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Abstract: Research work on distinguishing humans from animals can help provide priority orders
and optimize the distribution of resources in earthquake- or mining-related rescue missions. However,
the existing solutions are few and their stability and accuracy of classification are less. This study
proposes an accurate method for distinguishing stationary human targets from dog targets under
through-wall condition based on ultra-wideband (UWB) radar. Eight humans and five beagles were
used to collect 130 samples of through-wall signals using the UWB radar. Twelve corresponding
features belonging to four categories were combined using the support vector machine (SVM) method.
A recursive feature elimination (RFE) method determined an optimal feature subset from the twelve
features to overcome overfitting and poor generalization. The results after ten-fold cross-validation
showed that the area under the receiver operator characteristic (ROC) curve can reach 0.9993, which
indicates that the two subjects can be distinguished under through-wall condition. The study also
compared the ability of the proposed features of four categories when used independently in a
classifier. Comparison results indicated that wavelet entropy-corresponding features among them
have the best performance. The method and results are envisioned to be applied in various practical
situations, such as post-disaster searching, hostage rescues, and intelligent homecare.

Keywords: UWB radar; distinguishing human targets from dog targets; SVM; wavelet
entropy-corresponding features

1. Introduction

The rapid developments in ultra-wideband (UWB) radar technology [1–7] have attracted increasing
interest in civilian and military applications, such as earthquake and hostage rescue operations and
gesture recognitions. The technologies of radar imaging, localization, and action recognition have
been significantly improved over the past decade, and several research groups are focusing on the
distinction between humans and animals based on the advancements in radar technologies. The work
in [8] developed a feature-based classification method for walking movements in animals versus
humans for border security applications. The research in [9] proposed a classification algorithm using
micro-Doppler signals obtained from humans and dogs moving in four different directions, and [10]
combined the Gaussian mixture model and the hidden Markov model to distinguish between slow
moving animal and human targets to detect potential livestock thieves and poachers within reserves
and farmland.

However, these research works between humans and animals have concentrated on the moving
states of humans and animals, and there have been no reports focusing on the distinction in stationary
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state and through-wall condition. There is an urgent need to distinguish between stationary humans
and animals under through-wall conditions for post-disaster rescuing applications when trapped
targets are buried and unable to move. This work will help optimize the distribution of rescue resources
and boost the confidence of rescuers in earthquake search, thereby ensuring the safety of hostages
by eliminating the impact of pet signals in anti-terrorist rescue operation in the presence of barriers
such as walls. Therefore, distinction between stationary humans and other species under through-wall
condition is a significant and to be further resolved research work.

UWB radar can detect the vital signs of human and animal targets based on their quasi-periodic
respiration or non-periodic body movements. Considering that humans have more powerful
psychological and mental control, the signs caused by the micro motions in humans are more
regular than those in animals. The work in Otero, M. [11] found that the spectrum of radar echo signals
is different between human targets and other detected slow-moving targets; however, it is mainly
based on their different walking speed, implying that this method is not applicable in earthquake
search and hostage rescue operations because the targets are generally stationary.

Dogs are most likely to appear where it is necessary to distinguish between humans and animals
considering the actual situations. In Wang, Y. et al. [12], Wang extracted wavelet entropy and its
standard deviation using signals of target position based on 400 MHz UWB radar. The results show
that the two features have evident differences for human and dog targets. In [13], the classification
accuracy of human target recognition can achieve 86% and the accuracy of dog target recognition can
achieve 84% using wavelet entropy alone in through-wall conditions. When only standard deviation
of wavelet entropy is utilized, the classification accuracy can achieve 86% for both human and dog
targets. In her experiments, a total of ten humans and five dogs were used with five and ten times
signal acquisitions per human and dog, respectively.

Meanwhile, Yu, X. et al. [14] and Yin, Y. et al. [15] proposed some other features, whose classification
ability performs well when used independently in distinguishing humans from dogs, such as optimal
correlation coefficient of micro vibration (OCCMV), standard deviation change rate of micro vibration
(StdCRMV), energy ratio of the reference frequency band (ERRFB), etc. However, only one or two of
the features above, at most, are combined together to achieve the classification objectives of human
targets and dog targets each time in previous studies. Consequently, the robustness and classification
accuracy are unguaranteed because of the individual differences, no matter whether for human targets
or dog targets. For example, for some individual dogs, the values and ranges of OCCMV or StdCRMV
can resemble those of human beings, so much so that it is almost impossible to distinguish between
them when only one or two features are combined.

In this study, twelve feature species belonging to four categories are first extracted, including
two energy-corresponding features, two correlation coefficient-corresponding features, four wavelet
entropy-corresponding features, and four frequency-corresponding features. Then, a support vector
machine (SVM)-based feature selection and classification strategy are utilized to choose an optimal
feature subset. Finally, after 100 rounds of ten-fold cross-validation, a classifier with reliable
generalization and stability is successfully modeled. Meanwhile, the value of the area under the
curve (AUC) of the classifier also reaches the highest level, which is adopted to evaluate the overall
performance of the classifier. Higher values of AUC indicate better classifier performance. Thus,
the combination of these features improves the classification accuracy and enhances the stability of the
proposed system in distinguishing between human and dog targets.

