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Abstract: Precipitation, especially convective precipitation, is highly associated with hydrological
disasters (e.g., floods and drought) that have negative impacts on agricultural productivity, society,
and the environment. To mitigate these negative impacts, it is crucial to monitor the precipitation
status in real time. The new Advanced Baseline Imager (ABI) onboard the GOES-16 satellite provides
such a precipitation product in higher spatiotemporal and spectral resolutions, especially during
the daytime. This research proposes a deep neural network (DNN) method to classify rainy and
non-rainy clouds based on the brightness temperature differences (BTDs) and reflectances (Ref)
derived from ABI. Convective and stratiform rain clouds are also separated using similar spectral
parameters expressing the characteristics of cloud properties. The precipitation events used for
training and validation are obtained from the IMERG V05B data, covering the southeastern coast of
the U.S. during the 2018 rainy season. The performance of the proposed method is compared with
traditional machine learning methods, including support vector machines (SVMs) and random forest
(RF). For rainy area detection, the DNN method outperformed the other methods, with a critical
success index (CSI) of 0.71 and a probability of detection (POD) of 0.86. For convective precipitation
delineation, the DNN models also show a better performance, with a CSI of 0.58 and POD of 0.72.
This automatic cloud classification system could be deployed for extreme rainfall event detection,
real-time forecasting, and decision-making support in rainfall-related disasters.
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1. Introduction

Precipitation is one of the most significant contributing factors to destructive natural disasters
globally, including hurricanes, floods, and droughts. Convective precipitation with abnormal activities
may lead to severe urban floods [1], landslides [2], and flash floods [3], which cause devastating
short-term and long-term impacts on people, economies, infrastructure, and ecosystems. To mitigate
these negative impacts, precipitation detection and convective precipitation detection are essential in
extreme precipitation monitoring, forecasting, and early warning systems. Recently, the increasing
availability of high spatiotemporal resolution datasets is contributing to the real-time detection and
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monitoring of precipitation events in a limited fashion for various domains, including environmental
science [4], climate change [5], the economy [6], and society [7]. For example, rain gauge data provide
accurate measurements of precipitation rate [8], while their discrete distributions are limited in both
space and time. Passive microwave (PMW) remote sensing is a widely-used technique to retrieve
precipitation rate but is restricted in spatial-temporal resolutions and time effectiveness, limiting its
resolution in fine-scale disaster warning and real-time precipitation monitoring. In contrast, optical
sensors onboard geostationary satellites offer higher spatial and temporal resolutions [9]. The available
spectral information and resolutions for extracting the properties of rainy clouds (e.g., cloud top height,
cloud top temperature, cloud phase, cloud water path [10]) are becoming increasingly accurate. Infrared
(IR) data are more widely used in authoritative precipitation products including the Tropical Rainfall
Measuring Mission (TRMM) 3B42 [11], Integrated Multi-Satellite Retrievals for Global Precipitation
Measurement (IMERG) [12], and Climate Prediction Center Morphing Technique (CMORPH) global
precipitation analyses [13]. Given the advantages of optical sensor data, this paper focuses on rainy
cloud detection and convective precipitation delineation using images of IR and the visible spectrum.

Rainy cloud detection is more complicated than merely extracting the cloud area, especially when
different types of rainy clouds overlap. There are two major types of clouds that produce precipitation
- nimbostratus and cumulonimbus clouds [14,15]. A nimbostratus cloud has a low altitude and is
dark, textureless, and thick when observed from the Earth’s surface in the daytime. This kind of cloud
typically produces light or moderate precipitation of longer duration (i.e., stratiform precipitation).
Cumulonimbus clouds form when the atmosphere is unstable enough to allow for significant vertical
growth of a cumulus cloud, [16]. This type of cloud also has typically low base heights of about 300 m
but with tops reaching 15 km.

Cumulonimbus clouds produce more substantial and intense precipitation than nimbostratus
clouds, usually along with thunder and lightning due to the collisions between charged water
droplets, graupel (ice–water mix), and ice crystal particles. Different kinds of rainy clouds have
signature characteristics in both reflectance and brightness temperature (BT). Rainy cloud types are
identified using properties that reflect these features, such as cloud height, optical thickness, cloud-top
temperature, and particle size. For example, differentiating rainy clouds from non-rainy clouds is
achieved using their lower temperature in IR spectrums and unique color and brightness in the visible
(VIS) spectrum. Estimating the volume of precipitation is achieved by measuring the cloud’s time
period at a specific critical threshold temperature or [17].

