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Abstract: Periodic inundation of floodplains and wetlands is critical for the well being of ecosystems.
This study proposes a simple but efficient model that integrates time series daily flow data and the
Landsat-derived Water Observation from Space (WOfS) product to model the spatio-temporal flood
inundation dynamics of the Murray-Darling Basin. A zone-gauge framework is adopted in order to
reduce the hydrologic complexity of the large river basin. Under this framework, flood frequency
analysis was conducted at each gauge station to identify historical peak flows and their annual
exceedance probabilities. The results were then linked with the WOfS dataset through date to model
the inundation probability in each zone. Inundation frequency was derived by simply overlaying the
yearly inundation extent from 1988 to 2015 and counting the inundation times. Both the resultant
inundation frequency map and inundation probability map are of ecological significance for the
survival and prosperity of riparian ecosystems. The assumptions of the model were validated carefully
to enhance its theoretical basis. The WOfS dataset was also compared with another independent
water observation dataset to cross-validate its reliability. It is hoped that with the development of
more and more global high-resolution surface water datasets, this study could inspire more studies
that integrate surface water datasets with hydrological observations for flood inundation modeling.

Keywords: surface water; flood inundation; water observation product; time-series flow; Global
Surface Water Dataset

1. Introduction

Although covering only about 4% to 6% of the Earth’s ice-free land surface [1,2], wetlands and
floodplains play a key role in ecological and hydrological cycles. Their inundation usually exhibits
obvious seasonal and inter-annual variations [3], which alters their connectivity to the main stem
rivers and thus changes nutrient retention and processing [4]. This also affects the aquatic system
productivity [5], as well as spawning and nursery habitat [6,7]. The structure and function of riverine
ecosystems are also closely linked to the inundation dynamics [8]. Therefore, understanding inundation
dynamics of wetlands and floodplains is essential for riparian ecological studies.
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Remotely sensed imagery has been widely used for extracting floodplain inundation extent [9,10].
More and more satellite series, such as MODIS and Landsat, have accumulated a long time series
of data. They have provided an enormous amount of data for mapping frequency of floodplain
inundation [11,12], aiming to reveal the spatio-temporal characteristics of inundation. However,
satellite observed inundation variations are not adequately represented in large-scale hydrological
models, which are the only feasible instrument for simulating freshwater flows in large river basins
applicable for large historical time series and predictions [13].

Hydrological gauge stations located on river channels have been observing river discharge for
over a century in many parts of the world. Reliable and continuous flow observations are essential
to comprehend flood generation and propagation mechanisms, and are widely used to quantify the
temporal variation of water movement within river channels [14–16]. However, river channel observed
data cannot reveal the spatial water dynamics in floodplains and wetlands [17], which therefore
requires a conversion from point-based gauge observations to basin-wide measurements of water
distributions [18,19]. Remotely sensed data provide an effective way of fulfilling this conversion.
Frazier et al. [20] and Frazier and Page [21] investigated the relationship between Landsat based
wetland inundation and river flow, and proved their significant correlation. For large river basins,
similar studies usually used MODIS data due to their higher temporal resolution and moderate spatial
resolution [22,23]. For example, Huang et al. [22] modeled the spatio-temporal dynamics of floodplain
inundation in a large Murray-Darling Basin through integrating time-series flow and MODIS imagery.
Considering that in a large river basin the correlations between observed flow and remotely sensed
inundation were hard to determine, they divided the whole basin into a number of hydrological zones
with corresponding observed flow series. Modeling was then conducted for each zone individually,
and the results were combined together for the whole basin afterwards. Long time series of flow
data were employed for flood frequency analysis, which gives cautious inference to the future water
condition. Through linking with the MODIS-derived inundation maps, projections to the future flood
inundation were achieved. However, due to the restrictions of the coarse resolution of MODIS, the
inundation maps, which were a key input of the model, embraces huge uncertainty. Moreover, the
time series of available MODIS were relatively short, which limits the observed inundation samples
for the model and thus introduces additional uncertainty.

