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Abstract: Sun-Induced fluorescence at 760 nm (F760) is increasingly being used to predict gross 
primary production (GPP) through light use efficiency (LUE) modeling, even though the 
mechanistic processes that link the two are not well understood. We analyzed the effect of nitrogen 
(N) and phosphorous (P) availability on the processes that link GPP and F760 in a Mediterranean 
grassland manipulated with nutrient addition. To do so, we used a combination of process-based 
modeling with Soil-Canopy Observation of Photosynthesis and Energy (SCOPE), and statistical 
analyses such as path modeling. With this study, we uncover the mechanisms that link the 
fertilization-driven changes in canopy nitrogen concentration (N%) to the observed changes in F760 
and GPP. N addition changed plant community structure and increased canopy chlorophyll 
content, which jointly led to changes in photosynthetic active radiation (APAR), ultimately 
affecting both GPP and F760. Changes in the abundance of graminoids, (%graminoids) driven by N 
addition led to changes in structural properties of the canopy such as leaf angle distribution, that 
ultimately influenced observed F760 by controlling the escape probability of F760 (Fesc). In particular, 
we found a change in GPP–F760 relationship between the first and the second year of the experiment 
that was largely driven by the effect of plant type composition on Fesc, whose best predictor is 
%graminoids. The P addition led to a statistically significant increase on light use efficiency of 
fluorescence emission (LUEf), in particular in plots also with N addition, consistent with leaf level 
studies. The N addition induced changes in the biophysical properties of the canopy that led to a 
trade-off between surface temperature (Ts), which decreased, and F760 at leaf scale (F760leaf,fw), which 
increased. We found that Ts is an important predictor of the light use efficiency of photosynthesis, 
indicating the importance of Ts in LUE modeling approaches to predict GPP. 
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1. Introduction 

An accurate estimation of gross primary production (GPP) by terrestrial ecosystems is crucial to 
understanding the variability of the global carbon (C) cycle [1]. One of the most common ways to 
estimate GPP relies on the use of light use efficiency (LUE) models (Equation (1)). In the LUE 
framework [2], estimates of GPP are based on three variables: (i) the fraction of photosynthetically 
active radiation (fAPAR) absorbed by the vegetation; (ii) the actual light use efficiency of 
photosynthesis (LUEp), i.e. the conversion efficiency of absorbed radiation to fixed carbon; and (iii) 
incident photosynthetically active radiation (PAR). GPP = fAPAR × PAR × LUE  (1) 

 

 

The development and retrieval methods in passive sensing of sun-induced chlorophyll 
fluorescence (SIF), i.e. the radiation emitted by plants upon sun exposure, opens new possibilities to 
estimate GPP using remotely sensed data [3–5]. In the last decade, several studies have shown that 
sun-induced fluorescence at 760 nm retrieved from top-of-canopy (TOC) measurements (F760) can 
track changes in APAR and LUEp, and therefore can be directly linked to GPP from leaves [6], 
ecosystem, [7–10] to regional and global scale [3,11–13]. 

Although the mechanistic link between GPP and F760 is not completely understood, recent 
advances in the field have contributed to explain the process under various conditions [14,15]. The 
reason F760 and GPP correlate is that both processes start with the absorption of light by a chlorophyll 
molecule. Once the photon is captured by the antenna and reaches the reaction center of the 
photosystem II, the chlorophyll molecule can return to the ground state through photochemical 
quenching (PQ), through the non-photochemical quenching of the excited state (NPQ), as the photon 
is dissipated non-radiatively as heat [16], or it can be re-emitted as a photon of fluorescence [17]. 
Fluorescence emission cannot be physiologically regulated, and its quantum yield depends on the 
efficiency of PQ and NPQ [17]. The mechanisms regulating the partitioning of absorbed 
photosynthetically active radiation (APAR) into the different pathways is therefore fundamental to 
grasping the GPP–F760 connection [18,19]. 

F760 is usually described with a similar approach to the Monteith’s LUE framework, as shown in 
Equation (2): F = fAPAR × PAR × LUE  × Fesc (2) 

 

 

where F760 is equal to the product of fAPAR, PAR, the light use efficiency of fluorescence emission at 
760 nm (LUEf), and the escape probability of chlorophyll fluorescence at 760 nm (Fesc) [20]. 

Equations (1) and (2) can be combined into Equation (3), which shows that the only variables 
that control the relationship between GPP and F760 are LUEp, LUEf and Fesc: GPP =  F ×   ×   (3) 

 

 

Multiple factors can influence the different terms in Equation (3), and eventually GPP–F760 

relationship [5,8]. Among these, the ones that require more attention because they are not fully 
understood are: (i) leaf nutrient content, in particular nitrogen (N) and phosphorous (P); and (ii) 
canopy structural parameters such as leaf area index (LAI) and leaf angle distribution (LAD), which 
in grasslands are often related to the community structure of the canopy [8,21]. Quantifying the 
effect of nutrients and canopy structure on the partitioning of absorbed radiation and on LUEp, LUEf, 
and Fesc is the first step to shed light on GPP and F760 changes under different nutrient availability. 

Canopy N concentration (hereafter N%, N mass per gram of leaves of the whole canopy) is 
often related to the nutritional condition where the plant grows. Nitrogen is a fundamental 
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constituent of leaves that is typically associated with higher LAI, and positively correlated with the 
amount of chlorophyll a and b (Cab) [22]. Higher LAI and Cab increase APAR, but at the same time 
should reduce Fesc due to higher absorption and scattering of emitted fluorescence [14]. Nitrogen is 
also positively related to the amount of ribulose-l,5-bisphosphate carboxylase and oxygenase 
(Rubisco) protein content [23,24], and thus the maximum carboxylation rates (Vcmax), which is a 
key determinant of the maximum photosynthetic rates, and therefore GPP [25]. Therefore, nitrogen 
can influence the partitioning of APAR into PQ, NPQ, and fluorescence emission [15], but different 
studies, mainly at leaf level, showed contrasting results [14,26]. Moreover, there is a lack of studies 
that investigate at canopy scale how LUEp, LUEf, and Fesc are modulated under varying nitrogen 
availability [14]. Canopy phosphorous concentration (hereafter P%) is another critical element for 
photosynthesis, being involved in the synthesis of Adenosine triphosphate (ATP) [27]. Leaf-level 
studies with active fluorescence measurements showed that P% deficient plants have lower 
chlorophyll fluorescence emission efficiency [28]. However, we are not aware of canopy level studies 
showing the effect of P% on F760 and LUEf. 

Canopy structural variables, such as LAI and LAD, influence the radiative transfer of incoming 
radiance and emitted SIF within the canopy [19]. LAD can vary on daily and seasonal bases and is 
strongly influenced by species composition and plant functional forms [29]. LAI and LAD can have a 
major influence on the sun/shaded leaf ratio through the canopy. This ratio has the potential to 
directly influence the level of NPQ in the canopy [30] (higher in sunlit, lower in shaded leaves) and 
therefore could indirectly influence the LUEf. Canopy structure, through absorption and scattering 
of the fluorescence emitted by the leaves, has a significant influence on observed F760, determining 
Fesc, the probability of F760 to escape the canopy [31]. Absorption by chlorophyll is higher in the red 
region, whereas multiple scattering in the far-red region increases the probability of absorption by 
soil and woody elements. It has been shown recently with modeling studies that TOC observed F760 
(canopy scale) is only a fraction of the F760 emitted at leaf scale (F760leaf) [32]. The decoupling between 
F760leaf and F760, mainly mediated by Fesc, can have implications for the GPP–F760 relationships. 
Recently, new methods to estimate Fesc are being developed, potentially allowing to downscaling 
the F760 signal at the leaf level [31,33]. Finally, other variables such as soil moisture or surface 
temperature (Ts) also have the potential to impact the GPP–F760 relationship. Heat and water stress 
have been proven to affect photorespiration, but not the PQ in Mediterranean species [34], thus 
decoupling photochemistry from F760 [18]. Ts, in particular, contains information on both the 
activation of NPQ mechanisms and other processes related to stomatal closure and sensible heat 
losses [35]. Therefore, surface temperature might also help to better characterize the seasonal 
variations of LUEp and therefore to better predict GPP, in particular under stress conditions [35,36]. 
Figure 1 illustrates a theoretical framework that sums up current knowledge and our hypothesis 
regarding the interlinks between GPP and F760 and their relationship with canopy structural 
parameters and leaf traits of vegetation. In Figure 1, solid colored lines represent the energy 
partitioning at both leaf and canopy level and dotted lines represent the hypothesized relationships. 

All factors illustrated in Figure 1 play a role in determining GPP, F760, and their relationship. 
However, the strength of these influences, and whether leaf nutrient content and canopy structure 
influence the GPP–F760 relationship directly (through LUEp, LUEf and Fesc) or occur indirectly 
(mediated by APAR or by a third variable), is not clear. In this study, we aimed to fill the gap in 
understanding on how nutrients and canopy structure control LUEp, LUEf and Fesc, and we 
investigated the mechanisms that drive GPP and F760 in a nutrient manipulation experiment. We 
asked the following questions: 

How do the treatments (N, NP, and P) influence LUEp, LUEf, and Fesc? 
What are the drivers of the light use efficiency equations terms (LUEp, LUEf, Fesc) that relate 

GPP and F760? 
What are the direct and indirect effects of nutrients (in particular N%) and canopy structure on 

GPP and F760? 
To answer these questions, we used GPP, F760, and additional data on vegetation properties 

from a nutrient manipulation experiment in Mediterranean grassland with addition of N, P and N 
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and P together (NP). The aim of the fertilization was to induce a changed in both plant nutrient 
content and structural traits (through changes in LAD mediated by plant community and LAI) 
within the ecosystem.  