To improve the CCD method in estimating convective precipitation, Lazri et al. [18] proposed the
cold cloud phase duration (CCPD). Using a thresholding approach, Arai [19] detected rainy clouds
with visible and thermal IR imageries of Advanced Very High Resolution Radiometer (AVHRR) data
and compared the results with radar data for validation. Tebbi and Haddad [20] trained a support
vector machine (SVM) classifier using the brightness temperature difference (BTD) spectral parameters
of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) to detect rainy clouds and extract
convective clouds in the northern border of Algeria and validated the results using observations from
rain gauges. Using SEVIRI data in northern Algeria, Mohia et al. [21] trained a classifier based on the
artificial neural multilayer perceptron network (MLP). Improved from AVHRR and SEVIRI, the new
generation Advanced Baseline Imager (ABI) was developed with higher spatial, temporal, and spectral
resolutions. The ABI provides images with more thermal and spectral bands and visible colors and
brightness, resulting in a more sensitive and accurate detection of different kinds of clouds. The high
scanning frequency of ABI also allows expedient reactions to precipitation-related disasters, which is
essential for the coastlines of the U.S. East Coast study area.

With the advancements in AI and big data techniques, machine and deep learning methods
have been developed to investigate climatological phenomena and predict natural disasters [22].
McGovern et al. [23] applied gradient-boosted regression trees (GBRT), RF, and elastic net techniques
using physical features of the environment (e.g., condensation level, humidity, updraft speed) to
improve the predictability of high-impact weather events (e.g., storm duration, severe wind, severe
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hail, precipitation classification, forecasting for renewable energy, aviation turbulence). Cloud and
precipitation properties are non-linearly related to the information extracted from meteorological data,
including satellite images [24]. Meyer et al. [25] compared four machine learning (ML) algorithms
(random forests (RFs), neural networks (NNETs), averaged neural networks (AVNNETs), and support
vector machines (SVMs)) in precipitation area detection and precipitation rate assessment using SEVIRI
data over Germany. They concluded that no single method was better than the others, and modification
in spectral parameters was of greater necessity than the choice of ML algorithms.

Although traditional machine learning methods have shown potential in precipitation detection
and monitoring, deep learning (DL) approaches are more accurate in processing big data with
various features [26], most notably, remote sensing images with better spatiotemporal resolution and
more spectral information. To further examine the capability of deep neural networks (DNNs), this
paper proposes an automatic rainy cloud detection system based on DNN models and compares the
system’s performance with that of traditional machine learning methods (e.g., SVM, RF). With the
high spatiotemporal resolution of ABI images, the proposed system has good performance in real-time
regional and local precipitation monitoring. Including full coverage of precipitation characteristics of
the study area, IMERG is a more accurate assessment of precipitation attributes in contrast to discretely
distributed ground observations. This paper also evaluates the system in a hydrological extreme (e.g.,
hurricane) to provide a meaningful basis and reference for future studies. The remaining part of this
paper is organized as follows. Section 2 introduces the study area and the dataset used as training
and testing data; Section 3 describes the data processing procedure and the DNN model development;
Section 4 validates the proposed method and compares the performance with other methods; Section 5
demonstrates the capability of the proposed method in case studies of normal precipitation events and
Hurricane Florence; Section 6 discusses the potential future improvements of the proposed method;
Section 7 offers conclusions according to the results of the experiments and use-case analysis.

2. Data and Spectral Parameters

2.1. Study Area

The study focuses on a rectangular area of the U.S. East Coast (32◦N to 39◦N, 80◦W to 75◦W)
crossing Pennsylvania, Delaware, Maryland, Washington DC, Virginia, and North and South Carolina
(Figure 1). The climate of the study area is characterized by cool to cold winters and hot, humid
summers. The volume, frequency, and density of precipitation in the study area are significantly
higher in all seasons than in other parts of the U.S. [27]. A plethora of training and testing samples for
both stratiform and convective precipitation are extractable to build the classification models, making
the area suitable for the study of precipitation. A large number of hurricanes and tropical cyclones
made landfall in this area in the past century, making the rainy cloud classification system critical for
hydrological disasters such as hurricanes.