Comparing with MODIS, Landsat satellite mission has been functioning for a much longer period.
It has therefore collected a much longer time series of earth observation data with much higher spatial
resolution. With the improvement of computing power and the emergence of automatic extraction
algorithms, some studies [24,25] have tried to use a long series of Landsat images to monitor large scale
surface water dynamics. Particularly, Tulbure et al. [25] produced a surface water dataset of Australia
using all available Landsat 5 and 7 scenes between 1986 and 2011 (~25,000) with less than 50% overall
cloud cover using random forest classification models. In recent years, new technologies including
Google Earth Engine (GEE) [26] and Data Cube [27], have further facilitated surface water mapping
over large areas with long time series. Using Data Cube, Mueller et al. [28] mapped the surface water
across Australia from long series of Landsat imagery and delivered a Water Observation from Space
(WOfS) dataset. Using GEE, Donchyts et al. [29] and Pekel et al. [30] mapped global surface water
dynamics through the analysis of three million Landsat images collected over the last three decades.
However, it has to be noted that the results of these studies only present an understanding of the
historical inundation in the past, no information about the future inundation can be projected.

Heimhuber et al. [31] proposed a surface water-modeling framework that uses Tulbure et al. [25]’s
dataset, together with river flow, rainfall, evapotranspiration and soil moisture to simulate surface
water dynamics under different conditions of these driving factors. Its potential in estimating future
inundation can be expected since all these driving factors could be derived from remote sensing data
or climate models. However, this framework currently only gives surface water area without spatial
distribution information in each modeling unit (10 × 10 km grid). Further processing is required to
convert the area value into surface water maps, which is still a challenging work by now.
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This study, therefore, aims to present a method that links WOfS dataset with time series flow
data to model the spatio-temporal inundation dynamics over the Murray-Darling Basin, Australia’s
largest river basin. They objectives of this study include: (1) to map the flood inundation frequency
over this large river basin from 1988 to 2015; (2) to model the flood inundation probability of the basin.
Comparing with our previous work [22], longer time series and higher resolution WOfS dataset is
employed to replace MODIS, which obviously would improve the model due to higher quality of
input data. Moreover, the assumptions of the model are carefully validated to ensure its reliability,
which has not been conducted in the previous work.

2. Study Area and Materials

2.1. Study Area

The Murray-Darling Basin (MDB), covering an area of over 1,000,000 km2 (Figure 1), supports
over a third of Australia’s agricultural production [32]. It is also home to some 30,000 wetlands, 200 of
which are deemed important Australian wetlands, and 16 of which are recognized internationally for
their ecological importance (Ramsar sites) [33]. There is an obvious elevation gradient from southern
and eastern margins toward the inland areas. Rivers in MDB generally arise from uplands in the south
and east, and flow into its low-lying and flat inland areas [34,35]. Rainfall is spatially uneven, mostly
occurring in the east margins [36].
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2.2. Materials

2.2.1. Flow Data

There are over 700 gauges distributed through the MDB (Figure 1). Some of them are maintained
by the Murray-Darling Basin Authority (MDBA), and others are maintained by government services of
each state, such as New South Wales Office of Water. Observed flow data at these gauges are collected
from these agencies and recorded as daily discharge in mega liters per day (ML/day).

2.2.2. WOfS Dataset

The WOfS dataset was acquired from Geoscience Australia’s web service (http://www.ga.gov.au/

scientific-topics/hazards/flood/wofs). Each grid cell of WOfS maintains the number of clear satellite
observations, the number of water occasions, the percentage of clear observations, and the confidence
of water observation. The clear observations are irregular from day to day, from place to place,
due to the continuation of Landsat missions and unpredictable cloud cover. Therefore, we generate
monthly maximum water maps by overlaying all the observations in a month and selecting all the
clear observations of water. Yearly maximum water maps are derived similarly by overlaying all
monthly maps of a year. Generation of monthly and yearly maximum water datasets achieves spatially
continuous observations by sacrificing the temporal resolution. In this study, WOfS data from 1988 to
2015 were downloaded and used.