The paper is organized as follows. Section 2 introduces the working principles of the UWB radar
and signal preprocessing. Section 3 describes the extraction of the abovementioned twelve features
belonging to four categories. In Section 4, the classification procedure and feature selection strategy
based on SVM are introduced. Experimental results are presented in Section 5. Section 6 discusses the
significance and future research considerations. The work is concluded in Section 7.
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2. UWB Radar System and Signal Preprocessing

2.1. UWB Radar System

The block diagram of the utilized UWB radar system is illustrated in Figure 1. Firstly, the pulse
generator generated trigger pulses with a center frequency and pulse repetition frequency of 500 MHz
and 128 KHz, respectively. Then, the pulses were sent to the transmitter to excite the transmitter
antenna (TA), where they were shaped into bipolar pulse. Next, the bow-tie dipole antenna transmitted
the vertically polarized pulses with peak power of approximately 5 W. Meanwhile, the trigger pulses
were sent to the delay unit to produce a series of software-controlled range gates of 300 ps in width
to turn on the receiver, which was identical with the transmitting one. Finally, through the receiving
antenna (RA), return pulse only within the range gates were sampled, integrated, amplified, and then
transferred to the computer for further analysis [16]. The detailed parameters of the UWB radar system
are listed in Table 1.
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Figure 1. Block diagram of ultra-wideband (UWB) radar. Abbreviations: ADC, Analog-to-Digital
Converter; TA, transmitter antenna; RA, receiving antenna.

Table 1. Key parameters of the UWB radar.

Parameters Value

Center frequency 500 MHz
Bandwidth 500 MHz
Pulse repetition frequency 128 kHz
Sampling points 2048
Scanning speed 64 Hz
Sensitivity of receiver −78 dBm
Dynamic range of receiver 60 dB
Sampling bit number of ADC 16 bits

After signal acquisition, the raw echo data D(m, n) are stored in the form of waveforms, where
m = 1, 2,· · · , M denotes the sampling point in propagation time, and n =1, 2,· · · , N denotes the
sampling point in observation time. The two-dimensional (2-D) pseudo-color image of raw echo data
is illustrated in Figure 2, when the human target is 2.5 m behind the wall. The time-axis associated
with range along each received waveform is termed as the “fast-time” and denoted by τ that is in
the order of nanoseconds. The time-axis corresponding to the acquisition time of waveforms along
the measurement duration is termed as “slow-time” and denoted by t that is in the order of seconds.
Each waveform contains M = 2048 sample points and the recorded profile is τmax = 20 ns long,
corresponding to a detection range of 3 m. The amplitudes along slow-time at each sample point,
which stands for a specific range, are defined as point signal. The scanning speed is 64 waveforms
per second which is higher than the Nyquist sampling rate for the respiration; thus, the number of
recorded waveforms in slow-time can be written as N = 64t.
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2.2. Signal Preprocessing

Signal preprocessing steps, including distance accumulation, normalization along the fast-time
dimension, direct current (DC) removal, 2 Hz low-pass (LP) filtering, and adaptive filtering based
on least mean square (LMS) are first performed, as illustrated in Figure 3. It should be noted that all
subsequent feature extractions are based on the preprocessed signals using the steps shown in Figure 3.
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Figure 3. Flow chart of the preprocessing steps. Abbreviations: DC, direct current; LP, low-pass.

Distance accumulation will help reduce the computational complexity effectively on the premise
of guaranteeing detailed information. It can be determined by:

DataA(x, n) =
1
Q

Qx∑
m=Q(x−1)+1

D(m, n) (1)

where DataA(x, n) is the echo matrix data after distance accumulation and Q is the distance window
width along the fast-time dimension. The value of x is x = 1, 2,· · · , X, and X denotes the distance point
number on the fast-time dimension after accumulation.

Next, normalization along the fast-time dimension is accomplished to guarantee that the
waveforms have the comparable amplitudes, and its processing is as follows:

DataN(m, x) = 2×
DataA(m, x) − min

1≤m≤M
[DataA(m, x)]

max
1≤m≤M

[DataA(m, x)] − min
1≤m≤M

[DataA(m, x)]
− 1 (2)
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DC removal will remove the DC component and baseline drift. The step of DC removal is given
by:

DataDC(x, n) = DataN(x, n) −
1

100

x+99∑
n=x

DataN(x, n) (3)

The cut-off frequency of the low-pass filter is chosen to be 2 Hz to filter out the high-frequency
noise and retain respiratory signals. It can be determined by:

DataLP(x, n) = DataDC(x, n) ×H(t) (4)

where H(t) is the impulse response function of the finite impulse response (FIR) filter [13].
Adaptive filtering by means of the least mean square (LMS) algorithm is used to suppress the

strong clutters. It is illustrated and verified in [17].
Matrix data DataAF(x, n) is obtained after the execution of all preprocessing steps. The 2-D

pseudo-color image of the preprocessed signal is shown in Figure 4, when the human target is 2.5 m
behind the wall. The subsequent feature calculation will proceed with DataAF(x, n).
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Figure 4. Data after preprocessing DataAF(x, n) when the human target is 2.5 m behind the wall.
The scope of the target’s movements is not just fixed in one point along the range dimension, because
the obtained reflected signals are due to the target’s skin and internal organ movements or movements
in other parts of the body.