 
Figure 1. Energy partitioning at the leaf and canopy level representing the processes involved in the 
photosynthetic light use efficiency model (GPP = APAR x LUEp) and fluorescence light use 
efficiency model (F760 = APAR *LUEf * Fesc) are represented with solid arrows. Dotted arrows 
represent the hypothesized relationship between leaf traits, canopy structure and the various 
processes related to the allocation of energy and transfer of SIF within the canopy. Photosynthetic 
active radiation (PAR); absorbed (by vegetation) photosynthetic active radiation (APAR); PAR 
absorbed by chlorophyll a and b molecules (APARgreen), represented as the green bar in the 
equations on both sides of the figure; gross primary production (GPP); sun-induced fluorescence 
emitted by all leaves at 760 nm (F760leaf); sun-induced fluorescence at 760 nm observed at top of 
canopy (F760); nitrogen concentration on a mass basis (N%); chlorophyll a and b on a mass basis 
(Cab); leaf mass per area (LMA); maximum carboxylation rate (Vcmax); leaf area index (LAI); leaf 
angle distribution (LAD). 

2. Materials and Methods  

2.1. Experimental site 

The study was conducted in a Mediterranean savannah located in Spain (39°56'24.68"N, 
5°45'50.27"W; Majadas de Tietar, Caceres) characterized by a continental Mediterranean climate, 
with temperate winters and warm dry summers: mean annual temperature of 16.7 °C and annual 
precipitation of ~650 mm distributed mainly between September and May [37]. 

The herbaceous layer is dominated by annual C3 species of the three main functional plant 
forms, namely grasses, forbs and legumes, which are green and active from October to end of May 
[38]. The site is managed as a typical wood pasture (Iberian Dehesa) with low intensity grazing by 
cows (~0.3 cows ha-1) [37].  

2.2. Nutrient manipulation experiment, Gross Primary Production and ancillary data 

A nutrient manipulation experiment focused on the herbaceous layer was established in early 
spring 2014 and 2015. The set-up consisted of four 20 m × 20 m width randomized blocks. Within 
each block we established four plots (9m × 9 m) with 2 m of buffer between treatments (Figure S1). 
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We established four treatments (for details, see [37]): control (C) with no fertilization, N addition 
with one application of 100 kg N ha-1 as potassium nitrate (KNO3) and ammonium nitrate (NH4NO3), 
P addition with 50 kg P ha-1 as monopotassium phosphate (KH2PO4), and nitrogen–phosphorous 
(NP) addition, with 100 kg N ha-1 and 50 kg P ha-1 as NH4NO3 and KH2PO4, respectively.  

Table 1. Summary of the main meteorological data collected in each field campaign. 

Date 
 

Campaign 
 

Fertilization 
 

PAR 
μmol s-1 m-2  

VPD 
hPa 

Ta 
°C 

SWC 
% 

SZA 
° 

20-03-2014  1 No 1604.82 ± 
11.33 

12.59 ± 
0.38 

24.2 ± 0.2 19.01 ± 
0.27 

41.86 ± 
0.23 

15-04-2014 2 Yes 1842.92 ± 
32.63 

15.12 ± 
0.59 

30.09 ± 
0.55 

22.58 ± 
0.58 

31.83 ± 
0.85 

7-05-2014 3 Yes 1342.1 ± 
93.73 

22.4 ± 
1.98 

32.1 ± 
0.91 

4.78 ± 
0.09 

25.69 ± 
0.6 

27-05-2014 4 Yes 1417.15 ± 
104.4 

15.83 ± 
1.2 

27.89 ± 
0.47 

6.57 ± 
0.09 

21.4 ± 
0.82 

04-03-2015 5 Yes 1411.29 ± 
18.05 

7.01 ± 
0.36 

23.9 ± 
0.48 

21.49 ± 
1.91 

49.66 ± 
0.49 

23-04-2015 6 Yes 1842.64 ± 
25.23 

16.38 ± 
0.84 

29.98 ± 
0.37 

6.7 ± 0.11 31.21 ± 
0.98 

27-05-2015 7 Yes 1955.21 ± 
35.25 

23.2 ± 
1.56 

36.33 ± 
0.73 

1.14 ± 
0.02 

24.26 ± 
1.87 

PAR is the photosynthetic active radiation, VPD is the Vapor Pressure Deficit, Ta represents the 
mean air temperature, SWC is the soil water content and SZA is the solar zenith angle. Medians and 
one standard error are shown for each variable. 

 
Carbon Dioxide (CO2) fluxes between the herbaceous layer and the atmosphere were measured in 32 
collars of 60 cm × 60 cm for each field campaign around noon local solar time (Table 1). At each 
collar, GPP (μmol CO2m-2s-1) was estimated as the difference between net ecosystem CO2 exchange 
(NEE) measured with transparent chambers and ecosystem respiration (Reco) measured with 
opaque chambers. Measures CO2 and water vapor mole fractions (W) were collected at 1 Hz by 
means of an infrared gas analyzer (IRGA LI-840, Lincoln, NE, USA) connected to the chambers. The 
flux calculations and corrections were conducted using the self-developed R package 
“RespChamberProc” (https://github.com/bgctw/RespChamberProc). Air temperature (Ta,°C) was 
measured with a thermistor probe (Campbell Scientific, Logan, UT, USA). Soil moisture content (%) 
at 5 cm depth was determined with an impedance soil moisture probe (Theta Probe ML2x, Delta-T 
Devices, Cambridge, UK). Vapor pressure deficit (VPD, hPa) was computed using relative humidity 
and Ta. Incident PAR (μmol m-2 s-1) was measured with a quantum sensor (Li-190, Li-Cor, Lincoln, 
NE, USA) mounted outside of the chamber. Surface temperature (Ts, °C) was measured with 
infrared thermometer installed in the chambers (Tc, IRTS-P, Apogee, UT, USA).  

The meteorological conditions for each field campaign are reported in Table 1. Destructive 
sampling of the vegetation in four parcels (0.25 m × 0.25 m each) within each plot was conducted to 
estimate LAI and green to dry biomass ratio [37]. The abundance of each functional group such as 
fraction of graminoids (%graminoids), forbs (%forbs), and legumes (%legumes) was determined. 
The Shannon biodiversity index (H) among plant functional types was determined as in [39]. N% 
and P% in plant tissues were determined as described in [37]. Carbon isotopic signature (δ13C) for the 
vegetation was determined from dried samples using a DeltaPlus isotope ratio mass spectrometer 
(Thermo Fisher, Bremen, Germany) coupled via a ConFlowIII open-split to an elemental analyzer 
(Carlo Erba 1100 CE analyzer; Thermo Fisher Scientific, Rodano, Italy). δ13C was calculated using the 
measured ratio between 13C and 12C in the sample and in a calibrated in-house-standard 
(Acetanilide: −30.06 ± 0.05‰) as in [40,41] (Equation (4) and Figure S2): 
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𝛿 𝐶 =      (4) 
 

 

where 13Rsample and 13Rstandard are 13C/12C ratio of the sample and of the standard, respectively. 

2.3. Transpiration estimates 

Two independent estimates of transpiration (expresses as latent heat fluxes, LE) were obtained: 
one from upscaling the δ13C measurements (LEISO) and the other from the runs of SCOPE optimized 
at the experimental site [42] to obtain the LE of canopy component (LEcanopy,inv).  

LEISO was calculated from δ13C, GPP and VPD according to Equation (5) [43], and then the units 
were converted from mmolH20 m-2 s-1 to W m-2. 𝐿𝐸 =  × 𝑉𝑃𝐷    (5) 

 

 

where VPDmean is the mean daytime VPD computed over the period between the beginning of the 
growing season and the plant sampling dates for the isotope measurements, and intrinsic water use 
efficiency (WUEi) was calculated as following: 𝑊𝑈𝐸 =  .      (6) 

 

 

where Ca is the CO2 mole fraction in ambient air, b’ is the mean fractionation during carboxylation 
and internal transfer (−27‰), a is the fractionation during diffusion through stomata (4.4‰) and Δlin 

is the community weighted mean of δ13C. 
Figures S3 (a, b) displays LEISO and LEcanopy,inv, respectively, and Figure S3(c) shows the 

scatterplot of the two estimates. The two independent estimates have a good relationship, with 
Pearson correlation coefficient (r) of 0.701 and slope of 0.809. In Figure S3(a) there are no significant 
differences among treatments for each campaign in 2014 or 2015 in LEISO. According to the ANOVA 
test, the LEcanopy,inv shows significant differences in Campaign 2 in 2014 (F3,11 = 11.4, p = 0.01) and the 
Tukey HSD post hoc-test identifies the P treatment as significantly different from the C treatment (p 
= 0.012). In addition, in 2015, in Campaign 7, there is a significant difference (F3,10 = 5.47, p = 0.017) 
and the Tukey post-hoc identifies a significant decrease for N and P treatments in comparison with 
the control (p = 0.016, p = 0.042, respectively). 