3. Methodology

3.1. Constructing a Zone-Gauge Framework

Flood inundation dynamics in the MDB are quite variable across the basin due to the basin’s
rich river networks and complex topography. In order to reflect the spatial variation in flood pulses
and decrease time lags between flow and inundation, a zone-gauge framework was proposed in the
Murray-Darling Basin Floodplain Inundation Modeling (MDB-FIM) projects [37,38], which was later
modified by Huang et al. [39] who divided the basin into 90 zones based on a continental scale drainage
network product, the Australian Hydrological Geospatial Fabric (Geofabric) published by the Bureau
of Meteorology of Australia (http://www.bom.gov.au/water/geofabric/). Each zone was assigned a
representative downstream gauge that best records the flow through the zone. Some of the zones were
assigned a virtual gauge that was a combination of two or three observed gauges to match as closely as
possible to reality. The combination was achieved by addition or subtraction in arithmetic, depending
on the location of the gauges. Some of the zones have no clear linkage to the major rivers in the basin
and no corresponding gauges. These ungauged zones were excluded in this study because they are
generally not inundated.

This study required gauges with observed flow series that are longer than 30 years. Therefore, the
original 90-zone framework was modified by merging those zones that have shorter series with others,
and a framework with 67 pairs of zones and gauges (Figure 2) was finally adopted in this study. Under
this framework, it was assumed that the flood inundation extent in each zone was closely related
with the observed flow at its downstream gauge. Higher flow would usually correspond to a larger
inundation extent.

http://www.ga.gov.au/scientific-topics/hazards/flood/wofs
http://www.ga.gov.au/scientific-topics/hazards/flood/wofs
http://www.bom.gov.au/water/geofabric/
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3.2. Modeling Flood Inundation Dynamics

Spatio-temporal modeling of flood inundation in MDB is based on the zone-gauge framework,
which consists of 67 pairs of zones and gauges. Under this framework, inundation extent in each zone
was assumed to be closely related with the observed flow at its corresponding gauge. Under this
assumption, flood frequency analysis was carried out to the time-series flow data of each gauge based
on the annual flood series method, considering that the flow in the study area generally exhibits a
pattern of inter-annual variation [22].

An annual flood is defined as the highest peak discharge in a water year. Flood frequency analysis
is to estimate the exceedance probability of different flow peaks based on the historic flow peaks. To do
that, we should first assume that flow peaks obey some kind of probability distribution. Gumbel
distribution is a statistical method often used for predicting extreme events such as earthquake and
floods [40]. Therefore, we assume the flow peaks observed at all the gauges fit the Gumbel distribution.

The probability plotting positions are a type of empirical probability distribution and provide
appropriate non-exceedance probabilities for the extreme values [41]. While there are many plotting
position formulas, such as the California, Hazen, Weibull, and Gringorten methods [42], the Gringorten
method [43] was recommended for the Gumbel distribution [42,44–46]. Therefore, we have adopted
this method. It calculates the Annual Exceedance Probability (AEP) as Equation (1).

AEP = (r − 0.44)/(N + 0.12), (1)
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where r is the rank of the annual flow peaks from largest to smallest; N is the number of years for the
record length.

According to the date of annual flow peaks, maximum water observation in its corresponding
month would be selected, and assigned a value equal to the AEP of this peak to make a probability map.
All the probability maps corresponding to each flow peak were then overlaid by taking the maximum
probability to generate a final flood inundation probability map. On the other hand, a flood inundation
frequency map was derived by simply overlaying all the yearly maximum water observations from
1988 to 2015 and calculating the annual inundated times of each pixel. A flowchart of the modeling
process is given in Figure 3.
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4. Results and Validation