3. Feature Extraction

According to the accumulation of research results in recent years, 12 capable features
belonging to four categories, consisting of two energy-corresponding features, two correlation
coefficient-corresponding features, four wavelet entropy-corresponding features, and four
frequency-corresponding features were utilized after signal preprocessing. The detailed feature
descriptions are described below.

3.1. Energy-Corresponding Features

• Standard deviation change rate of micro vibration (StdCRMV)

When calculating StdCRMV, Q = 1. Preliminary researches have shown that the deviations in
the amplitude values in target position are the greatest in DataAF(x, n), indicating that the standard
deviation (Std) of the target signal is the greatest. Target signal is defined as the specific point signal
which is right at the target position. The calculation of Std is expressed as:

Std =
2

√∑n
i=1 (yi − y)2

n
(5)
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where y is a scalar denoting amplitudes of the point signals. Then, an optimal window (OW), where
the target signal is in the middle position, is chosen along the fast-time dimension with fixed width,
and the Std of every point signal in the OW is calculated. Accordingly, the StdCRMV is expressed as:

StdCRMV =
Stdmax − Stdmin

Stdmax
× 100% (6)

where Stdmax is the max Std value and Stdmin is the min Std value within the OW. According to the work
in [18], it is better to choose the width of the OW as owStd = 15, so that the difference between human
targets and dog targets will be largest. Figure 5 illustrates the value of Std closer and further than the
target’s position for 15 points of human and dog targets, respectively. Generally, the changing trend of
Std in the OW of human targets is much gentler than that of dog targets. Therefore, the StdCRMV of
human targets is much lower than that of dog targets.
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Figure 5. Comparison results of StdCRMV. (a) Std of human target; (b) Std of dog target.
Abbreviations: OW, optimal window; StdCRMV, standard deviation change rate of micro vibration;
Std, standard deviation.

• Energy ratio of the reference frequency band (ERRFB)

In the calculation of ERRFB, the preprocessing steps are similar to that of StdCRMV. The difference
is that Q = 10 and the normalization is along the slow-time dimension, as illustrated in Equation (7). Thus,
the 2048 points along the fast-time index associated to the range are compressed into 200 points [18].

DataN(x, n) = 2×
DataA(x, n) − min

1≤n≤N
[DataA(x, n)]

max
1≤n≤N

[DataA(x, n)] − min
1≤n≤N

[DataA(x, n)]
− 1 (7)

Then, ensemble empirical mode decomposition (EEMD) is performed on the target signal. EEMD is
a noise-eliminating algorithm, and it can decompose the original target signal into a series of intrinsic
mode function (IMF) components with different characteristic scales by adding multiple sets of different
white noises [19–21]. Its procedures are as follows:

1. Add a random white noise signal wn j(t) to the original target signal Signalo(t):

Signal j(t) = Signalo(t) + wn j(t) (8)

where Signal j(t) is the noise-added signal, j = 1, 2, . . . , TN and TN is the number of trails, which
is chosen to be 50 here.
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2. Decompose Signal j(t) into a series of IMF components IMFi, j as follows:

Signal j(t) =
V j∑

i=1

IMFi, j + Residue j (9)

where IMFi, j is the i-order IMF component of the j-th trail, V j is the number of IMF components
of the j-th trail, and Residue j is the residue of the j-th trail.

3. If j < TN, then steps 1 and 2 are repeated, and different random white noise signals are added
each time.

4. Obtain V = min(V1, V2, . . . , VTN) and calculate the ensemble average of corresponding IMF
components of the decompositions as the EEMD result:

IMFi =
1

TN

TN∑
j=1

IMFi, j (10)

where i = 1, 2, . . . , V. IMFi is the ensemble average of corresponding IMF components of
the decompositions.

After dividing the original target signal into V-order IMF components by EEMD, noise will be
eliminated using the discriminant method as expressed in Equations (11) and (12):

β(i) =

0 i = 1
1

i−1
∑i−1

j=1 η( j)−η(i)

η(i) i = 2, 3, · · · , V
(11)

η(i) =

∑n2
n1

RIMFi
2(n)∑

RIMFi
2(n)

i = 2, 3, . . . , V (12)

where β is the energy concentration ratio and RIMFi is the discrete autocorrelation sequence of the
i-order (i = 2,3, . . . ,V) IMF components of the target signal, which is defined in Equation (10). [n1, n2]

denotes the interval with length of three points wherein the symmetric point of RIMFi is in the middle
and η denotes energy concentration ratio in the interval. When the decline rate of energy concentration
ratio β(v) satisfies the condition β(v) > 2, the v-order IMF component is considered as denoised signal.
The reconstructed signal sre is expressed in Equation (13).

sre =
V∑

i=v

IMFi (13)

ERRFB is the energy proportion of the reconstructed signal in human respiratory frequency band
(0.2–0.4 Hz), expressed in Equation (14).