2.2. GPM-IMERG Precipitation Estimates and Gauge Data

Instead of rain gauge data, which are commonly used in precipitation detection research,
IMERG V5B precipitation products are used in this research to distinguish rainy/non-rainy areas
and convective/stratiform areas. The IMERG has a spatiotemporal resolution of 0.1◦ and 30 min.
The precipitation product is generated based on the following five steps. (1) Passive microwave
(PMW) estimates are produced and inter-calibrated by the retrieval algorithm. (2) Spatiotemporal
interpolations are carried out to obtain adequate sampling. (3) Holes are filled in the PMW constellation
using microwave-calibrated IR estimates. (4) Gauge observations are adopted to control bias. (5) Error
estimates and product delivery are accomplished [28]. The IMERG is a series of state-of-the-art,
high-resolution QPE (quantitative precipitation estimation) products, higher in spatial and temporal
resolutions and lower in bias with ground truth compared to the former TRMM series. It is a merged
dataset that takes advantage of various global scale PMW and IR constellations and is one of the most
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accurate and popular precipitation products [29,30]. It has relatively high accuracy in determining
rainy areas and convective areas.Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 18 
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Gauge data are not used in this study for the following reasons. (1) Gauge observations are
distributed sparsely in our study area, with a density of 0.035 gauges per 100 km2 (122 gauges in the
study area of 350,000 km2), and the sparseness of this distribution does not provide enough training
and testing samples for the models and is insufficient in reflecting sky conditions. (2) Publicly accessible
gauge observations are usually non-uniform in temporal resolution, resulting in the samples being
distributed unevenly at different times and introducing bias to the models. For example, some gauge
records are in an hourly time step, while others have a time step of 30 or 15 min; this feature might not
capture short convective precipitation events.

2.3. GOES-16 ABI Data

The Geostationary Operational Environmental Satellite (GOES)-16 is the current operational
geostationary satellite operated by the National Oceanic and Atmospheric Administration (NOAA)
and National Aeronautics and Space Administration (NASA) and is also known as the GOES-East
member of the GOES-West and GOES-East NOAA system. It was launched on 9 November 2016 and
has provided data since November 2017. The Advanced Baseline Imager (ABI) instrument onboard
GOES-16 provides 16 spectral bands, including two VIS, four near-infrared (NIR), and ten IR channels.
Due to the lack of the three VIS and NIR bands during nighttime, this research focuses on rainy cloud
detection and convective area delineation in the daytime. Eleven bands are used to calculate the spectral
parameters in the detection and delineation procedure (i.e., 2, 3, 6, 8, 10–16). Detailed information
regarding the central wavelengths and spatial resolutions for each band are available in Table 1 [31].
The ABI generates an image of the contiguous U.S. (CONUS) every five minutes, and its L1b data used
in this study are accurately registered (resampled) to a fixed grid (angle–angle coordinate system) with
three different spatial resolutions at a nadir [32] ranging from 0.5 to 1 km and 2 km for different bands.
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Since it has different spatial and temporal resolutions from that of IMERG, collocating the ABI and
IMERG data in both spatiotemporal dimensions is needed (Section 3.1).

Table 1. Advanced Baseline Imager (ABI) band characteristics.

Band
Number

Central
Wavelength (µm)

Spatial
Resolution at
Nadir (km)

κ-Factor
(W −1 * m * µm)

Used in
Study Primary Application

1 0.47 1.0 1.5177−3 Aerosols

2 0.64 0.5 1.8767−3 √
Clouds

3 0.865 1.0 3.1988−3 √
Vegetation

4 1.378 2.0 8.4828−3 Cirrus

5 1.61 1.0 1.26225−2 Snow/ice discrimination,
cloud phase

6 2.24 2.0 3.98109−2 √ Cloud particle size, snow
cloud phase

7 3.9 2.0 - Fog, stratus, fire,
volcanism

8 6.19 2.0 -
√ Various atmospheric

features

9 6.95 2.0 - Middle-level water
vapor features

10 7.34 2.0 -
√ Lower-level water vapor

features

11 8.5 2.0 -
√

Cloud-top phase

12 9.61 2.0 -
√

Total column of ozone

13 10.35 2.0 -
√

Clouds

14 11.2 2.0 -
√

Clouds

15 12.3 2.0 -
√

Clouds

16 13.3 2.0 -
√

Air temperature, clouds

2.4. Spectral Parameters

The ability of a particular kind of cloud to produce precipitation and develop heavy rate convective
precipitation depends on the altitude of the cloud top and the thickness of the cloud [33]. If a cloud is
high enough in altitude, thick enough to carry a large volume of water vapor, and contains ice particles
in its upper cloud layers, the chance of producing precipitation increases. As an effective measurement
of the potential for precipitation to form in the clouds, the liquid water path (LWP) can be calculated as
the measurement of the vertically integrated liquid water content in clouds [34–37]:

LWP =
5
9
ρwτre(h), (1)

where ρw (g/m3) is the density of liquid water, τ is the optical thickness, and re(h) is the cloud effective
radius determined by the cloud thickness (h). The 2.24 µm channel reflects the size of cloud particles,
especially those below the cloud top [38]; therefore, it is used in the calculation of LWP and provides
useful information in rainy cloud identification.