4.1. Spatio-Temporal Dynamics of Flood Inundation

4.1.1. Flood Inundation Frequency

Figure 4 shows the inundation frequency in MDB over the period (1988–2015), with each pixel
indicating the annual inundated times in these 28 years. Note that it was derived from annually
aggregated maximum flood extent, thus intra-annual variability and hydroperiods were not captured.
Enlarged areas are four of the Ramsar sites, Narran Lake Nature Reserve, Riverland, Kerang Wetlands,
and Currawinya Lakes. This map shows how often an area has been submerged by water. It is clear
that frequently inundated areas are generally around river channels. This is because floods in this
basin are usually caused by the overbank flow of rivers. Floodplain and wetland ecosystems rely
heavily on the overbank flow for water supply. River red gum for example, needs to receive adequate
surface flooding periodically to stay healthy [47]. Some aquatic organisms, such as some fish species,
also rely on flood pulse to broad their habitats and gain prosperity [48]. Therefore, this resultant map
can be a useful indicator for the survival and prosperity of riparian biota communities, which therefore
makes it a helpful tool for building knowledge of the relationship between ecosystem conditions and
the flooding water.
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4.1.2. Flood Inundation Probability

Figure 5 shows the inundation probability that was derived by integrating time series flow data
and WOfS product. The probabilities in this map were derived from the AEP of flood frequency
analysis, which indicates the probability of a given flow peak being exceeded in any given year.
Through combining with corresponding inundation extent that was derived by remote sensing data,
it therefore projects future possible inundation based on historic flow and inundation status. The
AEP-derived probabilities in this map can be related with another commonly used measurement, the
Average Recurrence Interval (ARI). For example, AEP of 0.632 generally equals to a 1-year recurrence
interval, and 0.181 equals to a 5-year recurrence interval (Equation (2)). Therefore, the flood inundation
probability map can be easily converted into flood inundation maps of different ARIs (Figure 6). From
Figure 6, it is observed that most area of the Narran Lake Nature Reserve was inundated at least once
every year or every two years, which suggests that its wetlands receives flooding water regularly and
frequently. For the Riverland, its wetlands are generally inundated once every five or ten years. Most
of the Kerang Wetlands are permanent water bodies that have water cover every year. Except for that,
some areas could be inundated by two- or five-year floods. Currawinya Lakes have a relative diverse
inundation situation. Wetland areas on the upstream are inundated once every five years, while the
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downstream wetlands can generally be inundated every two years. The ARI maps can be helpful for
pre-formulating future flow regimes to ensure important riparian ecosystems receiving enough water
supply. River red gum forests in MDB for example, require flooding water once every five years or
more often [49]. As a result, their distribution should be contained within the five year inundation
extent, which can be derived from Figure 5 by taking those pixels with probabilities greater than 0.181.
Similarly, this resultant map can be useful for identifying other flora and fauna communities that may
be in danger due to possible lack of water.

AEP = 1 − Exp(−1/ARI), (2)
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4.2. Validating the Assumptions

4.2.1. Consistency between Flow and Inundation in Each Zone

The core assumption of this study is that in each zone, the inundation extent is closely related with
the observed flow at its complementary gauge. In order to validate this assumption, the inundation
area for each month was first calculated and plotted together with daily flow. Figure 7 shows the
variation of inundation area (blue line) and flow (red line) from 1987 to 2015 for five demonstration
zones. It is clear that flow and inundation in all these zones have similar pattern, with large inundation
extent usually accompanying high flow.

Pearson’s correlation between the flow volume and the inundation area was performed for each
zone to further validate the assumption for the whole basin. Pearson’s r and corresponding p-value
were calculated and displayed in Figure 8a,b. It can be observed that most of the zones have high
r-values with p-values less than 0.05, demonstrating strong consistence between flow and inundation.
Zones in the southeast margin of MDB have relatively smaller r values, and some of the zones have high
p-values, suggesting a weaker relationship between the inundation extent and flow. After checking
their flow and inundation series, it was found that some of these small zones located completely
in a stripe that has too many miss Landsat coverages, which leads to non-significant correlations.