ERRFB =
Ere_hb

Ere
× 100% (14)

where Ere is the total energy of the reconstructed signal in frequency domain, and Ere_hb is the energy
of reconstructed signal in the reference frequency band, i.e., the human respiratory frequency band.
Generally, ERRFB of humans is approximately 40% and that of dogs is approximately 18% [15,19].

3.2. Correlation Coefficient-Corresponding Features

• Optimal Correlation Coefficient of Micro vibration (OCCMV)
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Because the details are particularly important in calculation with OCCMV, the distance window
width here is Q = 1, and the width of OW here is owOCCMV = 15. In this way, OCCMV is expressed as
Equations (15) and (16):

CCMV(y) =
∑N

i=1 (TSi − TS)(Yi −Y)√∑N
i=1 (TSi − TS)

2
√∑N

i=1 (Yi −Y)
2

(15)

OCCMV =

∑2×owOCCMV+1
y=1 CCMV(y)

2× owOCCMV + 1
(16)

where TS represents the amplitudes of target signal, and Y the amplitudes of other point signals within
the OW. The horizontal bar above the TS and Y denotes the calculation of the average value. CCMV(y)
is the correlation coefficient between target signal and another point signal in the OW. OCCMV is the
mean value of the CCMV of each point signal in the OW. Generally, the CCMV of human targets is
very stable in the OW, close to one. Whereas the change of CCMV of dog targets is greater. So the
OCCMV of human targets is larger than that of dog targets. The comparison result of CCMV of human
targets and dog targets is expressed as in Figure 6.
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Figure 6. Comparison results of the correlation coefficient of micro vibration (CCMV) of human targets
and dog targets: (a) CCMV of human targets; (b) CCMV of dog targets.

• Change rate of correlation coefficient of micro vibration (CRCCMV)

As illustrated in Figure 6, the trend of change of human target is stable, whereas the trend of
change of dog target is more intense. Therefore, the CRCCMV of human targets is much smaller than
that of dog targets. Equation (17) defines the calculation of CRCCMV.

CRCCMV =
CCMVmax −CCMVmin

CCMVmax
× 100% (17)

3.3. Wavelet Entropy-Corresponding Features

In the calculation of wavelet entropy-corresponding features, the parameter of Q in the
preprocessing steps is chosen to be Q = 10 and the normalization is along slow-time dimension.
Thus, the raw echo data are compressed into 200 points along the fast-time index, similar to the
preprocessing of ERRFB.

• Mean of wavelet entropy of target signal (MWE)

Wavelet analysis can provide optimal time-frequency resolution of the signal and entropy can
quantify the signal’s frequency patterns as a relevant measure of order or disorder in a dynamic system.
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Wavelet entropy (WE) combines the advantages of both. It can accurately characterize the dynamic
change information of time-frequency variation of non-stationary signal complexity in time domain.
More signal components indicate a more complex and irregular signal, and a larger value of wavelet
entropy. Generally, dog signals are more complex than human signals [12,22]. Therefore, the MWE of
human targets is much smaller than that of dog targets.

In the calculation of MWE, wavelet transform is first performed, followed by the calculation
of relative wavelet energy. In Matsui, T. et al. [23], Morlet first considered wavelets as a family of
functions generated by translations and dilations of a unique function called the “mother wavelet”
ψ(t). The family wavelet is expressed as:

ψa,b(t) = |a|
−

1
2ψ(

t− b
a

) a, b ∈ R, a , 0 (18)

where a is the scaling parameter which measures the degree of compression, b is the translation
parameter which determines the time location of the wavelet, and t represents time. Let L2(<) be
the real square integrable function space, the discrete wavelet transform of a signal S(t) ∈ L2(<) is
defined as [12,13]:

C j(k) =
∫ +∞

−∞

S(t)ψ j,k(t)dt (19)

where C j(k) is wavelet coefficient of wavelet sequence. For practical signal processing, the signal is
assumed to be given by the sampled values S =

{
s0(n), n = 1, . . . , N

}
. Then, the signal reconstructed

by wavelet transform is expressed as:

S(t) =
−1∑

j=−J

∑
k

C j(k)ψ j,k(t) =
−1∑

j=−J

r j(t) (20)

where ψ j,k(t) = 2
j
2 ψ(2 jt− k) with j, k ∈ Z, and ψ(t) is the mother wavelet. j = −1,−2, . . . , −J is the

number of resolution levels and its maximum value is J = log2 N if the decomposition is performed
over all resolution levels. k is the time index and r j(t) is the residual at scale j.