To classify different types of sky conditions and clouds according to the precipitation properties,
the LWP is reflected by the spectral parameters. Cloud-top temperature (CTT) is a direct indicator of
parameters in LWP and reflecting cloud altitude. The CTT is related to the intensity of precipitation
from colder cloud tops, which are more likely to produce heavier precipitation [39]. The IR
channels of ABI provide CTT information in different spectral ranges. The VIS and NIR bands
reflect the unique color and brightness of rainy clouds in the daytime [40]. Effective spectral
parameters of the classification system are created and calculated from the combination of these
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bands from VIS to far IR. Due to the lack of VIS and NIR information in the nighttime, this
research focuses on daytime rain cloud monitoring. In total, 15 spectral parameters are selected
to optimize the detection accuracy—BT10.35, ∆BT6.19-10.35, ∆BT7.34-12.3, ∆BT6.19-7.34, ∆BT13.3-10.35,
∆BT9.61-13.3, ∆BT8.5-10.35, ∆BT8.5-12.3, BT6.19, ∆BT7.34-8.5, ∆BT7.34-11.2, ∆BT11.2-12.3, and reflectance (Ref) of
3 VIS and NIR bands, Ref0.64, Ref0.865, and Ref2.24. For BT and Ref, the subscript number is the central
wavelength of the band, and for BTD (∆BT), the subscript numbers indicate the central wavelengths
(Table 2).

Table 2. Spectral parameters used in the models, with the subscript number being the central
wavelength (µm).

Spectral Parameters Cloud Features Reflected by the Parameter

Ref0.64 Cloud brightness

Ref0.865 Cloud brightness

Ref2.24 Cloud particle size

BT10.35 Cloud particle size, cloud-top temperature

∆BT6.19−10.35 Cloud-top temperature, convective level

∆BT7.34−12.3 Cloud-top temperature, convective level

∆BT6.19−7.34 Cloud height and thickness

∆BT13.3−10.35 Cloud-top height

∆BT9.61−13.3 Cloud-top height

∆BT8.5−10.35 Cloud phase (positive for thick ice clouds, negative for thin low-level water clouds)

∆BT8.5−12.3 Optical thickness (negative values for thin optical thickness)

BT6.19 Upper-level tropospheric water vapor

∆BT7.34−8.5 Cloud optical thickness

∆BT7.34−11.2 Cloud-top temperature and height

∆BT11.2−12.3 Cloud thickness, particle size

The 10.35 µm channel is an atmospheric window channel providing rich CTT information. It is
effective in precipitation estimation, and especially for convective areas [41]. A low temperature in
this band indicates a high cloud with a higher probability of producing precipitation and developing
into a convective event. The CO2 absorption channel is at 13.3 µm, and CO2 decreases with altitude.
Therefore, this channel’s temperature is smaller for lower-level versus higher-level clouds. Since the
temperature at 10.35 µm has an inverse relationship with height, ∆BT13.3-10.35 is useful in estimating
cloud-top height.

The 6.19 µm and 7.34 µm channels represent water vapor. The differences between their brightness
temperatures and those observed in the longwave IR bands (i.e., 10.35 µm, 12.3 µm) represent the
summit altitude of the cloud. These BTDs are accurate indicators of whether the cloud level is high
enough to become convective areas. At low altitudes, cloud temperature in water vapor channels is
lower than that in 10.35 and 12.3 µm bands due to the water vapor absorption. As a result, ∆BT6.19-10.35

and BT7.34-12.3 return negative values for low clouds and slightly negative values for rainy clouds,
especially convective clouds. The ∆BT6.19-7.34 is also adopted because it reflects cloud height and
thickness, with significantly negative values for mid-level clouds and small negative values for
high thick clouds [42]. Additionally, the BT of the upper-level water vapor channel (6.19 µm) is an
independent parameter due to its capability to detect rainy and convective clouds.

The information derived from the 11.2 µm channel is similar to that of the 10.35 µm channel,
so ∆BT7.34-11.2 reflects the CTT and cloud height. The BTD between 10.35 and 12.3 µm is effective in
estimating low-level moisture and cloud particle size [43].
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The ∆BT9.61-13.3 is another indicator of cloud top height. The 9.61 and 13.3 µm wavelengths are the
ozone and CO2 absorption channels, respectively. The temperature of the 9.61 µm channel is higher for
high-altitude clouds because of the warming effect of ozone. Therefore, positive values of ∆BT9.61-13.3

represent high-level clouds, while negative values represent low-level clouds.
The ∆BT8.5-10.35 is used to extract information on the cloud phase and the partitioning of cloud

into “water” or “ice” [44] because water versus ice absorption differs in these two channels [45] as
witnessed by a positive value for ice clouds and a small negative value for low-level water clouds.
Convective precipitation is more related to ice clouds [46].

