of algal blooms. 

3.2. Spatial-Temporal Distribution of Algal Blooms 

3.2.1. Distributions of Algal Bloom Initiation Date and Duration 

The initiation and end dates of algal blooms in Lake Dianchi may not be the same each year. 
Based on the algal bloom area data and visual interpretation, the initiation dates and durations of 
algal blooms were determined for each year (Table 3). Each initiation date was transformed into a 
Julian date format. The MODIS data used in this paper were up to 31 December 2018. However, algal 
blooms are likely to last until early 2019. Thus, the bloom duration for 2018 could not be determined. 

Table 3. Algal bloom initiation and duration of Lake Dianchi from 2000 to 2018 in MODIS images. 

Year Initiation Date End Date Duration (Days) 

2000 2000066 2001022 295 
2001 2001095 2002014 285 
2002 2002039 2003025 351 
2003 2003034 2003347 378 
2004 2004044 2005030 350 
2005 2005055 2006010 320 
2006 2006033 2007013 336 
2007 2007052 2008023 334 
2008 2008096 2008359 264 
2009 2009073 2010028 320 
2010 2010060 2011008 313 
2011 2011095 2012043 313 
2012 2012075 2013038 329 
2013 2013054 2014023 344 
2014 2014071 2015028 289 
2015 2015060 2016029 334 
2016 2016045 2017024 345 
2017 2017047 2018021 339 
2018 2018058 ––  

Table 3 shows that the initiation dates of algal blooms were mainly distributed within 33–96 
days of each year, with a maximum of 40–70 days. Two types of end dates were observed: The first 
type ended near the end of the year and was mainly distributed between days 347 and 359, and the 
second type extended to the beginning of the next year. 

In Figure 5, the initiation dates of algal blooms in Lake Dianchi demonstrate a wave pattern with 
a wavelength of approximately four years. The durations were mainly concentrated between 310–

Figure 4. Comparison between the APA results on MODIS and the corresponding six–floating algae
index (FAI) results on TM/ETM+ images of algal blooms.

3.2. Spatial-Temporal Distribution of Algal Blooms

3.2.1. Distributions of Algal Bloom Initiation Date and Duration

The initiation and end dates of algal blooms in Lake Dianchi may not be the same each year.
Based on the algal bloom area data and visual interpretation, the initiation dates and durations of algal
blooms were determined for each year (Table 3). Each initiation date was transformed into a Julian
date format. The MODIS data used in this paper were up to 31 December 2018. However, algal blooms
are likely to last until early 2019. Thus, the bloom duration for 2018 could not be determined.

Table 3. Algal bloom initiation and duration of Lake Dianchi from 2000 to 2018 in MODIS images.

Year Initiation Date End Date Duration (Days)

2000 2000066 2001022 295
2001 2001095 2002014 285
2002 2002039 2003025 351
2003 2003034 2003347 378
2004 2004044 2005030 350
2005 2005055 2006010 320
2006 2006033 2007013 336
2007 2007052 2008023 334
2008 2008096 2008359 264
2009 2009073 2010028 320
2010 2010060 2011008 313
2011 2011095 2012043 313
2012 2012075 2013038 329
2013 2013054 2014023 344
2014 2014071 2015028 289
2015 2015060 2016029 334
2016 2016045 2017024 345
2017 2017047 2018021 339
2018 2018058 —-

Table 3 shows that the initiation dates of algal blooms were mainly distributed within 33–96 days
of each year, with a maximum of 40–70 days. Two types of end dates were observed: The first type
ended near the end of the year and was mainly distributed between days 347 and 359, and the second
type extended to the beginning of the next year.

In Figure 5, the initiation dates of algal blooms in Lake Dianchi demonstrate a wave pattern
with a wavelength of approximately four years. The durations were mainly concentrated between
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310–350 days, which were negatively correlated with the initiation date and showed fluctuations with
a small amplitude.
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3.2.2. Temporal Variation of the Algal Bloom Areas

The existing algal bloom area data are summarized in Figure 6. Although the algal bloom area
changed from year to year, the trend increased in summer and decreased in winter. The monthly and
annual areas were analyzed individually to better explore the changing trend.
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Figure 6. The total algal bloom area changes in Lake Dianchi from 2000 to 2018. The hollow circles
represent the daily algal bloom area, and the solid circles represent the maximum algal bloom areas
(MaxABs).