Remote Sens. 2019, 11, 2535 10 of 18

The other zones are likely to be affected by the more frequent precipitation there. Water that comes
from rainfall weakens the agreement between the observed flow magnitude/volume and remotely
sensed inundation.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 18 
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4.2.2. Testifying Gumbel Distribution

Another assumption of this study is that the flow peaks fit the Gumbel distribution. The cumulative
distribution function of Gumbel distribution is as shown in Equation (3).

F(x;µ, β) = e−e−(x−µ)/β , (3)

where x stands for the volume of flow peaks. Taking logarithm to both sides of this equation, a new
equation (Equation (4)) is derived as below.
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− ln(− ln(F(x))) = (x− µ)/β, (4)

Here we introduce another variable y calculated as in Equation (5).

y = − ln(− ln(F(x))), (5)

Then, y will linearly correlate with x, if flow peaks obey the Gumbel distribution. In Equation (5),
independent F(x) values indicate the occurrence probability of a flow that is smaller or equal to x.
Therefore, it can be calculated by subtracting AEPs of flow peaks from 1. Linear regression was then
conducted to x (flow peaks) and y. Coefficient of determination (R2) was calculated for each zone
and displayed on the map (Figure 9). It can be observed that, most of the zones have high R2, except
for zone 27 and zone 52, whose coefficients of determination are 0.48 and 0.57 respectively. After
checking the flow data of both zones, it was found that zone 27 had an incredibly high flow peak in
1990, corresponding to a major flood event in Macquarie Marshes that year, while most of the flow
peaks in zone 52 are 0. This explains why both zones have relatively low R2. Therefore, for the majority
of the zones, the Gumbel distribution represents flow peak patterns properly. It is legitimate to assume
that the flow peaks in the MDB obey the Gumbel distribution.
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4.3. Validating Surface Water Observation Dataset

Pekel et al. [30] have mapped global surface water dynamics of the last three decades through the
analysis of three million Landsat images using the GEE cloud computing platform, and distributed their
results as a Global Surface Water Dataset (GSWD) on the GEE. It was reckoned to have provided the
best understanding of the changes in our planet’s surface water [50]. WOfS is also a Landsat-derived
surface water dataset that was developed specifically for Australia. Here we want to give a general
impression regarding to how big the difference is between both datasets, so that even though we may
not be able to find proper references to validate both datasets, cross-validating them would also reveal
their reliability to some extent.

An inundation frequency map that records the number of times that a pixel was flagged as water
in the annually aggregated water map in the 28 years (1988–2015) was also derived from GSWD
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using GEE. It was then compared with the inundation frequency map derived from WOfS (Figure 4).
Figure 10 shows their difference in the four Ramsar sites. It is clear that both datasets are not exactly
the same, with differences existing in all the four sites. However, absolute differences of most pixels
are less than 6, suggesting that their differences are in a relatively small range. For the Narran Lake site
(Figure 10a), there are some areas that have differences bigger than 7, or even 13. This means that in
these areas, WOfS dataset identifies more surface water than GSWD does. Similar situations also exits
in the Currawinya Lakes (Figure 10d). Differences in Riverland (Figure 10b) and Kerang Wetlands
(Figure 10c) are mostly bigger than −6 and less than 6. Both overestimation and underestimation exit
for the WOfS dataset, comparing with the GSWD. It has also to be noted that although both datasets
were derived from Landsat imagery, their spatial references are different, which makes their spatial
resolutions slightly different. The WOfS has a spatial resolution of approximately 25 m, while the
GSWD has a spatial resolution of approximately 30 m. Their difference in spatial resolution would
inevitably cause some inconsistences between their inundation frequency maps. This could be one
important reason why there are so many differences existing in both frequency maps. Meanwhile, the
current comparison was based on annual aggregates. Both datasets could have had entirely different
individual surface water maps at any given time step, but these differences could have been masked
out entirely in the annual aggregation step. For example, Figure 11 shows a comparison of monthly
maximum water observation in WOfS and GWSD under both high flow and low flow scenarios. It
is observed that they match well at some sites (e.g., Currawinya Lakes) no matter the flow is high
or low. While at some other sites (e.g., Riverland), WOfS dataset tends to miss some tiny in-channel
water when the flow is at low level. In this study, since we were only using high flow peaks and their
corresponding water observation, this is thus unlikely to affect our modeling accuracy.
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5. Discussion