In radar signal processing, the signal is divided among non-overlapping temporal windows of
length L, and the length is chosen to be L = 128 empirically. Then, appropriate signal values are
assigned to the central point of the time window for each interval i = 1, 2, . . . , NT, NT, = N/L.
Next, by considering the mean wavelet energy instead of the total wavelet energy, the mean energy at
each resolution level j for the time window i using the wavelet coefficient is:

E(i)
j =

1
N j

i·L∑
k=(i−1)L+1

∣∣∣C j(k)
∣∣∣2 (21)

where N j is the number of wavelet coefficients at resolution j involved in the time widow i. Then,
the total energy of wavelet coefficient at interval i is expressed as:

E(i)
total =

∑
j<0

E(i)
j (22)

Next, the relative wavelet energy that represents the energy’s probability distribution in scales is
obtained by:

p(i)j = E(i)
j /E(i)

total (23)
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Finally, the average wavelet entropy of the whole time period is given by:

MWE =
1

NT

NT∑
i=1

(−
∑
j<0

p(i)j · ln
[
p(i)j

]
) (24)

• Standard deviation of wavelet entropy of target signal (StdWE)

StdWE is a feature to quantitatively describe the fluctuation degree of wavelet entropy. StdWE
of human targets is much smaller than that of dog targets, since human target signals are more
regular [12,13], generally speaking. It is given by:

StdWE =

 1
NT

NT∑
i=1

(−
∑
j<0

p(i)j · ln
[
p(i)j

]
−MWE)

2


1
2

(25)

• Mean of MWE in the OW window (MMWEOW)

In the calculation of MMWEOW, an OW, where the target point signal is right in the middle,
is also needed and the width is chosen to be owMMWE = 20. MMWEOW is the mean value of MWE of
each point signal closer and further the target position for owMMWE point, i.e., the mean value of MWE
in the OW. It is given by:

MMWEOW =
1

2owMMWE + 1

P+owMMWE∑
i=P−owMMWE

MWE(i) (26)

where P is the position of target point signal.

• Ratio of wavelet entropy (RWE)

RWE is the ratio of the mean value of MWE inside and outside the OW. It is expressed as:

MMWEoow =
1

N − 2owMMWE − 1

N∑
i=1,i,(P−owMMWE):(P+owMMWE)

MWE(i) (27)

RWE =
MMWEOW
MMWEoow

(28)

3.4. Frequency-Corresponding Features

In this section, according to the research and accumulation of our group, it was found that the
spectrum distribution of human targets in Hilbert marginal spectrum is different from that of dog
targets. The curve of Hilbert marginal spectrum of human targets steeps slightly and the shape of the
area under the curve is narrow and high. In contrast, the curve of dog targets is slightly gentle and the
shape of the area under the curve is wide and low. Therefore, the frequency value corresponding to 1/4
total frequency band area, 3/4 total frequency band area under the Hilbert marginal spectrum curve,
and the width between the above two are extracted.

• f1/4, f3/4 and width between f1/4 and f3/4 (WOHMS)

In this step, EEMD is performed first to process the target signal as Equations (8)–(13) illustrate.
Then, Hilbert transformation is implemented in each IMF component of the reconstructed signal sre.

ˆIMFi(t) =
1
π

∫
∞

−∞

IMFi(τ)

t− τ
dτ (29)
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Next, the analytical signals are constructed by:

zi(t) = IMFi(t) + j ˆIMFi(t) = αi(t)e jϕi(t) (30)

The amplitude of the analytical signals is expressed by αi(t) =
√

IMFi(t)
2 + ˆIMFi(t)

2 and the

instantaneous phase is expressed as ϕi(t) = arctan[
ˆIMFi(t)

IMFi(t)
]. Then, the Hilbert marginal spectrum can

be given by:

h(ω) =
∫ T

0
(Re

Vuse f ul∑
i=1

αi(t)e
j
∫
( dt

dϕi(t)
)dt
)dt (31)

where T is the total signal duration and Vuse f ul is the total IMF component number of the reconstructed

signals. ω is the instantaneous frequency which is defined as ω = 2π dϕi(t)
dt [24]. The comparison results

of Hilbert marginal spectrum of human targets and dog targets are demonstrated in Figure 7.
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marginal spectrum of human targets; (b) Hilbert marginal spectrum of dog targets.

The f1/4 and f3/4 are the frequency values of the points corresponding to 1/4 total frequency band
area and 3/4 total frequency band area, respectively, in Figure 7. Accordingly, WOHMS is given by:

WOHMS = f3/4 − f1/4 (32)

• Respiratory Frequency (RF)

After performing Fourier transform of the target signal, the RF of human targets and dog targets
can be obtained.

4. SVM-Based Classification Procedure and Feature Selection Strategy

A support vector machine (SVM) is a type of generalized linear classifier which classifies data by
supervised learning. Its decision boundary is the maximum margin hyperplane for learning samples.
SVM classifier is chosen here because it has good performance for small samples when dividing data
into two categories, which fits well with our purpose of distinguishing human beings from dogs.