Given the influence of wind on the lake surface, the monthly maximum algal bloom areas (MaxABs)
were more representative than the monthly average algal bloom areas [41,45]. The MaxABs showed a
double-peak trend, with the first peak (higher) appearing in July and the second peak appearing in
November (Figure 7a). In general, the algal blooms continued after July, with considerably smaller
areas, which was larger than that before July [13,56].
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In the annual mean analysis, the apparent spike in 2002 in Figure 6 was excluded as an outlier.
The annual average algal bloom coverage of Lake Dianchi in 2000–2018 was then roughly divided
into three stages (Figure 7b). The area in 2000–2005 was concentrated between 25 km2 and 35 km2,
showing a single peak trend with a small fluctuation range. In 2006–2015, the algae area fluctuation
period was shortened to four years, and the fluctuation range was increased to 20–34 km2. Finally,
the area in 2016–2018 increased significantly, considerably exceeding the average of the previous years.

Figure 8 shows that the monthly area of algae blooms presented noticeable periodic changes,
and the annual changes were almost the same. The area changed synchronously with the monthly
average area, which was remarkably bimodal. In summer, the algal bloom area was the largest, after
which it decreased to a second peak in autumn and continued to decline until the beginning of the
next year.
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Referring to the standard grading division of cyanobacteria blooms in Lake Taihu [55], the algal
blooms in Lake Dianchi were classified according to the bloom area. Slight, moderate, and severe algal
bloom conditions were defined as blooms with an area 5% (approximately 15 km2), 10% (approximately
30 km2), and 15% (approximately 46 km2) of Lake Dianchi’s area, respectively (Figure 9). The occurrence
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day trends of the light and moderate algal blooms tended to be consistent with the total number of
days, whereas the severe outbreak days fluctuated in a four-year cycle. Lake Dianchi was dominated
by light algal blooms supplemented by moderate algal blooms. In 2008, severe algal blooms suddenly
emerged, and the duration of these blooms increased significantly in 2017 and 2018, exceeding 20% of
the total algal bloom days.Remote Sens.2019, 11,x FOR PEER REVIEW 13 of 27 
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3.2.3. Temporal-Spatial Distributions of Pixel-Algae Frequency

The occurrence frequency of algal bloom pixels among the pixels in Lake Dianchi showed a
noticeable spatial differentiation due to the geographical differences in the water quality, meteorological,
and distance from the city. The temporal-spatial clustering of the average pixel algal bloom frequency
(ABF) from January to December (Figure 10a) and from 2000 to 2018 (Figure 10b) was measured by
Ward’s minimum variance of hierarchical clustering to reveal the spatial heterogeneity pattern between
pixels. Finally, the frequencies were divided into five categories.
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Figure 10 shows a remarkable spatial differentiation in the ABF of Lake Dianchi. The distribution
trends of the inter monthly and interannual variations are “high in the north and low in the south” and
“high at the edge of the lake and low in the center of the lake”, respectively. The area with the highest
ABF is the narrow part of the lake in the north. The low and low-middle ABF pixels account for a large
proportion of all pixels and are mainly concentrated in the center of the lake, which is wide on the
surface. The medium and high-medium ABF pixels serve as the transition region distributed between
the high- and low-ABF areas.

Changes in algal blooms are a complex space-time process. Through the analysis of the
spatial-temporal trajectory data of algal blooms, we can extract the similarity features of these data and
divide them into categories of similar behavior without prior knowledge [57]. A three-dimensional map
was used to show the temporal-spatial synchronous variation characteristics [58] of algal blooms in
Lake Dianchi. High-ABF areas were utilized as the hot zone to track the trajectory. In Figures 11 and 12,
the xy plane represents the ABF spatial distribution in Lake Dianchi, and the z-axis represents the
temporal distribution information (monthly and yearly sequences). The color scheme only represents
the high-ABF hot zones in different months and years and does not represent the ABF level. The ranges
of different color schemes projected on the xy plane indicate the high-ABF areas in the current month
and year. The projection ranges are plotted with dashed lines. For visual convenience, the monthly
and yearly information (represented by Roman numerals) are directly marked on different color planes
and projected dashed lines. Based on the change in ABF, the entire lake is divided into three regions:
Northern, central, and southern.

Figure 11 shows that the algal blooms were mainly distributed in Caohai and the northern part
of Waihai, with the highest frequency of occurrence in one year. As seen in the projection of the xy
plane, the frequency was the most convergent in February–March, gradually expanded southward in
April, extended to the central region in July–September, and then returned to the north from October
to January of the following year. The central section showed sporadic outbreaks. Hot spots appeared
at the edge of the lake, and an internal expansion trend was evident in August. In the southern region,
the high-ABF hot spots were the lowest in one year and all concentrated on the edge of the lake body.