The ∆BT8.5-12.3 indicates the optical thickness of clouds, returning positive values for high clouds,
which are relatively thick with larger particle sizes. Negative values result from low-level water clouds
due to the low temperature of water vapor in 8.5 µm. The ∆BT7.34-8.5 also indicates the cloud optical
thickness, which is adopted in the precipitation rate retrieval algorithm of ABI [47].

Three additional parameters are selected from the ABI’s VIS and NIR channels to optimize
accuracy. Refs of 0.64 µm and 0.865 µm provide cloud brightness. Clouds with higher reflectance in
the VIS bands tend to have more water or ice contents, which potentially results in more rainfall and
vice versa [48].

3. Methodology and Models

3.1. Data Processing

The goals of the automatic rainy cloud monitoring system are to detect rainy areas and delineate
the convective areas. These two goals are achieved through the following steps:

1. Data preprocessing. First, the 16 bands of ABI radiance are gridded to the spatial resolution of
0.1◦, the same as IMERG precipitation estimates. Second, six individual ABI data with scanning
time ranges included in one IMERG time step are averaged to complete the spatial and temporal
collocation between the two datasets. Third, Ref, BT, and sun zenith angle (z) are calculated, with
reflectance being derived as follows (Equation (2)):

Refλ = Lλ ∗ k, (2)

where λ is the central wavelength of the channel, Lλ is the radiance value, and κ is the reflectance
conversion factor. The BT is derived from Equation (3) as follows:

BT =

 fk2

alog
(

fk1
Lλ

+ 1
) − bc1

/bc2, (3)

where fk1, fk2, bc1, and bc2 are the Planck function constants. Sun zenith angle (z) is calculated
through the variables in the ABI data file and pixel locations.

2. Spectral parameters are calculated and normalized.
3. Each set of parameters is sorted into rainy and non-rainy clouds according to the associated

IMERG rain rate (r). If r < 0.1 mm/hr, the sample is classified as non-rainy; otherwise, it is labeled
as rainy. The rainy cloud detection models are built using DNN models, through which rainy
samples are separated automatically from non-rainy ones.

Sample ∈
{

Rainy i f r >= 0.1 mm/hr
Non− rainy i f r < 0.1 mm/hr

(4)
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4. After rainy or non-rainy samples are distinguished, the convective and stratiform rain clouds are
split based on their rain rates. The adopted threshold to discriminate convection or stratus cloud
is calculated through the Z–r relation [49]:

Z = 300r1.4, (5)

dBZ = 10 ∗ log10 Z,

where Z (mm6 m−3) is the reflectivity factor of the radar, r (mm/hr) is the corresponding rain rate,
and dBZ is the decibel relative to Z. Lazri [18] uses dBZ = 40 as the threshold of Z for convective
precipitation. Then r is 12.24 mm/hr according to Equation (5). As precipitation rates measured
by meteorological radar tend to be overestimated due to anomalous propagation of the radar
beam [50], a lower threshold for r is more reasonable. This research uses r = 10 mm/hr as the final
threshold because it is adopted frequently and has worked well in previous studies [20,51,52]:

Sample ∈
{

Convective i f r >= 10 mm/hr
Strati f orm i f r < 10 mm/hr

(6)

5. Convective precipitation delineation models are built using training samples derived from step 4
with DNN models.

6. Accuracy is evaluated using validation data and case studies.

A flow chart of this procedure is illustrated in Figure 2.
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Figure 2. Workflow of the automatic rainy cloud classification system. IMERG is Integrated
Multi-Satellite Retrievals for Global Precipitation Measurement; BT is Brightness Temperature.

3.2. Model Development

Following the data processing steps, the classification system contains two types of models: the
rainy area detection and convective precipitation delineation models. This research adopts DNN
methods to build both types of models and compares the performance with SVM and RF methods.