Although the 12 features are calculated for each sample, these features may not contribute equally
to improving the ability of distinguishing human targets from dog targets. There may be overfitting and
poor generalization when too many features less capable of distinguishing or highly correlated to each
other are adopted in the classifier. To find an optimal feature subset with optimal distinguishing power,
recursive feature elimination method on SVM (SVM-RFE) is performed for the overall feature subset.
In the selection process of the SVM-RFE, all features are sorted by backward elimination, wherein for
each iteration, the feature that has the least contribution in the distinction is removed, i.e., the lowest
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weight [25,26]. The weights are calculated by the widely used LIBSVM package [27,28]. The higher
the weight is, the stronger the distinguishing capability of the feature is. Then, after sorting, different
feature subsets would be obtained by choosing the Top-f (1 ≤ f ≤ F) features from the ranked features,
where F is the total numbers of features (F = 12). Accordingly, there would be F classifiers. Next,
the different classifiers involving different feature subsets are evaluated by calculating the receiver
operating characteristic (ROC) curve and the area under the curve (AUC). Finally, to validate the
stability and generalization of the optimal classifier, 100 rounds of the ten-fold cross-validation method
are performed to calculate the average parameters of the classifier. The procedure of the classification
and selection are expressed as follows.

1. Sorting the overall feature set.

while (the number of features is not zero){
calculating the weights of each feature using the LIBSVM package;
removing the feature with the lowest weight;
}

2. Modeling classifiers with the Top-f (1 ≤ f ≤ F) features from the sorted sequence.
3. Choose the optimal feature subset with the highest AUC from the classifier in step 2.
4. Calculating the key parameters of the classifier in step 3 after 100 round ten-fold cross-validation.

In the procedure of ten-fold cross-validation, the sample data are firstly divided randomly into
ten copies with equal numbers. Then, nine of them are used as training samples and the remaining
copy is used as the test data per time, until each data copy is used as test data.

The ordinate of the ROC curve is the true positive rate which is defined as “Sensitivity” and the
abscissas is the false positive rate which is defined as “1 − Specificity”. The calculations of Sensitivity
and Specificity are illustrated in Equations (33) and (34), respectively. One of the advantages of
the ROC curve is that when the distribution of positive and negative samples changes, the shape
of the ROC curve can be basically unchanged. Therefore, the interference caused by different test
sets can be reduced and the evaluation of the performance of the model is more objective. The key
parameter extracted from the ROC curve is the value of AUC; a larger value denotes a classifier with a
better performance.

It is specified that in the calculation of the AUC of each classifier, the Grid-Search method in the
LIBSVM package is applied to determine the optimal parameter combinations of (c, g) which are closely
related to the distinguishing performance of the classifier. The c is the penalty coefficient corresponding
to the generalization ability of the model. g, one of the parameters of the kernel function in the
classifier, is related to the number of support vectors and further affects the speed of model training
and prediction. Finally, an optimal feature subset for distinguishing task is selected by choosing the
subsets with the highest AUC values. The overall steps in the selection of the optimal classifier and the
detailed processes of the SVM-RFE are illustrated in Figures 8 and 9, respectively.
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with the highest AUC value is selected.
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Figure 9. Detailed processes of the SVM-RFE. In “Step 1: Feature sorting”, the color of a feature
represents its contribution in the distinguishing task. A warmer color denotes more contributions.
Abbreviations: AUC, area under the curve; In “Step 2: AUC values calculation”, the optimal parameter
combinations of (c, g) are determined and AUC values with Top-f (1 ≤ f ≤ F) features from the sorted
sequence are calculated. Finally, an optimal classifier with optimal Top-f features will be obtained.

In ten-fold cross-validation, sample data are divided into ten copies and implemented ten times
for the training test procedure, until each copy is used as test data once. The results of the ten times are
accumulated and performance of the classifiers are evaluated using AUC value, Sensitivity, Specificity,
and Accuracy (ACC). The human target labels in the classifiers are “+1” as the positive samples,
and the dog target labels are “−1” as the negative samples. Sensitivity is the accuracy of judging actual
human targets as human targets. Specificity is the accuracy of judging actual dog targets as dog targets.
ACC is the overall accuracy of judging the targets correctly, whether human or dog targets. AUC,
the area under the ROC curve, is a parameter for evaluating the overall performance of the classifier.
The calculations of Sensitivity, Specificity, and Accuracy are expressed as:

Sensitivity =
the number o f “+1” both in predictive and test labels simultaneously

total number o f “ + 1” in the test labels
(33)

Speci f icity =
the number o f “−1” both in predictive and test labels simultaneously

total number o f “− 1” in the test labels
(34)
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Accuracy =
the number o f “+1” both in predictive and test labels simultaneously+

total number o f the test labels
the number o f “−1” both in predictive and test labels simultaneously+

total number o f the test labels

(35)

The test labels are the labels (“+1” or “−1”) of the target samples when the samples are treated as
test data. The predictive labels are the corresponding predictive classification results of the test data
used in the optimal classifier.

In addition, the method is also tested to distinguish human targets versus no targets and dog
targets versus no targets. Let us assume that the accuracies of both classifications are highly validated,
then it prompts that any two types of targets within human, dog, and no target can be effectively
classified using the method. Simultaneously, it can further prove that the vital information of human
or dog is effectively captured. Fifty sets of environmental interference signals without any targets are
collected and utilized for classification with signals of human targets and dog targets, respectively.
The classification method used here is SVM-RFE, which is identical to that of the method in the
classification between human and dog targets. No targets samples are labeled as “−1” in both
classifications. The key result parameters of optimal classifiers with optimal subsets are described in
Section 5.4.