The interannual change characteristics (Figure 12) were as follows (from the projection of the
xy plane): The interannual variation in the ABF of Lake Dianchi was similar to that of the monthly
variation. The northern region remained a high-ABF area, and the highest ABF occurred in 2000,
2002, and 2018. In the other years, the northwest border showed a high-incidence trend, and the
northernmost end had a high-occurrence trend in 2010, 2011, and 2014. In all years, the central region
showed sporadic bursts along the lacustrine margin, and high-ABF were mainly concentrated in the
northeast-southwest trending part of the middle-eastern margin. The southern region had a few
high-ABF outbreaks, and small hot spots were distributed in the depressed area at the edge of the
lake body.
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3.3. Influencing Factors of Algal Blooms

Many studies have shown that, in addition to nutrient elements, meteorological factors affect the
temporal-spatial dynamics of algal blooms [5,26,28,32,44,52]. But the effect of joint parameters has
been studied less than that of individual parameters, and identification factors are more qualitative
or semi-quantitative [5]. Therefore, we used principal component analysis (PCA) to investigate the
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combined effects of water quality and meteorological factors on the growth of algal blooms more
quantitatively from the perspective of daily, monthly, and interannual scales.

3.3.1. Daily Influencing Factors of Algal Blooms

The nutrient levels in the lake are affected by the dry and rainy seasons [27]. Except for heavy
rain, snow melting, and other sudden water pollution and ecological events, the daily changes in
water quality are not significant. Besides, water quality data from different monitoring spots may be
different and not representative of the entire lake [24,59,60]. But the local meteorological elements are
uniform in Lake Dianchi. Favorable meteorological conditions, such as high temperature, strong light,
and low WS, promote the floatation and accumulation of algal blooms [35,61]. High temperatures
are beneficial in that they accelerate the transformation of organic matter into inorganic nutrient
elements in sediments, thereby providing a material basis for the sustained and rapid growth of
algae [24]. The average WT of shallow lakes is consistent with Tmean, and an increase in WT benefits
the recovery and growth of overwintering algae [24,62]. Solar radiation is the energy source of
cyanobacteria [63]. Light affects factors such as the synthesis, physiological activity, and buoyancy
regulation of algae [24,63–65]. Moreover, wind is an important regulator of algae formation and
expansion [66,67]. Therefore, PCA was used to analyze the significant differences between daily
algal bloom areas and WT, WS, and SH [30,45] in 2000–2005, 2006–2015, and 2016–2018 (Figure 13).
The correlation is expressed by the cosine value of the angle between any two axes in the graph, while
the influence intensity is expressed as the distance one axis projected on another. The longer the
projection length, the stronger the correlation.
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Figure 13. Principal component analysis (PCA) ordination diagram of daily algal blooms in Lake
Dianchi. (a) 2000–2005; (b) 2006–2015; and (c) 2016–2018.

In general, the acute angles showing positive correlations between algal bloom areas and WT,
while the obtuse angles showing significant negative correlations between the algal bloom areas and
WS, which have been confirmed in previous studies [29,39,46,68,69]. Also, the influence of WS on algal
bloom areas shows an increasing trend. Besides, the angles between the algal bloom areas and SH are
close to right angles, which denotes an insignificant relationship or a weak negative correlation.

3.3.2. Monthly Influencing Factors of Algal Blooms

In addition to the factors mentioned above, the monthly influencing factors also added water
quality and other meteorological parameters in the comprehensive analysis (the pH, CODMn, DO,
NH3–N, and WT data for 2000–2005 were not collected. Thus, the water quality data for this phase
considered only TN, TP, and TN/TP) (Figure 14).
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Figure 14. PCA ordination diagram of monthly algal blooms in Lake Dianchi. (a) 2000–2005;
(b) 2006–2015; and (c) 2016–2018. Hollow circles, monthly algal bloom variables; red arrows,
meteorological parameters; blue arrows, water quality parameters.