The DNN is a feed-forward artificial neural network with multiple hidden layers between the
input and output [53]. The schematic workflow of the proposed DNN model (Figure 3) depicted in
the input, hidden, and output layers forms a bipartite structure, with all these layers fully connected.
The goal of this research is to detect the rainy cloud pixels and further classify them into two classes
for each step. The DNN estimates the posteriors of each class given the input cloud features x,
which refer to the spectral parameters. The activation functions used in each neuron of the hidden
layers are rectified linear units (ReLUs) functions, which have the following advantages: (1) faster
computation; and (2) more efficient gradient propagation [54]. The output is computed via the
normalized exponential function to force the target label to have the maximum posterior estimation.
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The objective is to minimize the cross-entropy between predictions of DNN p = [p1, p2, . . . pJ]T and
the target probabilities d = [d1, d2, ..., dJ ]T [55]. The loss function is defined in Equation (7):

L = −

J∑
j=1

d j∗ log
(
p j

)
. (7)
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The back-propagation (BP) algorithm [56] is adopted to update the weights and bias of DNN
based on the calculated loss.

The models achieve the optimal results when three hidden layers are embedded, and the numbers
of neurons are 30, 20, and 20 for each hidden layer. For the rainy cloud detection models, “Yes”
is returned when the pixel is identified as rainy and “No” for non-rainy. For the convective area
delineation models, “Yes” is returned for convective pixels and “No” for stratiform. In applications,
the non-rainy, stratiform, and convective pixels are labeled as −1, 0, and 1 in series.

4. Model Performance Evaluation

To include enough rainy and convective samples, training data were selected during rainy days
from June to September of 2018, which contain at least one precipitation event for each day and have
a large ensemble of different rain conditions. Eleven rainy days that do not overlap with training
events were selected as testing samples (Table 3). Samples were randomly split into training (70%) and
validation (30%) sets. The total number of pixels was 1,044,072.

Table 3. Dates of precipitation events in training and testing data.

Training and Validation Samples Testing Samples

3–5, 17, 22 June; 1, 10, 24 June;
4, 7, 30, 31 July; 11, 26 July;

2–4, 8–12, 18–20, 22 August; 5–7 August;
7–8, 14, 17, 25 September 4–6 September

4.1. Evaluation Metrics

This research uses the following statistical assessors to evaluate model accuracy, which are
calculated in Equations (8)–(13):
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1. The probability of detection (POD). The POD is the rate of testing samples correctly recognized as
rainy/convective by the model:

POD =
a

a + c
. (8)

2. The probability of false detection (POFD). The POFD indicates the fraction of rainy/convective
events incorrectly predicted by the model:

POFD =
b

b + d
. (9)

3. The false alarm ratio (FAR). The FAR is the ratio of the incorrect detection of rainy/convective
pixels and the total pixels recognized as rainy/convective:

FAR =
b

a + b
. (10)

4. The bias. Bias represents model over- or underestimates of reality:

Bias =
a + b
a + c

. (11)

5. The critical success index (CSI). The CSI is the fraction between the correct prediction of
rainy/convective pixels by the model and the total number of pixels detected as rainy/convective
by both IMERG and the model:

CSI =
a

a + b + c
. (12)

6. The model accuracy (MA). The MA is the probability of a correct prediction of both rainy/convective
and non-rainy/stratiform pixels by the model:

MA =
a + d

a + b + c + d
, (13)

where the contingency parameters a, b, c, and d are summarized (Table 4).

Table 4. Contingency parameters of the statistical assessors.

By IMERG

Yes (Rainy/Convective) No (Non-Rainy/Stratiform)

By models
Yes (Rainy/Convective) a b

No (Non-rainy/Stratiform) c d

4.2. Comparison of DNN, SVM, and RF Performance on Testing Data

According to the assessors’ accuracies, the DNN system correctly detected most of the rainy areas
(POD = 0.86 and CSI = 0.71) and convective areas (POD = 0.72 and CSI = 0.58), with relatively high
overall accuracies (0.87 and 0.74, respectively). The research compared the performance of the DNN
method with the other two machine learning methods, SVM and RF, and found that DNN performs
better on the testing sets, especially in the delineation of convective precipitation.

For rainy area detection (Table 5), all three methods slightly overestimate the rainy pixels, while
DNN achieved the highest accuracy in all the assessors. Overall, the performance of the three methods
is similar, with no more than a 0.03 difference.
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Table 5. Validation of rainy cloud detection model on testing data. The best result for each assessor is
shown in bold. POD is the Probability of Detection; POFD is the Probability of False Detection; FAR is
False Alarm Ratio; CSI is the Critical Success Index; MA is the Model Accuracy; DNN is Deep Neural
Network; SVM is Support Vector Machine; RF is Random Forest.