2.4. Field spectroscopy, retrieval of sun-induced fluorescence and biophysical properties 

TOC spectral radiances were collected under clear-sky conditions immediately before flux 
measurements at each collar [8,37]. The sampling strategy was designed to minimize the differences 
in solar zenith angle (SZA) between measurements, confirmed by the ANOVA test, which reports 
non-significant differences in SZA between treatments in each campaign (p = 0.43, p = 0.41, p = 0.33, p 
= 0.65, p = 0.99, p = 0.99, and p = 0.57 for Campaigns 1–7, respectively). The ranges of SZA for the 
spectral measurements are reported in Table 1. Two portable spectrometers (HR4000, OceanOptics, 
USA) were used to estimate chlorophyll fluorescence at the O2A band (i.e., F760,) and reflectance in 
the spectral range 400–1000 nm. The measurements protocol was the following: We first measured 
the incident solar irradiance by nadir observations of a leveled calibrated standard reflectance panel 
(Spectralon, LabSphere, USA). We then acquired five measurements of TOC spectral radiances from 
nadir at 110 cm above the targeted area using bare fiber optics of 25° of field of view (about 43 cm 
diameter at the ground, Figure S4). F760 was estimated by exploiting the spectral fitting method [6]. 
The spectral interval used for F760 was set to 759.00–767.76 nm. Albedo400–900 was calculated from TOC 
spectral radiances as shown in Equation (7), assuming a Lambertian behavior of the reflected 
radiance.  𝐴𝑙𝑏𝑒𝑑𝑜 = × 

   (7) 
 

 

where Lr is the reflected radiance and E400–900 is the Irradiance. fAPAR was estimated in three 
different ways: (i) fAPARSCOPE was simulated by the process based SCOPE model [44]. (ii) 
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fAPARRENDVI was based on the established relationship between measured fAPAR and the red edge 
NDVI (RENDVI) found in maize, soybean and grasslands [45] (Equation (8)). 𝑓𝐴𝑃𝐴𝑅 = 1.61 × 𝑅𝐸𝑁𝐷𝑉𝐼 − 0.03   (8) 

 

 

where RENDVI is calculated as shown in Equation (9): RENDVI =  (  )(  )     (9) 
 

 

where RNIR and RRE are reflectance factors in spectral bands 770–800 nm and 700–710 nm, 
respectively. (iii) APARLi&Moreau1996 was based on subtracting the integral (between 400 and 700 nm) of 
the incoming PAR (PARinc) from the integral (between 400 and 700 nm) of the reflected PAR (PARrefl) 
measured by the spectrometers [7,46] and then multiplying by the proportion of canopy absorption 
(RAPAR) [47] (Equation (10)). 𝐴𝑃𝐴𝑅 & = (PAR − PAR ) × RAPAR (10) 

 

 

where RAPAR is calculated as:  𝑅𝐴𝑃𝐴𝑅 = 0.105 − 0.323 × 𝑁𝐷𝑉𝐼 + 1.468 × 𝑁𝐷𝑉𝐼 (11) 
 

 

The fAPAR formulations are quite consistent with each other (Figure S5), and therefore 
hereafter we use fAPARRENDVI. 

2.5. SCOPE model simulations 

Forward and inverse simulations with the SCOPE model were conducted to assess the 
robustness of fAPAR, Fesc, and LEISO derived from field observations.  

The forward runs model was parameterized using the structural and functional traits derived 
from the field sampling as well as meteorological and chamber data. Vapor pressure deficit (VPD, 
hPa), air pressure (p, hPa), short wave downwelling radiation (Rin, W m-2), long wave downwelling 
radiation (Rli, W m-2), air temperature (Ta, °C), wind speed (u, m s-1), soil moisture content (SMC, %), 
leaf area index (LAI m2 m-2), canopy height (h, m), chlorophyll a and b content (Cab, μg cm-2), dry 
matter content (Cdm, g cm-2), maximum carboxylation rate (Vcmax, μmol m-2 s-1) and the parameters 
to characterize the leaf angle distribution (LAD), respectively, LIDFa and LIDFb, were used to 
parameterize the model run. SCOPE meteorological drivers were measured along with chamber 
measurements for the majority; in the case they were not available with the chambers, such as Rin, 
Rli, p, VPD, wind speed, atmospheric CO2 concentration (Ca, ppm), and atmospheric O2 
concentration (Oa, ppm), they were derived by linearly interpolating two consecutive measurements 
around the chambers measurement time collected at the nearby eddy covariance flux tower at 10 
min of temporal resolution. Canopy height was estimated in the field with a meter stick in five 
positions within the measurement collar. Additional parameters such as leaf equivalent water 
thickness, leaf width, Ball–Berry stomatal conductance parameter and dark respiration rate at 25 °C 
as fraction of Vcmax were obtained from the literature for C3 grasses [8]. The SZA at the time of the 
collection of the spectral measurements was used as model input. Soil reflectance spectra were 
collected in a dedicated field campaign in April 2015 and used for all the runs. Leaf angle 
distribution was parameterized in SCOPE as in [8] by assuming grasses to be erectophile, forbs 
spherical and legumes planophiles. 

The accuracy of F760 and GPP simulated with SCOPE (F760FW and GPPFW, respectively) was 
evaluated by root mean-squared error (RMSE), slope, intercept, and the determination coefficient 
(R2) of the linear regression between observed and modeled data (Figure S6). 

Inverse runs of SCOPE against reflectance, F760, GPP and thermal radiance, as described in [42], 
were carried out to obtain LEcanopy,inv and Fesc (Fescinv). 
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2.6. Calculation of the Light use efficiency of photosynthesis (LUEp), light use efficiency of fluorescence 
emission (LUEf) and escape probability of F760 (Fesc). 

For each plot and campaign, LUEp, LUEf and Fesc were computed. LUEp was calculated as in 
Equation (12): 𝐿𝑈𝐸  = 𝐺𝑃𝑃𝐴𝑃𝐴𝑅 (12) 

 

 

where GPP is the one measured with the chambers and APAR was calculated as in Equation 
(13):  𝐴𝑃𝐴𝑅 =  𝑓𝐴𝑃𝐴𝑅  ×  𝑃𝐴𝑅   (13) 

 

 

LUEf was computed as in Equation (14): 𝐿𝑈𝐸 =   ×    (14) 
 

 

where F760 is the TOC fluorescence retrieved and Fescfw is the escape probability calculated from 
forward runs of SCOPE and APARradiance (mW m-2 nm-1 sr-1) is calculated from APAR (μmol m-2 s-1) as 
shown in Equation (15). 𝐴𝑃𝐴𝑅 =  ( .  ×  ×  )  × 1000   (15) 

 

 

where 4.6 represent the conversion factor from μmol m-2 s-1 to W m-2 for radiation from 400 to 
700 nm [48] and wl is the wavelength interval (300 nm), and π is used to transform irradiance to 
radiance. 

 
We computed Fesc and F760leaf in three alternative ways to evaluate their consistency: 
(i) Combination of forward runs of SCOPE and measured F760 (Fescfw) as shown in Equation 

(16): 𝐹𝑒𝑠𝑐 =  𝐹  ×  𝜋𝐹 ,   (16) 
 

 

where F760leaf,FW and F760leaf,fw are fluorescence emitted by all leaves at 760 nm as calculated by the 
forward SCOPE run (hemispherical and directional, respectively). 

(ii) An empirical estimate of Fesc (Fescemp) computed according to Equation (17)[33]: 𝐹𝑒𝑠𝑐  =  𝑁𝐼𝑅𝑓𝐴𝑃𝐴𝑅  (17) 
 

 

NIRV was calculated as in Equation (18), where NIRT is the reflectance at 858 nm. 𝑁𝐼𝑅  = 𝑁𝐷𝑉𝐼 × 𝑁𝐼𝑅  (18) 
 

 

Then, empirical Fleaf (F760leaf,emp) was calculated as in Equation (19). 𝐹 , = 𝐹𝐹𝑒𝑠𝑐  (19) 
 

 

(iii) An estimation of Fesc using data from a SCOPE inversion (Fescinv) (Equation (20)). 
Fescinv was obtained from inversion of SCOPE against reflectance, F760, GPP and thermal 

radiance, as described in [42] and was calculated as in Equation (20). 𝐹𝑒𝑠𝑐 =  ⁄,   (20) 
 

 

where F760INV and F760leaf,INV are the top-of canopy sun-induced fluorescence at 760 nm and 
sun-induced fluorescence emitted by all leaves at 760 nm as obtained from SCOPE inversion. 

Finally, F760leaf,inv was calculated as in Equation (21). 
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𝐹 , =    (21) 
 

 

The three alternative Fesc and Fleaf computed (F760leaf,fw, F760leaf,emp, and F760leaf,inv) were compared 
against each other (Figure S7). The analysis presented below were conducted with all the different 
estimates of Fesc to evaluate the effect on the results presented. Hereafter, we report only the results 
obtained with Fescfw and F760leaf,fw. 

2.7. Statistical analysis 

Our statistical analysis consisted of three parts. First, to answer Research Question (i), group 
differences among treatments were analyzed with Analysis of Variance (ANOVA) and differences 
among groups were tested with Tukey Honest Significant differences (HSD) post-hoc test. In the 
case of violation of the assumption of homoscedasticity of residuals, the ANOVA with the Welch’s 
correction [49] and post-hoc analysis with Games–Howell test [50] were used. In addition, an 
analysis of Covariance (ANCOVA) was used to test if the relationship between GPP and F760 (canopy 
scale) and F760leaf,fw (leaf level) is changing with the treatment and in time.  

Second, we addressed Research Question (ii) with the relative importance analysis with “lmg” 
(Lindeman, Merenda and Gold), a popular approach for quantifying the individual contributions of 
multiple regressors, assuming linear relationships, as implemented in the R package “relaimpo” [51]. 
Standard errors were computed by means of bootstrapping (n = 1000 realizations). Independent 
variables (i.e., predictors) used in the relative importance analysis are N%, %graminoids, %legumes, 
Ts, LAI, Shannon Biodiversity Index (H) and soil moisture. Additional relative importance analyses 
were carried out with the surface-air temperature (Ts - Ta) in place of Ts (Figure S8), as Ts −Ta could 
be a good proxy for water stress [52].  

Third, to answer Research Question (iii), a path analysis was used. The path analysis assumes 
linearity among variables and the effects are considered additive and not multiplicative. The 
structural model is based on expected relationships hypothesized and its model structure is shown 
in Figure S9. The user specifies the model structure, and the method outputs estimates of the path 
coefficients. The analysis was conducted with the R package “lavaan” [53]. The individual links 
among variables were evaluated by means of the p-value and standardized coefficient (β). It should 
be noted that in the analysis we used Ts in place of the reflectance based indexes because: (i) Ts 
contains information on NPQ [54]; and (ii) Ts is independent from the measurements used to 
estimate F760.  