In these three periods, meteorological factors were expressed as the first principal component,
while water quality parameters were identified as the second component. The algal bloom areas, P,
and Tmean had a generally significant positive correlation, and further observation showed that the
effect of P was greater than that of Tmean. The positive influencing factors of water quality are WT and
pH, and the effect of pH on the algal bloom areas gradually increases every five years. The rest of the
factors harm the growth of algal blooms, among which, WS and SH are the most important factors.
The southwest and southeast monsoons prevail in the Lake Dianchi Basin (Figure 15), especially
west-southwest, which may contribute to the distribution of algal blooms mainly in Caohai and the
north of Waihai.
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3.3.3. Yearly Influencing Factors of Algal Blooms

Figure 16 shows the average difference in meteorological and water quality parameters from 2000
to 2018. The average difference between Tmean, Tmax, Tmin, P, WS, SH, TN, TP, TN/TP, pH, DO, CODMn,
NH3–N, and WT and the corresponding mean values are expressed by ∆Tmean, ∆Tmax, ∆Tmin, ∆P, ∆WS,
∆SH, ∆TN, ∆TP, ∆TN/TP, ∆pH, ∆DO, ∆CODMn, ∆NH3–N, and ∆WT, respectively. Both meteorological
and water quality factors showed inapparent fluctuations in the past 19 years. The variations in
Tmean and Tmax in the past 19 years are similar, with fluctuation cycles that first gradually shortened
from five years to three years and then stabilized after 2016. The fluctuation cycle of Tmin increased
gradually from three years to six years, while Tmin of 2018 was 0.8°C lower than that of 2000 in general.
The precipitation can be divided into three stages: Relatively stable in 2000–2008, a yearly increase
in 2009–2016, and a noticeable decrease in 2017–2018, with 1 mm less than that of 2000. The change
in WS can also be divided into three stages: An annual increase in 2000–2006, a decreasing and then
increasing trend in 2007–2010, and an annual decrease to the average value in 2011–2018. The SHs
was lower than the average value until 2012, after which it was higher than the average. The changes



Remote Sens. 2019, 11, 2582 19 of 28

in TP and TN from year to year were nearly opposite, but both showed an overall downward trend.
The change of TN/TP and TN were approximately similar. PH and WT did not change considerably,
except for a few years. DO showed a decreasing trend before 2011, after which DO increased annually
by 0.2 mg/L. CODMn presented a more balanced fluctuation in the vicinity of the mean value. NH3–N
was stable after 2010.Remote Sens.2019, 11,x FOR PEER REVIEW 19 of 27 
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After characterizing the changes in environmental parameters in the past 19 years, we analyzed
the interannual variation of algal blooms and environmental factors in Lake Dianchi by PCA. Figure 17a
shows the general variation trends of algal blooms and environmental parameters during 2000–2018.
The sample data for each year are grouped, and the results are consistent with the results for 2000–2005,
2006–2015, and 2016–2018. Subsequently, the three time periods were analyzed separately. Figure 17b
shows the significant algal blooms in 2000–2005 was mainly affected by the positive influence of TN
and SH, and the negative influence of WS, P, Tmin, and Tmean, while TP had a small influence. Moreover,
TN/TP and SH and TP, TN, and P had strong positive and negative effects on duration; this finding is
contrary to the initiation date. In 2006–2015 (Figure 17c), the change trends of significant algal blooms
and the ABF were similar. The positive effect of TN, TN/TP, CODMn, and TP on S–days and ABF
was weakened, whereas the negative effect of pH, Tmin, DO, SH, Tmax, and Tmean was strengthened.
Meanwhile, WT and P only had a small effect. The changes in the duration and initiation date were
opposite. The main factor with a positive effect on duration was WT, which was also the main source
of the negative effect on initiation date. The changes in the initiation date and duration from 2016 to
2018 (Figure 17d) were consistent with those in the previous years and showed an evident negative
correlation. The changes in significant algal blooms and ABF differed from those in previous years but
did not have any noticeable correlation. The initiation date and frequency showed a strong positive
correlation. SH, DO, NH3–N, and pH had a positive effect on significant algal blooms, particularly
SH and DO. In contrast, the negative effect of WS, P, and Tmean on significant algal blooms was the
greatest, followed by the strong influence of Tmin and CODMn. PH and Tmax had a strong influence
on the initiation date and frequency. The higher the Tmax and pH were, the greater the frequency of
severe algal blooms was. The closer Tmax was to summer, the later the initiation date of algal blooms
was and the shorter the duration was. The higher the CODMn and NH3–N concentrations in the lake
were, the longer the algae blooms lasted. Also, the duration mainly depended on the influence of Tmin.