5. Experimental Results

5.1. Experimental Setup and Data acquisition

A total of eight healthy human targets aged between 23 and 42 and five grown-up beagle dog
targets aged approximately 1 year were involved. All dogs were provided by the Experimental Animal
Center of Fourth Military Medical University. A 28-cm-thick brick wall was present between the
targets and the antennas. The photographs and geometries of the experiments are shown in Figure 10.
Each target was detected ten times at about 2.5 m away from the wall. Because the time interval
of every two acquisitions, distance away from the wall, posture facing radar, and environmental
interference are not identical each time, the raw radar signals can be treated from different samples
when the acquisition times are small (10 times per target). Each dog target laid prone quietly on the
experimental table, whose middle line was 2.5 m away from the wall. Owing to the width of the
table being 0.8 m, dog targets could choose a comfortable posture on the table following their wishes,
until they remained still for a long time. Thus, dogs could lay facing different directions with random
postures in each sample collection. Similarly, different directions of standing facing are set in the
human signal collection scenario. What is more, for each individual human target, measuring intervals
ranged from 1 minute to 20 minutes between two acquisition signals, and the measuring intervals
of each individual dog target ranged from 1 minute to 12 hours. Therefore, the states of targets and
the environmental interference were not identical each time. So, there may be large differences in
the signal features for each acquisition, even if it is the same target. The detailed information for the
experimental subjects is presented in Table 2.

Table 2. Detailed information of experimental subjects.

Human Target Dog Target Total

Target number 8 5 13
Data samples 8 × 10 5 × 10 13 × 10
Male numbers 8 2 10

Female numbers 0 3 3
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Table 3 summarizes the feature information to show the extracted features more clearly. The total
feature sets includes 12 species in four categories, and the detailed computation and acquisition
methods are described in Section 3.

Table 3. Summary of extracted features.

Detailed Species Key Preprocessing Parameters

Energy-corresponding features StdCRMV; ERRFB Q = 1, OWw = 15 for StdCRMV;
Q = 10 for ERRFB;

Correlation
coefficient-corresponding features OCCMV; CRCCMV Q = 1, OWw = 15

Wavelet entropy-corresponding
features MWE; StdMWE; MMWEOW; RWE Q = 10, OWw = 20

Frequency-corresponding features f1/4; f3/4; WOHMS; RF Q = 10
Total number 12

Note: “OWw” represents the width of the OW.

5.2. Classification Between Human Targets and Dog Targets

The results of the feature sorting and the optimal feature subset are illustrated in Table 4. The order
of the features in the list of sorting results represents their distinguishing performance. The smaller the
sequence number, the higher the feature weights. Among the features, the CRCCMV has the highest
weight and contributes the most to the distinguishing task.



Remote Sens. 2019, 11, 2571 16 of 21

Table 4. The illustration of the feature sorting result in SVM-RFE.

Sorting Results Feature Species

À CRCCMV
Á MWE
Â MMWEOW
Ã StdCRMV
Ä WOHMS
Å RWE
Æ StdWE
Ç OCCMV
È f3/4
É ERRFB
11 f1/4
12 RF

The classification performance using different subsets of ranked features is illustrated in Figure 11.
The optimal feature subset is the Top-11 ranked features. The feature that contributes the least is the
respiratory frequency (RF), which was expected since the RF of human and dog targets are about
the same, which is approximately 0.2–0.4 Hz. Therefore, the difference in the RF feature between
human and dog targets is the smallest. The feature that contributes the most is CRCCMV. As shown in
Figure 6, the CCMV curve of human targets is much smoother than that of dog targets. In this way,
the difference of CRCCMV between human targets and dog targets will be much bigger.

1 

 

 

Figure 11. AUC values using different feature subset. The optimal feature subset is the Top-11
ranked features.

The key parameters of the classifier with the optimal feature subset after 100 rounds of ten-fold
cross-validation is presented in Table 5.

Table 5. Key parameters of the classifier with the optimal feature subset after 100 rounds of
ten-fold cross-validation.

Parameters Values

Sensitivity 0.9877
Specificity 0.9994
Accuracy 0.9924

AUC 0.9993
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5.3. Analysis of Contribution of Different Categories

To compare the ability of different category features in distinguishing human targets from dog
targets, the overall features are divided into five groups of features and their performance is evaluated
using the ROC curve and key parameters of classifier: (1) Correlation coefficient-corresponding
features; (2) wavelet entropy-corresponding features; (3) energy-corresponding features;
(4) frequency-corresponding features; and (5) optimal feature subset. The comparison results are
expressed in Figure 12 and Table 6. Correlation coefficient-corresponding features independently
and wavelet entropy-corresponding features independently have similar performances, viewed from
the comparison results of ROC curve, obviously superior to the other two groups when used along.
The optimal feature subset has the best performance in any way viewed from the parameters in Table 6.
From the perspective of the ability in identifying human targets, correlation coefficient-corresponding
features utilized independently have the same performance as the optimal feature subset, but the
ability of identifying dog targets has a much poorer comparison.Remote Sens. 2019, 11, x FOR PEER REVIEW  17  of  21 
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Figure 12. Comparison results of different category features in distinguishing human targets from
dog targets.