Chi-squared (χ2), comparative fit index (CFI), standardized root mean square of residual 
(SRMR) and Root Mean Square Error of Approximation (RMSEA) were computed to evaluate the 
overall accuracy of the models. The standard error of β and of the model fit indices were obtained 
from bootstrapping the dataset (n =100 realizations). Additionally, to assess the stability of the 
individual paths across treatments and the robustness of the original model, we made intervention 
on the dataset by removing from the dataset one treatment and evaluating the impact on the 
individual β coefficients (Figures S10–S13). 

3. Results 

3.1. Description of fertilization effects on fluxes, optical data, and vegetation characteristics 

The effect of the fertilization treatment on GPP, LUEp, F760, LUEf and Fescfw is shown in Figure 2. 
All these variables show a wide variation in time (campaign) and with treatment. GPP is higher in 
the N and NP treatments in 2014 and more substantially in 2015 during Campaigns 5 (F3,18= 15.6, p < 
0.01) and 6 (F3,26= 13.1, p < 0.01). LUEp in the N treatment is significantly different from the C 
treatment only during Campaign 6 (F3,26= 2.7, p < 0.05).  
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Figure 2. Bar graphs representing differences among treatments (control treatment, C; nitrogen 
treatment, N; nitrogen and phosphorus treatment, NP; and control treatment, C) of Gross Primary 
Production (GPP) in 2014 (a) and 2015 (b); light use efficiency of photosynthesis (LUEp) in 2014 (c) 
and 2015 (d); Fluorescence at 760 nm (F760) in 2014 (e) and 2015 (f); light use efficiency of 
fluorescence emission at 760 nm (LUEf) in 2014 (g) and 2015 (h); and fraction of F760 that escapes the 
canopy (Fescfw) in 2014 (i) and 2015 (l). Data are divided among campaigns. Bar graphs represent 
means and error bars represent 1 standard error. Group differences in (a–h) were analyzed with 
ANOVA test and individual differences among groups were evaluated with Tukey HSD post hoc 
test. Group differences in (i, l) were analyzed with ANOVA with the Welch correction and 
individual differences among groups were evaluated with the Games–Howell post hoc test. “*” 
refers to a significant difference from the control treatment with p value < 0.05 and “**” refers to a 
significant difference from the control treatment with p value < 0.01. 
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Figure 3. Bar graph representing differences among treatments (control treatment, C; nitrogen 
treatment, N; nitrogen and phosphorus treatment, NP; and control treatment, C) of Canopy nitrogen 
content (N%) in 2014 (a) and 2015 (b); absorbed photosynthetic active radiation (APAR) in 2014 (c) 
and 2015 (d); Albedo400–900 in 2014 (e) and 2015 (f); Surface Temperature (Ts) in 2014 (g) and 2015 (h); 
and graminoids relative abundance (%graminoids) in 2014 (i) and 2015 (l). Data are divided among 
campaigns. Bar graphs represent means and error bars represent 1 standard error. Group 
differences in (e–h) were analyzed with ANOVA test and individual differences among groups 
were evaluated with Tukey HSD post hoc test. Group differences in (a, b, i, l) were analyzed with 
ANOVA with the Welch correction and individual differences among groups were evaluated with 
the Games–Howell post hoc test. “*” refers to a significant difference from the control treatment 
with p value < 0.05 and “**” refers to a significant difference from the control treatment with p value 
< 0.01. 
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F760 shows a significant increase during Campaign 2 for the NP treatment (F3,11= 5.9, p < 0.05) and 
during Campaigns 5 (for N and NP) (F3,18 = 13.2, p < 0.01) and 6 (for N,NP, and P) (F3,26= 19.7, p < 0.01) 
of 2015. LUEf is significantly higher for the NP treatment during Campaign 4 of 2014 (F3,12= 4.59, p < 
0.05), while Fesc shows significant increases for the N and NP treatment of Campaigns 5 (F3,18= 11.32, 
p < 0.05 and p < 0.05, respectively ) and 6 (F3,26  = 15.91, p < 0.05 and p < 0.01, respectively) of 2015. 

Figure 3 displays changes in N%, APAR, Albedo400–900, Ts and plant community (%graminoids) 
with the fertilization treatment. N% shows a quite consistent increase in the N and NP treatment in 
2014 in comparison with the C treatment for Campaigns 2 (F3,11 = 26.8, p < 0.01), 3 (F3,12= 14.2, p < 0.01) 
and 4 (F3,11= 14.2, p < 0.01) and in 2015 in Campaigns 5 (F3,18= 56.2, p < 0.01) and 6 (F3,26= 18.5, p < 0.01). 
APAR presents significant differences for the N and NP treatment of Campaign 2 (F3,11= 24.98, p < 
0.01) of 2014 and Campaigns 5 and 6 of 2015 (F3,18= 7.37, p < 0.01 and F3,26= 38.5, p < 0.01, respectively).  

All treatments show a significant increase in Albedo400–900 during Campaigns 5 (F3,18= 29.3, p < 
0.01) and 6 (F3,26= 13.6, p < 0.01) in 2015, but no significant treatment-induced changes in Albedo400–900 

are observed in 2014. Ts shows significant differences in Campaign 6 for the N, NP and P treatments 
(F3,26= 13.5, p < 0.01). LEISO follows the phenological cycle with lower values in 2015 (Figure S3(a)). 
There are differences in LEISO among treatments (such as the increase during Campaign 2 of 2014 for 
N and NP), but these appeared not significant according to the ANOVA. LEISO estimates are 
consistent also with independent simulations with SCOPE (Figure S3(c)).  

Instead, significant differences in %graminoids among treatments occur mainly in 2015 in 
Campaigns 5 (F3,18= 9.4, p < 0.01) and 6 (F3,26= 13.3, p < 0.01) with lower %graminoids in N and NP 
treatments. %Forbs also present significant differences in 2015 by increasing in the N treatment (in 
comparison with the C treatment) (F3,18= 8.8, p < 0.01) and in Campaign 6 in the N and NP treatment 
(F3,26= 11.5, p < 0.01) (Figure S14(d)). %Legumes is marginal and does not change significantly among 
treatments (Figures S14(e, f)). 

3.2. Temporal variability of GPP–F760 and GPP- F760leaf.fw relationship among treatments 

The results of the ANCOVA show that, in 2014, the intercept of the C treatment is significantly 
different from the other treatments for both F760 (as shown in previous studies [8,37]and F760leaf,fw (p < 
0.05 and p < 0.05, respectively) (Figure 4 and Table S1).  
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. 

Figure 4. Scatterplot of observed fluorescence at 760 nm from top of canopy (F760) vs. Gross Primary 
Production (GPP) for 2014 (a) and for 2015 (c); and directional fluorescence emitted by all leaves at 
760 nm calculated from forward SCOPE runs (F760leaf,fw) vs. GPP for 2014 (b) and for 2015 (d). Data 
are divided for the four treatments; control (C), nitrogen addition (N), nitrogen and phosphorus 
addition (NP) and phosphorus addition (P). P values of the interaction treatment with independent 
variable (in comparison with the control treatment, C) from an analysis of covariance (ANCOVA) 
are reported in the bottom-right of each panel. Colored lines represent the regression from the 
ordinary least square regression. 

In 2015, the intercept is different for the C treatment for both F760 and F760leaf,fw (p < 0.01 for both) 
and for the NP treatment with p < 0.05 for both F760 and F760leaf,fw. In 2015, for the N treatment, there is 
no significant interaction between F760 and treatment (Figure 4(c)), but there is a significant 
interaction between F760leaf,fw and the N treatment (p < 0.05) (Figure 4(d)), with significant differences 
of the GPP–F760leaf,fw relationship. There is no significant effect of the year on the GPP–F760 
relationship. For each treatment, p = 0.706, p = 0.323, p = 0.927 and p = 0.992 for N, P and NP and C, 
respectively. Instead, when substituting F760 with F760leaf,fw, the effect of the year is not significant in 
the treatments C and P (p = 0.659 and p=0.742), but is significant for the NP treatment with p < 0.05, 
and barely not significant for the N treatment with p = 0.057.  

3.3. Factors controlling the parameters of light use efficiency equation (LUEp, LUEf and Fesc) 

The relative importance analysis with “lmg” method shows that LUEp is the variable with the 
highest explained variance (R2 = 0.67 ± 0.054), followed by Fesc (R2 = 0.62 ± 0.06) and LUEf (R2 = 0.46 + 
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0.06) (Figure 5). The variable that explains the most variance of LUEp is Ts (R2 = 0.36 ±0.06), followed 
by LAI (R2 = 0.13 ±0.05), Canopy N% (R2 = 0.06 ± 0.04) and H (R2 = 0.05 ± 0.04). The main predictor of 
LUEf is %graminoids (R2 = 0.15 ± 0.07), followed by Ts (R2 = 0.13 ± 0.08), LAI (R2 = 0.07 ± 0.05), and 
Canopy N% (R2 = 0.05 ± 0.03). The main predictor of Fesc is clearly %graminoids (R2 = 0.52 ± 0.03), 
followed by soil moisture (R2 = 0.03 ± 0.04) and Canopy N% (R2 = 0.02 ± 0.02), the latter contributing 
only marginally.  

 
Figure 5. Relative importance analysis with “lmg”(Lindeman, Merenda and Gold) method of Light 
use efficiency of photosynthesis (LUEp), Light use efficiency of fluorescence emission at 760 nm 
(LUEf) and escape probability of sun-induced fluorescence at 760 nm obtained from forward runs of 
SCOPE (Fescfw). Predictors included in the analysis are: soil moisture, Shannon biodiversity index 
(H), canopy nitrogen content (N%), surface temperature (Ts), relative abundance of legumes 
(%legumes), relative abundance of graminoids (%graminoids) and leaf area index (LAI). Error bars 
(1 SE) are calculated through bootstrapping (n = 1000), but are not shown in the figure. They are 
however reported in the result section. 