We used redundancy analysis (RDA) to extract the main environmental factors on algal blooms
for 2000–2018 (Figure 18). After removing the redundant parameters, only three meteorological factors
(SH, WS, and P) and four water quality factors (TN, TP, NH3-N, and DO) were retained. In general,
the initiation date and duration of algal blooms remained significantly negatively correlated, whereas
the initiation date, ABF and significant algal blooms were positively correlated. TN had a considerable
positive influence on initiation date, ABF, and significant algal blooms, which agrees with previous
studies [5,22,45,54,70]. The effect of DO was opposite to that of TN, but similar results have not been
observed in previous studies. To verify this finding, more years of DO sampling data are needed [5].
Also, the negative effects of SH, TP, and WS were weakened. NH3-N only had a small effect on the
three parameters. Meanwhile, DO, SH, and TP were the main positive factors on duration, while WS
had no noticeable effect on it.

The WS of Lake Dianchi was counted based on the WD (Figure 19a), and the WD was measured
based on the frequency of wind occurrence (Figure 19b). A wind rose map showed that the annual
WS was between 1.65 and 3 m/s, which had a minimal effect on the disturbance of the lake water.
The statistical results of WD in 2000–2018 are the same as the monthly findings. Southwest wind,
especially west-southwest WD, was dominant, which may be the reason for the high frequency of
algal blooms in the north of Lake Dianchi [5,13,35].
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4. Discussions

4.1. Meteorological and Water Quality Drivers

The influence of single water quality parameters on algal blooms is greater than that of
meteorological factors, among which, TN and TP are the most commonly used in studies [5,27,71,72].
But in our research, we found out that the meteorological factors were expressed as the first principal
component, while water quality parameters were identified as the second component in monthly
influencing results. Also, meteorological factors and water quality factors account for a considerable
proportion of interannual influencing factors.

Some studies have shown that pH > 8.5 [5,73,74] and WT > 20°C [75,76] are conducive to the
growth of cyanobacteria. The pH of Lake Dianchi has reached the optimum level for the growth of
cyanobacteria, with a monthly average of 8.56 (2006–2015, 8.54; 2016–2018, 8.63). The pH of 2016–2018
is 0.1 higher than that of 2006–2015 and is beneficial to the proliferation of algal blooms. In this plateau
Lake Dianchi, the annual Tmean is approximately 20 °C and does not change considerably, the WT can
be greater than 20 °C from May to August [5], which provides suitable conditions for the growth of
algal blooms. Also, high summer temperature is conducive to the occurrence of algal blooms, which
confirms the phenomena observed in Caohai or the entire Lake Dianchi [5,27,74].

We found out that the effect of P was greater than that of Tmean, which might be supported by
two mechanisms: First, the increased effect of P may be related to the location of Lake Dianchi, which
accepts 29-river inputs of the surrounding areas [77], with only one outlet [13]. When the precipitation
increases, the surface runoff carries a large number of terrestrial pollutants, especially nitrogen and
phosphorus, into the lake [22]. Second, pollutants in the air descend to the lake surface through
precipitation [39,78], representing none-point source pollution [13]. Either mechanism increases the
concentrations of pollutants and nutrients in the lake, affecting chemical and biological processes [79]
and providing a material basis for the growth and reproduction of algae.

WS and SH are the most important negative factors, which are consistent with previous
studies [5,45]. Some studies have shown that WS affects the mixing mode of surface lake water
and determines the success or failure of algae floating from the water column to the water surface.
When the WS exceeds 4 m/s, a shallow lake can be mixed by full turbulence, and the vertical floating
migration of blue algae can be effectively suppressed [79]. When WS < 3 m/s, the interference to the
water body is small and affected by the floating characteristics of algae. Once blue algae overgrow
and float to the surface of a lake, the algae will accumulate in a certain spatial range, resulting in
the formation of large areas of algal blooms [5]. The WS < 3.5 m/s of Lake Taihu was beneficial to
the emergence of cyanobacteria from 2001 to 2013 [45]. Meanwhile, the average WS of Lake Dianchi
from 2000 to 2018 was only 2.3 m/s, which was highly conducive to the creation of a calm surface
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layer [5], resulting in large areas of algal blooms. Also, regional circulation formed by wind has
a great influence on the occurrence, development, and diffusion of cyanobacteria blooms [5,13,45].
The southeast and southwest monsoons prevail in the Lake Dianchi Basin, especially west-southwest,
which may contribute to the distribution of algal blooms mainly in Caohai and the north of Waihai.
This result is consistent with existing findings [5,13,22]. Additionally, the solar radiation in the low
latitude plateau of Lake Dianchi is sufficient for cyanobacteria growth, while the low self-shading and
high-intensity light inhibit the growth of cyanobacteria [27].