Model POD
(Ideal 1)

POFD
(Ideal 0)

FAR
(Ideal 0)

Bias
(Ideal 1)

CSI
(Ideal 1)

MA
(Ideal 1)

DNN 0.86 0.13 0.20 1.07 0.71 0.87

SVM 0.85 0.13 0.21 1.07 0.69 0.86

RF 0.85 0.14 0.21 1.09 0.70 0.86

For convective precipitation delineation (Table 6), the advantage of DNN is even more evident,
but all models overestimated the convective areas, except the DNN model. The DNN achieves the
highest accuracy for almost all the assessors except POD (0.72 vs. 0.86 and 0.78). The DNN performed
much better than RF and SVM, with a 0.20 lower FAR and 0.07–0.09 higher CSI. The SVM and RF
significantly overestimated the convective pixels, with a FAR larger than 0.40.

Table 6. Validation of convective precipitation delineation model on testing data. The best result for
each assessor is shown in bold.

Model POD
(Ideal 1)

POFD
(Ideal 0)

FAR
(Ideal 0)

Bias
(Ideal 1)

CSI
(Ideal 1)

MA
(Ideal 1)

DNN 0.72 0.23 0.24 0.94 0.58 0.74

SVM 0.86 0.40 0.44 1.55 0.51 0.69

RF 0.78 0.35 0.43 1.37 0.49 0.70

The errors are mainly introduced by two sources. First, the acquisition time and frequency are
different for ABI images and IMERG estimations. There are differences and gaps in scanning periods
between ABI and the instruments used in IMERG data. Precipitation distribution and density may
change and evolve in the periods. Second, since the ABI data have 0.5, 1, and 2 km spatial resolutions
initially and are gridded to 0.1◦, the spatial coverage is not the same for each set of spectral parameters
and their associated rain rate. Errors also occur in the averaging process for spatial-temporal collocation.

Overall, the classification system efficiently detected the rainy area and extracted the convective
areas from the testing dataset. In addition, most of the highest accuracies were observed in the
proposed DNN models, being better performers than traditional machine learning when the data are
complicated and sparsely distributed with a relatively large size [57]. The training and testing sample
sizes were more than 500,000 and 50,000; on the other hand, there were 15 spectral parameters with
different values for each pixel.

5. Case Study

Two case studies, a normal one and an extreme precipitation one (Hurricane Florence in 2018),
were used to validate the performance of the classification system. Validation was carried out using
only the DNN method due to its superior performance.

5.1. Normal Precipitation Events

Comparisons are shown between the predictions of the system and IMERG estimation of normal
precipitation events for 9 July 2018 (Figure 4). The system accurately detected the rainy and convective
area but slightly overestimated both. One possible reason is the temporal difference between the IMERG
estimates and the ABI predicted results. The ABI data are temporally averaged from 13:30~14:00
UTC, whereas the IMERG data are retrieved at 14:00 UTC. Another reason is that the samples used
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in the training dataset were insufficient, which could be improved with the accumulation of the
ABI data. Lastly, the thresholds that determine rain clouds are arbitrary, resulting in biases to their
intercomparison result. Despite this shortcoming, the spatial distribution patterns of the predicted
result and the IMERG data are congruent.
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Figure 4. Cloud classification results and IMERG estimations on normal precipitation: (a) ABI
prediction; and (b) IMERG estimation on 9 July 2018, at 13:30–14:00 UTC.

The results of a second case study of a normal precipitation event (9 September 2018) show that
the system effectively identified the rainy areas and convective areas, with a minor underestimation of
the rainy area and a minor overestimation of the convective areas (Figure 5).Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 18 
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5.2. Hurricane Florence

The comparisons between the predictions of the system and IMERG estimations of Hurricane
Florence demonstrate that the system detected most of the rainy areas, and the results clearly show the
hurricane’s shape and area of influence (Figure 6). For the convective precipitation delineation, the
models identify almost all of the convective areas. The system accurately detected the convective areas
over the ocean, with a slight overestimation and some missed pixels over land. Overall, the system
performed better over the ocean than land in the Hurricane Florence case study. Precipitation on land
is influenced by more factors than over the ocean, including topography, land use, and vegetation [58].
The precipitation estimations of IMERG were calibrated by ground-based rain gauge data, and the
measurements differ from those of the satellite-based system. In addition, different from normal
precipitation events, hurricanes are extreme events where the clouds have more complicated air motion
in both the horizontal and vertical dimensions. However, most samples used to train the models were
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normal precipitation, and Florence is the only hurricane event during the available period of ABI data
in the study area. It is proposed that the models do not learn well about extreme events through the
current data source.
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6. Discussion

This research explores the performance of rainy cloud detection and convective precipitation
delineation based on GOES-ABI data using the DNN method. The system detected rainy clouds with
relatively high accuracy and is reliable for convective area extraction. However, overestimation is
observed in the identification of convective precipitation, especially over land areas.