The results of the relative importance analysis for GPP, F760, and F760leaf.fw show the importance of 
LAI that controls the seasonality of canopy structure and APAR (Figure S15).  

When substituting as predictor Ts with Ts – Ta, we found slightly better results than Ts alone 
when predicting GPP, F760, and F760leaf,fw (Figure S8). However, including Ts - Ta does not improve the 
overall prediction, as the contribution to R2 of LAI decreases, but the total R2 remains similar. When 
predicting LUEp, LUEf, and Fesc, Ts - Ta is a worse predictor of LUEp than Ts (R2 = 0.28 ± 0.05). 

3.4. Mechanisms behind the treatment effect on GPP and F760 at leaf and canopy scale 

Figure 6 shows the output of the path analysis. The results of the final models are displayed as 
graphs. The overall model fit is evaluated: χ2 = 129 ± 23, CFI = 0.901 ± 0.03, SRMR = 0.07 ± 0.02 and 
RMSEA= 0.19 ± 0.02. CFI and SRMR show excellent fit according to Hu & Bentler [55]. In contrast, 
the RMSEA is higher than expected. RMSEA is part of the parsimony-adjusted fit indexes, which 
reward low model complexity. Our goal is however to represent a holistic model that includes all the 
relevant processes and we do not use the path analysis a posteriori as a mean of model selection. 
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Additionally, according to [56], “RMSEA over-rejects true models for ‘small’ n (n < 250)”, which 
might be the cause of our RMSEA value, as our sample size is 133.  

 
Figure 6. Path analysis displays the role of canopy nitrogen content (Canopy N) and relative 
graminoids abundance (%graminoids) on the energy partitioning at the leaf and canopy level. 
Photosynthetic active radiation (PAR); absorbed by vegetation photosynthetic active radiation 
(APAR); fluorescence emission by all leaves at 760 nm calculated by forward runs of SCOPE 
(F760leaf,fw); gross primary production (GPP); surface temperature (Ts); and observed fluorescence at 
760 nm (F760). The strength of the relationship among variables is expressed by the standardized 
coefficient (β) of the path analysis. Each standardized coefficient has a standard error obtained from 
bootstrapping (n = 100 times). The width of the arrows is proportional to their standardized 
coefficient (β). Colored lines (both solid or dotted) represent direct relationships between variables, 
whereas gray double-headed arrows represent the covariance among variables. Solid and dotted 
lines indicate significant (p < 0.05) and non-significant relationships, respectively. The width of the 
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arrows is proportional to their standardized coefficient (β). The different colors are introduced to 
increase readability of the standardized path coefficients. The fit by the overall model is measured 
by means of Chi-squared (χ2), comparative fit index (CFI) and standardized root mean square of 
residual (SRMR). 

Figure 6 shows the clear effect of the %graminoids on F760. The N and NP treatments 
significantly affect N% with β of 0.44 ± 0.07 and 0.47 ± 0.08, respectively. N and NP treatments also 
affect significantly %graminoids with β of −0.27 ± 0.1 and −0.21 ± 0.09, respectively. N% has a 
significant relationship with four variables: APAR, Ts, GPP, and F760leaf,fw with β of 0.37 ± 0.05, −0.37 ± 
0.06, 0.12 ± 0.03 and 0.10 ± 0.04, respectively. %graminoids significantly affects APAR and F760 with β 
of 0.27 ± 0.09 and −0.17 ± 0.02, respectively. The path between %graminoids and Ts is however not 
significant. APAR significantly influences GPP, F760leaf,fw and Ts with β of 0.87 ± 0.02, 0.77 ± 0.03 and 
−0.25 ± 0.06. Finally, F760leaf,fw and Ts have a significant covariance with β of −0.17 ± 0.04. F760leaf,fw and 
GPP have a significant covariance with β of 0.07 ± 0.02 and so do GPP and Ts with β of −0.18 ± 0.03. 

Alternative models using different estimates of F760leaf were tested and we found that the same 
paths are selected as significant, and the magnitude of the β coefficients are almost unchanged 
(Figure S16). This suggests that the path analysis model is not strongly dependent by the estimation 
type of the fluorescence emission. The results of the intervention removing treatments show that the 
vast majority of the paths remain constant and significant. The only difference can be seen when 
removing the NP treatment (Figure S11), where the links between canopy N and GPP and canopy N 
and F760leaf,fw become non-significant. 

4. Discussion 

In the following section, we first discuss the treatment effects (N, NP, and P) on the LUE 
equation terms, second the predictors of LUEp, LUEf and Fescfw, and third how the nutrient 
fertilization affects GPP and F760 through changes in N%, plant community and canopy structure. 

4.1. Treatment effect on LUEp, LUEf, Fescfw  

The relative stability among treatments of LUEp, which is significantly different for the N 
treatment only in Campaign 6 and shows an increase of NP in Campaign 5 in 2015, suggests that our 
Mediterranean grasslands is quite constrained in its photosynthetic efficiency, and that any nutrient 
induced changes in GPP (Figure 2) are mostly modulated by changes in structural parameters such 
as fAPAR. 

The increase in LUEf in the NP treatment compared to N alone suggests a co-limitation of 
nitrogen and phosphorus on fluorescence efficiency. The role of P on the functional modulation of 
fluorescence efficiency at canopy scale has not yet been shown in the literature. However, a series of 
studies at leaf level showed a positive relationship between photochemical quenching and P in 
leaves as well as an effect of P on active fluorescence measurements [57]; these support the 
differences in LUEf observed in our study. Our study suggests that P, and in particular the 
co-limitation N and P, might have an important role on determining F760 but is not conclusive on the 
mechanism, and more research is needed to understand the mechanism and also to support the 
current efforts to include P in terrestrial biosphere and photosynthesis models [27]. The fact that the 
magnitude of increase of Fescfw is very similar in N and NP treatments support the idea that N 
addition is the main factor regulating canopy structure (Fescfw and APAR). Other works show that N 
addition strongly impacts canopy structural parameters such as LAI and plant height in a 
short-grass prairie [58], although there are no studies focused on the effect of N and NP on Fesc. 

Overall, the ecosystem responded in the first year to the fertilization, mainly in a functional way 
(higher LUEf), whereas, in the second year of fertilization, we observed structurally mediated 
increase in GPP and F760 (through higher APAR and Fescfw) (Figures 2l and 3d). The structurally 
mediated changes in 2015, driven by a decrease in abundance of erectophiles plants as the 
graminoids in the N containing treatments, caused a change in slope in the GPP-F760 relationship for 
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the N and NP treatment (Figure 4(c)), which is almost significantly different from the C for F760, but 
significantly different from the C for F760leaf,fw in the NP treatment (Figure 4(d)). 

The N treatment has proven to affect plant functioning and canopy structure (APAR and 
Fescfw), while P has only a marginal role on the LUEf. For this reason, in the next paragraphs, more 
attention is paid to the role of N%, together with meteorology and canopy structure, as driver of in 
LUEp, LUEf and Fescfw, as well as GPP and F760. 

4.2. Predictors of the terms of the light use efficiency equation 

Understanding the causes of variability of the parameters of LUE equations (LUEp, LUEf, and 
Fescfw is fundamental to exploit remote sensing information such as F760 for modeling 
spatio-temporal patterns of GPP [20]. We show that Ts is the main predictor of LUEp, and together 
with %graminoids is one of the two main predictors of LUEf. Ts is a good indicator of water stress 
and strongly related to phenology and green fraction of vegetation [59,60], which ultimately relates 
to temporal variability of LUEp. However, the fact that variables normalized by APAR such as LUEp 
and LUEf are driven by Ts indicates that it is not only a seasonal effect but rather physiological. In 
fact, Ts contains also information related to the activation of the xanthophyll cycle responsible for 
NPQ processes (Figure S17) that ultimately is related to LUEp and LUEf [18]. Finally, many variables 
that have the potential to influence LUEp, such as photorespiration and chlororespiration, are 
influenced by leaf temperature [61], potentially explaining why Ts is being selected. Our results 
reinforce the idea that Ts should be used as additional input of LUE models aimed at the prediction 
of GPP [62]. 

The %graminoids is by far the best predictor of Fescfw, independently by the method used for 
the calculation of Fesc. Graminoids are mainly erectophiles [29], because of this particular LAD, 
most of the fluorescence is emitted laterally and therefore scattered by the vegetation [8]. In this 
work, we tested different formulations of Fescfw with consistent results, in particular between the 
model-based (Fescfw) and the data-driven (Fescemp) estimates. The fact that %graminoids is a good 
proxy for the effect of structure on F760 and Fesc also opens interesting perspective to use F760 as well 
as Fesc to assess taxonomic diversity, when diversity is somehow represented by changes in canopy 
architecture [63]. 

N% is an additional predictor selected for LUEf and LUEp, although the additional explained 
variance seems marginal (Figure 5). N% is positively related to Vcmax [24,64], and under light 
saturated conditions a higher Vcmax leads to an increase of LUEp and, to less extent, to increase of 
LUEf [65]. As hypothesized, from this analysis, it appears that the effect of N% on F760 and LUE 
equation terms is not direct and, in Section 4.3, we discuss the relationships between N%, canopy 
structure, and the observed variables. 

4.3. Mechanisms behind the treatment effect on GPP and F760 at leaf and canopy scale 

The effect of canopy structure on F760 manifests itself mainly through variation in APAR and 
Fescfw (Figures 6 and Figures 2(i, l), respectively). With the path analysis, we conclude that 
%graminoids positively influences APAR that leads to an increase of F760leaf,fw indirectly. Moreover, 
%graminoids negatively influence Fescfw. The changes of canopy structure mediated by changes in 
plant community at plot level are the most important factors controlling the pathway between 
F760leaf,fw and F760, and ultimately GPP and F760. 