A previous study suggested that the growth of algal blooms is not limited by the concentration
of nutrients in the water when the nutrients are sufficient (TN ≤ 0.80 mg/L, TP ≥ 0. 20 mg/L) [80].
On a monthly scale of our research, the negative influences of DO, TN, TN/TP, NH3-N, and TP on
algal blooms were generally weakened in Lake Dianchi. This weakening may be related to the fact
that the TN and TP contents in Lake Dianchi exceed the internationally recognized threshold of
eutrophication [13,22]. The negative correlation was inferred to be mainly due to the consumption of
nitrogen, phosphorus, and DO by algal blooms in the lake for growth and reproduction (as shown by
the distribution of sample points in Figure 14).

The most interesting finding is the change of CODMn. The CODMn in 2006–2015 had a weak
negative effect on the growth and reproduction of algal blooms, but the effect was influentially positive
in 2016–2018, which differs from the previous studies, in which CODMn always had a positive effect on
algal blooms [5,45].

4.2. Human Activities

Most studies have reported that in addition to water quality and meteorological factors, human
activities, which are the main cause of water pollution [3], affect the occurrence of algal blooms [10,54].
With the increase in population and the rapid growth of local economies, the nutritional load of lake
basins has increased significantly since the end of the 20th century, thereby transforming oligotrophic
lakes into eutrophic lakes [54]. Excessive use of fertilizers, increased fertilizer production, industrial
waste, and domestic sewage are causes of excessive nutrient concentrations in lakes [3,81].

As shown in Figure 20, the TPop of Kunming City increased from 4.809 million in 2000 to
6.783 million in 2017 (growth rate of 41%). And the GDP increased from 62.63 billion yuan (8.89 billion
US dollars) in 2000 to 485.76 billion yuan (68.99 billion US dollars) in 2017 (a nearly eightfold increase).
Due to the rapid expansion of population and significantly growing economy, the total discharge of
industrial wastewater and domestic sewage in urban areas increased from 209.39 million tons in 2000 to
861.97 million tons in 2017, thereby increasing the number of pollutants and nutrients in Lake Dianchi
and creating conditions for the growth of algal blooms. As we can see, the MaxABs in every year has a
positive correlation with TW. The relationship between the MaxABs peak value of 2002 and TW are not
significant, which may be related to the climate of the year. There are significant differences between
MaxABs and TW during 2010–2015, which may benefit from the large-scale planting of Eichhornia
crassipes in the north of Lake Dianchi [39].
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5. Conclusions

MODIS images have moderate spatial resolution and very high temporal resolution, providing a
data basis for the dynamic monitoring of algal blooms in long time series. The APA, which has been
proved to have higher accuracy than FAI, is capable of better identifying algal blooms on medium
resolution remote sensing images.

The algal blooms in Lake Dianchi were influenced by the combination of meteorological and
water quality factors, which were suitable for the growth and accumulation of algae. So they were
observed all year round, with a reduced frequency in winter–spring and an increased frequency in
summer–autumn, which lasted a long time for about 310–350 days. The severe algal blooms usually
occurred in July–September every year. This is closely related to the increase in temperature and
decrease in WS. From long time series, the top three largest areas of algal blooms were observed in
2002, 2008, and 2017, reaching 168.80 km2, 126.51 km2, and 156.34 km2, respectively. And the frequency
and area of algal blooms have increased significantly in the past three years, which is likely to be
influenced by the increase of DO. Besides, the discharge of wastewater has some promotion effect on
the occurrence of algal blooms.

However, APA used in this research are based on 645 nm, 859 nm, and 1240 nm on MODIS images,
which has advantages in monitoring algae in general. For the lakes with the majority of cyanobacteria
just like Lake Dianchi, we can try to improve the algorithm using the characteristic peak at 620 nm
(such as OLCI/Sentinel 3) of phycocyanin to specifically extract cyanobacteria, which can further
improve the extraction precision. Additional, different regions of the lake show substantial variations,
and the average value of the entire lake is not completely representative of these regions. In addition
to the factors analyzed in this study, food web structures, trophic interactions, and physicochemical
environmental factors may affect the outbreak and distribution of algal blooms [23,26,74]. Therefore,
it is necessary to further divide Lake Dianchi according to the outbreak degree of algal blooms [24] and
then quantitatively study the relationship between the factors in each zone and their influence on algal
blooms with in situ data. Only by accurately identifying the environmental driving forces of algae
growth in Lake Dianchi can we further effectively monitor and prevent the occurrence of algae.
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