Due to the limitations of passive instrumentation, one of the recognized weaknesses in extracting
cloud information from brightness temperature is that it only provides vertical column-integrated cloud
information. Although the spectral parameters adopted in this research were effective in reflecting
the information of LWP by using the differences in BTs, they do not measure raindrops in the cloud
directly, as done by the PMW data. Therefore, the IR-BTD-based method does not perform well enough
in deciding the rain rates. Overestimation of convective rain areas occurred in the validations and
case studies.

However, the ABI data surpasses the PMW data in both spatial and temporal resolution and
provides real-time monitoring and detection. The ABI’s temporal resolution is 5 min, and after the
system is constructed, classification results are produced in the same interval. Conversely, the temporal
resolution of IMERG is 30 min, six times less frequent than ABI. The system provides rainy cloud
classification results at a spatial resolution of 2 km, five times greater than that of the IMERG data.
It functions in the prediction of convective precipitation in both urgent precipitation hazards and
routine weather forecasts and is an alternative when PMW data are unavailable.

Radar-based QPE offers a high-quality estimation of precipitation. However, ground-based radar
is sparsely distributed and not available over the ocean, which has a high percentage of the heavy
precipitation events (i.e., open ocean) and areas with the most significant economic impact (i.e., coasts).
The GOES-ABI has full and continuous coverage of northern and southern America and large areas
of the ocean. The system proposed herein complements the radar-based QPE over areas in which
ground-based radar is unavailable.
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To improve the performance of the proposed automatic detection system, several initiatives are
envisioned. First, more spectral information is needed, especially those reflecting the features inside
the clouds. This could be accomplished by adding an IR sounder, microwave images, and re-analysis of
data like ECMWF (European Centre for Medium-Range Weather Forecasts) and MERRA2 (Modern-Era
Retrospective Analysis for Research and Applications, Version 2). The second is better quality control
in selecting rainy and convective pixels for training models. This may be addressed by adding more
thresholds to the spectral parameters to further filter errors and bias. Thirdly, it is quite arbitrary to
distinguish stratiform and convective precipitation solely using a fixed precipitation rate. This can be
addressed by including more variables (e.g., pressure and temperature). The fourth is to extend the
research to precipitation rate estimation and introduce AI methods, especially DL, to the transformation
of statistical knowledge about meteorological phenomena into numerical models. This helps improve
the accuracy of numerical weather predictions (NWPs). The fifth is that the precipitation product
of Next Generation Weather Radar (NEXRAD) needs to be considered as validation data. The sixth
focuses on the cloud types and precipitation conditions that differ under other climate regimes [59].
The models and system constructed in this research address only the daytime of the east coast of the
U.S. Future investigations need to address separate classification systems for different areas of the U.S.
and those happening during the nighttime.

7. Conclusions

This research proposes an automatic system of cloud classification based on the
precipitation-producing capability to detect rainy clouds and delineate convective precipitation
in real time, based on DNN technologies. The proposed DNN model returns better accuracies on the
validation dataset, especially for convective precipitation delineation.

From the experiments and analysis, this research offers the following conclusions:

1. In the detection of rainy areas, the system provides reliable results of normal precipitation events
and precipitation extremes such as hurricanes with a tendency toward overestimation;

2. The DNN achieves better performance than the two ML methods, with higher accuracies of the
assessors on testing data;

3. The system performs better over the ocean versus land;
4. This study is offered as a contribution to combine the advantages of AI methodology with the

modeling of atmospheric phenomena, a relatively innovative domain needing more exploration.
More specifically, the system combines DNN-classifier and spectral features of rainy clouds to
investigate precipitation properties. This research establishes an essential step with which to
estimate precipitation rates further.
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Abbreviations

ABI Advanced Baseline Imager
AVHRR Advanced Very High Resolution Radiometer
AVNNET Averaged neural networks
BP Back-propagation
CCD Cold cloud duration
CCPD Cold cloud phase duration
CMORPH Climate Prediction Center Morphing Technique
CONUS Contiguous U.S.
CSI Critical success index
CTT Cloud-top temperature
dBZ Decibel relative to reflectivity factor of the radar
DL Deep learning
DNN Deep neural network
FAR False alarm ratio
GBRT Gradient-boosted regression trees

IMERG
Integrated Multi-Satellite Retrievals for Global
Precipitation Measurement

LWP Liquid water path
MA Model accuracy
ML Machine learning
MLP Multilayer perceptron network
NIR Near-infrared
NNET Neural networks
PMW Passive microwave
POD Probability of detection
POFD Probability of false detection
QPE Quantitative precipitation estimation
TRMM Tropical Rainfall Measuring Mission
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