By analyzing the relationships between different components measured in the manipulative 
experiment presented here, we were able to disentangle the pathways, mostly unknown [14,20], 
through which N% influence the different components of the LUE equations. Our results show that 
the largest effect of N% on fluorescence emission is not direct, but rather mediated by APAR and Ts 
(Figure 6), which in turn affect F760leaf,fw.  

There are two indirect ways in which N% affects F760leaf,fw: (i) Higher N% in the green fraction of 
the vegetation is associated to an increase of photosynthetic pigments and in particular Cab in leaves 
[64] and in the canopy [22], which ultimately has a positive effect on APAR [15,66]. Increase in APAR 
causes higher fluorescence emission at leaf and canopy level (Figure 6) [67]. There are contrasting 
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results in the literature regarding the effect of N% on fluorescence and all the studies conducted at 
the leaf level [14,15,26]. Our study at canopy level supports the findings in [15] that at varying levels 
of N available APAR modulates F760leaf,fw and F760, and its relationship with GPP. (ii) N% influences 
positively F760leaf,fw through Ts. N% has a negative effect on Ts and F760leaf,fw exhibits a negative 
relationship with Ts. The first hypothesized mechanism is related with the observed increased in 
Albedo400–900 (Figures 3e, f) associated with the higher N%. The effect of N% on albedo, despite being 
quite debated in the literature [68,69], has been demonstrated both at canopy scale [70,71] and at leaf 
level [72] and has to do with the increase in near infra-red (NIR) reflectance that is larger than the 
decrease of the reflectance in the visible region due to higher Cab and light absorption. Therefore, 
the increase of Albedo400–900 with increasing N% results in less available energy in the canopy, which 
eventually leads to a decrease of Ts if other conditions such as soil moisture and VPD are similar 
[69,72]. The second has to do with the modulation of transpiration due to the fertilization (Figures 
3g, h), which cools down the canopy, as the leaf surfaces lose heat when water evaporates through 
the stomata. Our estimate of LEISO show an increase in N and NP treatments during the peak of the 
growing season, but it is not significant (Figures S3a, b) and lower than the changes in in Albedo400–

900 for N, NP and P, in particular in 2015 (Figures 3c, d). Given the strong response of GPP in the N 
and NP treatments in 2015 (Figure 2(b)), the mild change in LEISO (Figures S3(a,b)) suggests an 
increase of water use efficiency, which is backed by δ13C measurements, which show a significant 
increase in the N and NP treatment of Campaign 6 (Figure S2) (where less negative values correspond 
to higher WUE [73]). Therefore, we can conclude that, although transpiration might be involved in 
the regulation of Ts at the peak of the season, biophysical variables such as Albedo400–900 are much 
more affected by N% and contribute to reduce Ts. 

Given that a large amount of N is invested in Rubisco protein [23], N can impact directly the 
carboxylation rates. The direct link between carboxylation rates and F760leaf is not yet clear [74]. 
However, we found a direct, though weak, relationship between N% and F760leaf,fw (Figure 6) that is 
likely mediated by the ceiling effect mechanism described in the literature in an elevated CO2 
manipulation experiment [19,65], but not yet observed in nutrient manipulation experiments.  

5. Conclusions 

This study analyzed and explained the underlying mechanism responsible for the changes in 
gross primary productivity (GPP) and sun-induced fluorescence at 760 nm (F760), and their 
relationship, due to a nutrient fertilization with nitrogen (N), phosphorous (P), and the combination 
of the two nutrients (NP). The nitrogen additions (N and NP) had an effect mainly through changes 
in absorbed photosynthetically active radiation (APAR) and escape probability of fluorescence 
(Fescfw). Changes in APAR are directly related to changes in GPP and F760 and are due to the 
combination of changes in canopy chlorophyll content and in species composition that modifies the 
canopy structure. Changes in Fescfw are mainly due to the changes in the abundance of erectophile 
vegetation with N addition. In the treatment with the addition of N, forbs (non-erectophile) 
increased while graminoids (erectophile) decreased, which ultimately led to changes in leaf angle 
distribution and modified the F760 observed in particular in 2015. This has an effect on GPP–F760 
relationship both across treatments and from year to year. Phosphorous addition had a significant 
effect on the light use efficiency of fluorescence, in particular when combined with high nitrogen 
availability. This result points toward the need of better understanding the thus far neglected role of 
phosphorous on modulating sun-induced fluorescence. 

With a path analysis, we also revealed that N% not only affects F760 indirectly through APAR 
and Fescfw, but also is tightly related with surface temperature (Ts). The negative relationship 
between N% and Ts is biophysically mediated by higher albedo observed after the fertilization, and 
only marginally physiological mediated by increase in transpiration. We also found a trade-off 
between F760 and Ts (likely mediated by the non-photochemical quenching mechanisms), indicating 
the importance of measuring simultaneously these two quantities. We finally found that Ts is also 
the main predictor of the light use efficiency of photosynthesis, which is a fundamental parameter to 
improve the predictability of GPP. In conclusion, our results show that both nutrient availability and 
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their indirect effect on biodiversity are fundamental drivers of sun-induced fluorescence, and its 
relationship with gross primary productivity. Our results also reveal the interlink among 
fluorescence, surface temperature and GPP, and support the importance of tandem missions such as 
the FLuorescence EXplorer (FLEX) and Sentinel-3, providing concomitant estimates of sun-induced 
fluorescence, vegetation related spectral indices, and land surface temperature. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Aerial 
photograph of the experimental site (SMANIE). Figure S2: Group differences among treatment of carbon 
isotopic signature (δ13C. Figure S3: The two transpiration estimates and the albedo400–900 across treatments. 
Figure S4: Schematic of the radiometric and chamber footprint. Figure S5: Scatterplot of the two APAR 
estimations. Figure S6: Scatterplot of modeled vs. observed GPP and F760. Figure S6: Relationship between F760leaf 
from forward runs of SCOPE, inverse runs and empirical estimates. Figure S7: Scatterplot of GPP–F760 at leaf 
and canopy scale across treatments. Figure S8: Relative importance analysis of GPP, F760, F760leaf,fw, F760leaf,inv, 
LUEp, LUEf, and Fescfw with Ts −Ta instead of Ts. Figure S9: Set of equations that represent the model structure 
for the path analysis. Figure S10: Path analysis without the nitrogen treatment. Figure S11: Path analysis 
without the nitrogen and phosphorus treatment. Figure S12: Path analysis without the phosphorus treatment. 
Figure S13: Path analysis without the control treatment. Figure S14. Bar graph representing differences among 
treatments of %graminoids, %Forbs and %Legumes. Table S1: Evaluation of the relationship between GPP and 
F760 and between GPP and F760leaf,fw among different treatments. Figure S15: Relative importance analysis of GPP, 
F760, F760leaf,fw, F760leaf,inv, LUEp, LUEf, and Fescfw. Figure S16: Path analysis with fluorescence emission at 760 nm 
calculated from SCOPE inversion. Figure S17: Scatterplot of Ts and PRI . Table S1: Evaluation of the 
relationship between Gross Primary Production (GPP) and Fluorescence at 760 nm (F760) and between GPP and 
Fluorescence at emission level at 760 nm (F760leaf,fw) among different treatments.  

Author Contributions: D.M and M.M designed the study and carried out the majority of the data-analysis. 
M.M and M.Reichstein designed the experiment. J.P.-L., O.P.-P., M.M., G.M, A.C., M.Rossini and J.G. collected 
and processed the data and R.G.C. and G.M. contributed with laboratory analysis. O.P.P carried out the analysis 
of flux data. J.P.-L contributed with SCOPE inversion runs. T.J. and M.Rossini contributed with the field 
calibration of the spectrometers and fluorescence retrieval. C.V.d.T contributed to discussion about SCOPE and 
the role of transpiration. T.E.M. contributed with the discussion about the role of albedo. R.C. helped to 
structure the manuscript and provided discussion about the statistical methods used. M. Rossini, M. Reichstein, 
U.R., G.M., M.P.M., P.Y., A.C., D.M and M.M. contributed to the discussion about the role of nutrients in 
influencing sun-induced fluorescence. All authors contributed to the discussion of the results and to the writing 
of the manuscript. 

Funding: The project received funding from the European Union’s Horizon 2020 research and innovation 
program under the Marie Sklodowska-Curie grant agreement No. 721995. The authors acknowledge the 
Alexander von Humboldt Foundation for supporting this research with the Max-Planck Prize to Markus 
Reichstein, and the EUFAR TA project DEHESHyrE (EU FP7 Program), the EnMAP project 
“MoReDEHESHyReS” (Contract No. 50EE1621, German Aerospace Center (DLR) and German Federal Ministry 
of Economic Affairs and Energy), SynerTGE (CGL2015-69095-R, MINECO/FEDER, UE) and FLUχPEC 
(CGL2012-34383, Spanish Ministry of Economy and Competitiveness). This work was supported by a research 
grant (18968) from VILLUM FONDEN. 

Acknowledgments: We acknowledge the Majadas de Tiétar city council for its support. We thank Anatoly 
Gitelson, Tiana Hammer, Kathrin Henkel and Thomas Wutzler for the support 

Conflicts of Interest: No conflict of interests.  

References 

References 
1. Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rodenbeck, C.; Arain, M.A.; 

Baldocchi, D.; Bonan, G.B., et al. Terrestrial gross carbon dioxide uptake: Global distribution and 
covariation with climate. Science 2010, 329, 834–838. 