Table 6. Comparison results of different category features in distinguishing human targets from dog
targets cross-validation.

Sensitivity Specificity Accuracy AUC

Correlation coefficient-corresponding
features alone 0.9877 0.92 0.9618 0.9941

Wavelet entropy-corresponding
features alone 0.9506 0.96 0.9542 0.9956

Energy-corresponding features alone 0.9259 0.78 0.8702 0.9323
Frequency-corresponding features 0.9136 0.82 0.8779 0.9363

Optimal feature subset 0.9877 0.9994 0.9924 0.9993

5.4. Classification Between No Target Signals and Target Signals

The photograph and geometry of no target signals acquisition are demonstrated in Figure 13.
The deployments are the same as those of dogs, except that there are no targets.
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target measuring; (b) actual measuring photographs of no target.

The collected 50 samples of no targets were used for classification with human target samples
and dog target samples, respectively. The key parameter of the corresponding optimal classifiers after
SVM-RFE and 100 rounds of ten-fold cross-validation are listed in Table 7.

Table 7. Key parameters of the corresponding optimal classifiers of no target classification with human
targets and dog targets, respectively.

Sensitivity Specificity Accuracy AUC

No target with human target classification 1.0000 0.9890 0.9958 1.0000
No target with dog target classification 0.9530 0.9936 0.9733 0.9976

The AUC of classifier between no targets and human targets can reach 1.0. Considered in
conjunction with the classification between human and dog targets, the AUC value substantiates that
the collected signals of human targets are veritable and useful, i.e., the 80 samples of humans truly
contain the information of human targets. Similarly, the best AUC value between no targets and dog
targets is 0.9976, which implies that the dog signals are also true target signals. Meanwhile, the results
in Table 7 verify the validity of the method for the classification between target situations and no
target situations.

6. Discussion

The proposed method provided an outstanding performance in distinguishing stationary human
and dog targets under through-wall condition. Twelve features belonging to four categories were
combined based on the SVM-RFE method, and the distinguishing accuracy was able to reach 0.9924.
The method was significant for some actual applied post-disaster rescuing situations. Especially,
it could help optimizing distribution of rescue resources and enhance the rescuing confidence in
post-earthquake searching and miner accident rescuing, where the trapped subjects are buried under
obstacles and unable to move. Furthermore, there are basically no other research groups that have
reported on the classification of stationary humans and animals, since the existing method concentrates
mostly on the distinguishing of moving targets. However, there are a few issues to further consider for
practical application. Besides dogs, cats, rabbits, and some other common family pets that are likely to
cause false alarm in post-disaster rescue applications could be included in further research.
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7. Conclusions

An accurate algorithm to distinguish stationary humans from dogs under through-wall conditions
is proposed, based on a 500 MHz center-frequency UWB radar. The algorithm combines four
categories involving 11 feature species to form an optimal feature subset based on the SVM-RFE
method. The classifier using the optimal feature subset was found to have excellent performance in the
distinguishing task. The AUC average value and ACC value are 0.9993 and 0.9924, respectively, after
100 rounds of ten-fold cross validation, which confirms that the algorithm is efficient and suitable for
the classification of stationary human and dog targets under through-wall conditions. In addition,
the correlation coefficient-corresponding features have the most capable contribution compared to
the other three groups, which are wavelet entropy-corresponding features, energy-corresponding
features, and frequency-corresponding features. To be more rigorous, the classification between no
target situations and target situations were performed. The results confirm that the collected human
and dog target signals truly contain the information of the respective targets. Meanwhile, the AUC
values also verify that the method proposed in this paper is valid in classification between no targets
situations and targets situations. We envision that this algorithm can be applied to various practical
situations such as earthquake and hostage rescue missions and intelligent homes.
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Abbreviations

The following abbreviations are used in this manuscript:

UWB Ultra-wideband
SVM Support vector machine
RFE Recursive feature elimination
StdCRMV Standard deviation change rate of micro vibration
OW Optimal Window
ERRFB Energy ratio of the reference frequency band
OCCMV Optimal correlation coefficient of micro vibration
CRCCMV Change rate of correlation coefficient of micro vibration
MWE Mean of wavelet entropy of target signal
StdWE Standard deviation of wavelet entropy of target signal
MMWEOW Mean of MWE in the OW window
RWE Ratio of wavelet entropy

f1/4
The frequency values of the points corresponding to 1/4 total frequency band area in
Hilbert marginal spectrum

f3/4
The frequency values of the points corresponding to 3/4 total frequency band area in
Hilbert marginal spectrum

WOHMS Width between f1/4 and f3/4
RF Respiratory frequency
AUC Area under the ROC curve
ACC Accuracy
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