2. Monteith, J. Solar radiation and productivity in tropical ecosystems. Journal of applied ecology 1972, 9, 747–766. 
3. Guanter, L.; Zhang, Y.G.; Jung, M.; Joiner, J.; Voigt, M.; Berry, J.A.; Frankenberg, C.; Huete, A.R.; 

Zarco-Tejada, P.; Lee, J.E., et al. Global and time-resolved monitoring of crop photosynthesis with 
chlorophyll fluorescence. P Natl Acad Sci USA 2014, 111, E1327–E1333. 



Remote Sens. 2019, 11, 2562 20 of 23 

 

4. Yang, X.; Tang, J.; Mustard, J.F.; Lee, J.E.; Rossini, M.; Joiner, J.; Munger, J.W.; Kornfeld, A.; Richardson, 
A.D. Solar--induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and 
seasonal scales in a temperate deciduous forest. Geophys Res Lett 2015, 42, 2977–2987. 

5. Zhang, Y.; Guanter, L.; Berry, J.A.; Joiner, J.; van der Tol, C.; Huete, A.; Gitelson, A.; Voigt, M.; Köhler, P. 
Estimation of vegetation photosynthetic capacity from space--based measurements of chlorophyll 
fluorescence for terrestrial biosphere models. Global Change Biol 2014, 20, 3727–3742. 

6. Meroni, M.; Rossini, M.; Guanter, L.; Alonso, L.; Rascher, U.; Colombo, R.; Moreno, J. Remote sensing of 
solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens Environ 2009, 
113, 2037–2051. 

7. Damm, A.; Elbers, J.; Erler, A.; Gioli, B.; Hamdi, K.; Hutjes, R.; Kosvancova, M.; Meroni, M.; Miglietta, F.; 
Moersch, A. Remote sensing of sun--induced fluorescence to improve modeling of diurnal courses of 
gross primary production (gpp). Global Change Biol 2010, 16, 171–186. 

8. Migliavacca, M.; Perez-Priego, O.; Rossini, M.; El-Madany, T.S.; Moreno, G.; van der Tol, C.; Rascher, U.; 
Berninger, A.; Bessenbacher, V.; Burkart, A., et al. Plant functional traits and canopy structure control the 
relationship between photosynthetic co2 uptake and far-red sun-induced fluorescence in a mediterranean 
grassland under different nutrient availability. New Phytol 2017 214, 1078–1091. 

9. Rossini, M.; Meroni, M.; Migliavacca, M.; Manca, G.; Cogliati, S.; Busetto, L.; Picchi, V.; Cescatti, A.; 
Seufert, G.; Colombo, R. High resolution field spectroscopy measurements for estimating gross ecosystem 
production in a rice field. Agr Forest Meteorol 2010, 150, 1283–1296. 

10. Wieneke, S.; Ahrends, H.; Damm, A.; Pinto, F.; Stadler, A.; Rossini, M.; Rascher, U. Airborne based 
spectroscopy of red and far-red sun-induced chlorophyll fluorescence: Implications for improved 
estimates of gross primary productivity. Remote Sens Environ 2016, 184, 654–667. 

11. Guan, K.; Berry, J.A.; Zhang, Y.; Joiner, J.; Guanter, L.; Badgley, G.; Lobell, D.B. Improving the monitoring 
of crop productivity using spaceborne solar--induced fluorescence. Global Change Biol 2016, 22, 716–726. 

12. Lee, J.-E.; Frankenberg, C.; van der Tol, C.; Berry, J.A.; Guanter, L.; Boyce, C.K.; Fisher, J.B.; Morrow, E.; 
Worden, J.R.; Asefi, S. Forest productivity and water stress in amazonia: Observations from gosat 
chlorophyll fluorescence. Proceedings of the Royal Society B: Biological Sciences 2013, 280, 20130171. 

13. Parazoo, N.C.; Bowman, K.; Fisher, J.B.; Frankenberg, C.; Jones, D.B.; Cescatti, A.; Pérez--Priego, Ó.; 
Wohlfahrt, G.; Montagnani, L. Terrestrial gross primary production inferred from satellite fluorescence 
and vegetation models. Global Change Biol 2014, 20, 3103–3121. 

14. Ač, A.; Malenovský, Z.; Olejníčková, J.; Gallé, A.; Rascher, U.; Mohammed, G. Meta-analysis assessing 
potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, 
temperature and nitrogen stress. Remote Sens Environ 2015, 168, 420–436. 

15. Cendrero-Mateo, M.P.; Moran, M.S.; Papuga, S.A.; Thorp, K.; Alonso, L.; Moreno, J.; Ponce-Campos, G.; 
Rascher, U.; Wang, G. Plant chlorophyll fluorescence: Active and passive measurements at canopy and 
leaf scales with different nitrogen treatments. J Exp Bot 2015, 67, 275–286. 

16. Bilger, W.; Bjorkman, O. Temperature-dependence of violaxanthin deepoxidation and nonphotochemical 
fluorescence quenching in intact leaves of gossypium-hirsutum l and malva-parviflora l. Planta 1991, 184, 
226–234. 

17. Govindjee. 63 years since kautsky - chlorophyll-a fluorescence. Aust J Plant Physiol 1995, 22, 131–160. 
18. Porcar-Castell, A.; Tyystjarvi, E.; Atherton, J.; van der Tol, C.; Flexas, J.; Pfundel, E.E.; Moreno, J.; 

Frankenberg, C.; Berry, J.A. Linking chlorophyll a fluorescence to photosynthesis for remote sensing 
applications: Mechanisms and challenges. J Exp Bot 2014, 65, 4065–4095. 

19. van der Tol, C.; Berry, J.A.; Campbell, P.K.E.; Rascher, U. Models of fluorescence and photosynthesis for 
interpreting measurements of solar-induced chlorophyll fluorescence. J Geophys Res-Biogeo 2014, 119, 
2312–2327. 

20. Damm, A.; Guanter, L.; Paul-Limoges, E.; van der Tol, C.; Hueni, A.; Buchmann, N.; Eugster, W.; 
Ammann, C.; Schaepman, M.E. Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific 
relationships to gross primary production: An assessment based on observational and modeling 
approaches. Remote Sens Environ 2015, 166, 91–105. 

21. Grime, J.P. Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and 
consequences. Journal of Vegetation Science 2006, 17, 255–260. 

22. Niinemets, Ü.; Kull, O.; Tenhunen, J.D. Variability in leaf morphology and chemical composition as a 
function of canopy light environment in coexisting deciduous trees. International Journal of Plant Sciences 
1999, 160, 837–848. 

23. Evans, J.R. Photosynthesis and nitrogen relationships in leaves of c 3 plants. Oecologia 1989, 78, 9–19. 
24. Houborg, R.; Cescatti, A.; Migliavacca, M.; Kustas, W. Satellite retrievals of leaf chlorophyll and 

photosynthetic capacity for improved modeling of gpp. Agr Forest Meteorol 2013, 177, 10–23. 



Remote Sens. 2019, 11, 2562 21 of 23 

 

25. Farquhar, G.D.; von Caemmerer, S.v.; Berry, J. A biochemical model of photosynthetic co 2 assimilation in 
leaves of c 3 species. Planta 1980, 149, 78–90. 

26. Verhoeven, A.S.; Demmig-Adams, B.; Adams III, W.W. Enhanced employment of the xanthophyll cycle 
and thermal energy dissipation in spinach exposed to high light and n stress. Plant Physiol 1997, 113, 817–
824. 

27. Jiang, M.; Caldararu, S.; Zaehle, S.; Ellsworth, D.S.; Medlyn, B.E. Towards a more physiological 
representation of vegetation phosphorus processes in land surface models. New Phytologist 2019, 222, 
1223–1229. 

28. Singh, S.; Reddy, V.; Fleisher, D.; Timlin, D. Relationship between photosynthetic pigments and 
chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated co 2. 
Photosynthetica 2017, 55, 421–433. 

29. Wohlfahrt, G.; Bahn, M.; Tappeiner, U.; Cernusca, A. A multi-component, multi-species model of 
vegetation-atmosphere co2 and energy exchange for mountain grasslands. Agr Forest Meteorol 2001, 106, 
261–287. 

30. Porcar-Castell, A.; Juurola, E.; Ensminger, I.; Berninger, F.; Hari, P.; Nikinmaa, E. Seasonal acclimation of 
photosystem ii in pinus sylvestris. Ii. Using the rate constants of sustained thermal energy dissipation and 
photochemistry to study the effect of the light environment. Tree Physiology 2008, 28, 1483–1491. 

31. Yang, P.Q.; van der Tol, C. Linking canopy scattering of far-red sun-induced chlorophyll fluorescence 
with reflectance. Remote Sens Environ 2018, 209, 456–467. 

32. Liu, X.; Guanter, L.; Liu, L.; Damm, A.; Malenovský, Z.; Rascher, U.; Peng, D.; Du, S.; Gastellu-Etchegorry, 
J.-P. Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level 
using a random forest model. Remote Sens Environ 2018, 231, 110772 . 

33. Zeng, Y.; Badgley, G.; Dechant, B.; Ryu, Y.; Chen, M.; Berry, J.A. A practical approach for estimating the 
escape ratio of near-infrared solar-induced chlorophyll fluorescence. Remote Sens Environ 2019, 232, 
111209. 

34. Galmés, J.; Ribas-Carbó, M.; Medrano, H.; Flexas, J. Response of leaf respiration to water stress in 
mediterranean species with different growth forms. Journal of Arid Environments 2007, 68, 206–222. 

35. Alonso, L.; Van Wittenberghe, S.; Amorós-López, J.; Vila-Francés, J.; Gómez-Chova, L.; Moreno, J. Diurnal 
cycle relationships between passive fluorescence, pri and npq of vegetation in a controlled stress 
experiment. Remote Sens-Basel 2017, 9, 770. 

36. Hilker, T.; Coops, N.C.; Hall, F.G.; Black, T.A.; Wulder, M.A.; Nesic, Z.; Krishnan, P. Separating 
physiologically and directionally induced changes in pri using brdf models. Remote Sens Environ 2008, 
112, 2777–2788. 

37. Perez-Priego, O.; Guan, J.; Rossini, M.; Fava, F.; Wutzler, T.; Moreno, G.; Carvalhais, N.; Carrara, A.; 
Kolle, O.; Julitta, T., et al. Sun-induced chlorophyll fluorescence and photochemical reflectance index 
improve remote-sensing gross primary production estimates under varying nutrient availability in a 
typical mediterranean savanna ecosystem. Biogeosciences 2015, 12, 6351–6367. 

38. Luo, Y.; El-Madany, T.; Filippa, G.; Ma, X.; Ahrens, B.; Carrara, A.; Gonzalez-Cascon, R.; Cremonese, E.; 
Galvagno, M.; Hammer, T. Using near-infrared-enabled digital repeat photography to track structural 
and physiological phenology in mediterranean tree–grass ecosystems. Remote Sens-Basel 2018, 10, 1293. 

39. Spellerberg, I.F.; Fedor, P.J. A tribute to claude shannon (1916-2001) and a plea for more rigorous use of 
species richness, species diversity and the ‘shannon-wiener’ index. Global Ecol Biogeogr 2003, 12, 177–179. 

40. Brand, W.A.; Coplen, T.B. Stable isotope deltas: Tiny, yet robust signatures in nature. Isotopes in 
Environmental and Health Studies 2012, 48, 393–409. 

41. Coplen, T.B. Guidelines and recommended terms for expression of stable--isotope--ratio and gas--ratio 
measurement results. Rapid communications in mass spectrometry 2011, 25, 2538–2560. 

42. Pacheco-Labrador, J.; Perez-Priego, O.; El-Madany, T.S.; Julitta, T.; Rossini, M.; Guan, J.; Moreno, G.; 
Carvalhais, N.; Martín, M.P.; Gonzalez-Cascon, R. Multiple-constraint inversion of scope. Evaluating the 
potential of gpp and sif for the retrieval of plant functional traits. Remote Sens Environ 2019, 234, 111362. 

43. Seibt, U.; Rajabi, A.; Griffiths, H.; Berry, J.A. Carbon isotopes and water use efficiency: Sense and 
sensitivity. Oecologia 2008, 155, 441–454. 

44. van der Tol, C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z. An integrated model of soil-canopy 
spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 2009, 6, 
3109–3129. 

45. Vina, A.; Gitelson, A.A. New developments in the remote estimation of the fraction of absorbed 
photosynthetically active radiation in crops. Geophys Res Lett 2005, 32(17). 

46. Li, Z.; Moreau, L. A new approach for remote sensing of canopy-absorbed photosynthetically active 
radiation. I: Total surface absorption. Remote Sens Environ 1996, 55, 175–191. 



Remote Sens. 2019, 11, 2562 22 of 23 

 

47. Moreau, L.; Li, Z. A new approach for remote sensing of canopy absorbed photosynthetically active 
radiation. Ii: Proportion of canopy absorption. Remote Sens Environ 1996, 55, 192–204. 

48. Sager, J.; McFarlane, J. Plant growth chamber handbook. Radiation 1997, 1–29. 
49. Moder, K. Alternatives to f-test in one way anova in case of heterogeneity of variances (a simulation 

study). Psychological Test and Assessment Modeling 2010, 52, 343–353. 
50. Games, P.A.; Howell, J.F. Pairwise multiple comparison procedures with unequal n’s and/or variances: A 

monte carlo study. Journal of Educational Statistics 1976, 1, 113–125. 
51. Groemping, U.; Matthias, L. Relaimpo: Relative importance of regressors in linear models. R package 

version 2006, 1.1-1. 
52. Sumayao, C.; Kanemasu, E.; Brakke, T. Using leaf temperature to assess evapotranspiration and 

advection. Agricultural Meteorology 1980, 22, 153–166. 
53. Rosseel, Y. Lavaan: An r package for structural equation modeling and more. Version 0.5–12 (beta). 

Journal of statistical software 2012, 48, 1–36. 
54. Weis, E.; Berry, J.A. In Plants and high temperature stress, Symposia of the Society for Experimental Biology, 

1988; 42, 329–346. 
55. Hu, L.t.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria 

versus new alternatives. Structural equation modeling: a multidisciplinary journal 1999, 6, 1–55. 
56. Iacobucci, D. Structural equations modeling: Fit indices, sample size, and advanced topics. Journal of 

consumer psychology 2010, 20, 90–98. 
57. Singh, S.K.; Reddy, V.R. Combined effects of phosphorus nutrition and elevated carbon dioxide 

concentration on chlorophyll fluorescence, photosynthesis, and nutrient efficiency of cotton. Journal of 
Plant Nutrition and Soil Science 2014, 177, 892–902. 

58. Tatarko, A.R.; Knops, J.M.H. Nitrogen addition and ecosystem functioning: Both species abundances and 
traits alter community structure and function. Ecosphere 2018, 9, e02087. 
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecs2.2087 

59. Jackson, R.D.; Idso, S.; Reginato, R.; Pinter, P. Canopy temperature as a crop water stress indicator. Water 
resources research 1981, 17, 1133–1138. 

60. Boulet, G.; Chehbouni, A.; Gentine, P.; Duchemin, B.; Ezzahar, J.; Hadria, R. Monitoring water stress 
using time series of observed to unstressed surface temperature difference. Agr Forest Meteorol 2007, 146, 
159–172. 

61. Diaz, M.; de Haro, V.; Munoz, R.; Quiles, M.J. Chlororespiration is involved in the adaptation of brassica 
plants to heat and high light intensity. Plant, cell & environment 2007, 30, 1578–1585. 

62. Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El-Masri, B.Z.; Baldocchi, D.D.; Bolstad, P.V.; Flanagan, L.B.; 
Goldstein, A.H.; Hollinger, D.Y.; Misson, L. A new model of gross primary productivity for north 
american ecosystems based solely on the enhanced vegetation index and land surface temperature from 
modis. Remote Sens Environ 2008, 112, 1633–1646. 

63. Weisser, W.W.; Roscher, C.; Meyer, S.T.; Ebeling, A.; Luo, G.; Allan, E.; Beßler, H.; Barnard, R.L.; 
Buchmann, N.; Buscot, F. Biodiversity effects on ecosystem functioning in a 15-year grassland 
experiment: Patterns, mechanisms, and open questions. Basic and Applied Ecology 2017, 23, 1–73. 

64. Feng, X.H.; Dietze, M. Scale dependence in the effects of leaf ecophysiological traits on photosynthesis: 
Bayesian parameterization of photosynthesis models. New Phytologist 2013, 200, 1132–1144. 

65. Frankenberg, C.; Berry, J. Solar induced chlorophyll fluorescence: Origins, relation to photosynthesis and 
retrieval. 2018. In Comprehensive Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2018. 

66. Peng, Y.; Gitelson, A.A.; Keydan, G.; Rundquist, D.C.; Moses, W. Remote estimation of gross primary 
production in maize and support for a new paradigm based on total crop chlorophyll content. Remote 
Sens Environ 2011, 115, 978–989. 

67. Buschmann, C. Variability and application of the chlorophyll fluorescence emission ratio red/far-red of 
leaves. Photosynth Res 2007, 92, 261–271. 

68. Knyazikhin, Y.; Schull, M.A.; Stenberg, P.; Mõttus, M.; Rautiainen, M.; Yang, Y.; Marshak, A.; Carmona, 
P.L.; Kaufmann, R.K.; Lewis, P. Hyperspectral remote sensing of foliar nitrogen content. Proceedings of the 
National Academy of Sciences 2013, 110, E185–E192. 

69. Ollinger, S.V.; Richardson, A.D.; Martin, M.E.; Hollinger, D.Y.; Frolking, S.E.; Reich, P.B.; Plourde, L.C.; 
Katul, G.G.; Munger, J.W.; Oren, R. Canopy nitrogen, carbon assimilation, and albedo in temperate and 
boreal forests: Functional relations and potential climate feedbacks. Proceedings of the National Academy of 
Sciences 2008, 105, 19336–19341. 

70. Migliavacca, Mirco, Tarek, S. El-Madany, Oscar Perez-Priego, Arnaud Carrara, Rosario Gonzalez-Cascon, 
M.P. Martin Isabel, Gerardo Moreno et al. Effects of a large scale stoichiometric imbalance manipulation 



Remote Sens. 2019, 11, 2562 23 of 23 

 

on the ecosystem functioning of a Mediterranean tree-grass ecosystem: The MANIP experiment. In AGU 
Fall Meeting Abstracts. 2018 

71. Ollinger, S.; Frolking, S.; Richardson, A.; Martin, M.; Hollinger, D.; Reich, P.; Plourde, L. Reply to fisher: 
Nitrogen–albedo relationship in forests remains robust and thought-provoking. Proceedings of the National 
Academy of Sciences 2009, 106, E17–E17. 

72. Sullivan, F.B.; Ollinger, S.V.; Martin, M.E.; Ducey, M.J.; Lepine, L.C.; Wicklein, H.F. Foliar nitrogen in 
relation to plant traits and reflectance properties of new hampshire forests. Canadian Journal of Forest 
Research 2012, 43, 18–27. 

73. Sun, Z.; Livingston, N.; Guy, R.; Ethier, G. Stable carbon isotopes as indicators of increased water use 
efficiency and productivity in white spruce (picea glauca (moench) voss) seedlings. Plant, Cell & 
Environment 1996, 19, 887–894. 

74. Vilfan, N.; van der Tol, C.; Verhoef, W. Estimating photosynthetic capacity from leaf reflectance and 
chlorophyll fluorescence by coupling radiative transfer to a model for photosynthesis. New Phytologist 
2019, 223,487–500. 

 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