Like many large river basins, the MDB embraces a broad variety of small river systems with
unique climate and hydro-morphological characteristics, flow and flooding regimes as well as highly
variable levels of river regulation and water abstraction for irrigated agriculture and other uses [51].
This makes the modeling of their flood inundation much more difficult. The zone-gauge framework
proposed in MDB-FIM [37,38] and Huang et al. [39], and later adopted by Huang et al. [22] and
Heimhuber et al. [31,52], turns out to be an effective way to deal with this difficulty. It is also applicable
to other similar large river basins. However, it has to be noted that in the zone-gauge framework,
it is important to have a close correlation between inundation extent in each zone and river flow
observed at its corresponding gauge. To ensure this, zone delineation and gauge selection need to
be carried out very carefully. Even when the correlations are ensured, some other factors may still
introduce uncertainties to the proposed model. One is the time lag between gauge flow observation
and inundation observation at different areas in the zone. Inundation extent derived from a single
remote sensing image can only reflect an instantaneous inundation condition, which makes no single
inundation map can be concisely linked to the observed flow. But it is possible to model the time lag
based on the grid handling, as achieved by Heimhuber et al. [31]. Another source of uncertainties is the
flood frequency analysis on the time series flow data, which is a statistical modeling process that tries
to project future flooding regime from historical data. In this study, to deal with the time lag issue, we
used monthly maximum water map, which is derived from a composite of images, instead of a single
image, to serve the purpose of better matching with observed flow peak. In addition, the assumptions
of flood frequency analysis have been carefully validated, in order to prove that uncertainties from this
part are manageable.

Except for the modeling processes, the input data themselves also embrace uncertainties.
The observed flow data, for example, were normally considered as the most reliable in situ hydrological
observations. But there are many different sources of errors that would affect the accuracy of observed
flow [53]. For the inundation observation using remote sensing technology, uncertainties are also
inevitable. On the one hand, they come from remote sensing data themselves, on the other hand,
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they come from the interpretation methods. As was demonstrated in the last section, due to different
interpretation methods, WOfS and GSWD exhibit differences from place to place, although both were
derived from Landsat images.

Unlike the previous study [22] that used MODIS for inundation mapping, this study used a
Landsat-derived WOfS dataset, which provides longer time series and higher spatial resolution
inundation extents. On the one hand, higher spatial resolution ensures higher accuracy of inundation.
Validation results have confirmed the close relation between the inundation and flow. On the other
hand, longer time series guarantee more observed inundation samples available, which makes the
model more robust. In the meantime, it has also to be noted that the temporal resolution of Landsat
may be a limitation for the model. Due to Landsat’s 16-day revisit and cloud cover, peak flood extents
would probably often be missed. In this study, we used WOfS monthly maximum water observations
to be linked with flow peaks. They have even coarser temporal resolution, but through composition,
cloud coverage can be minimized and image quality is significantly improved. Therefore, using
monthly composited data is a compromise approach that sacrifices temporal resolution for high image
quality. Besides, considering the propagation process of flood inundation, it is legitimate to use a
monthly maximum composited water observation to be linked with the flow peak.

Traditional approach for simulating the extent of flooding is through hydrodynamic modeling.
Increases in computation power and data availability have led to major advances in continental and
even global scale flood modeling in recent years [13]. For example, Schumann et al. [54] applied a
hydrodynamic model to generate a 40-year floodplain inundation dynamics across Australia and
found good agreement with total inundated areas derived from a Landsat time series. Nevertheless,
parameterization of these models remains difficult [55] and accurate representation of complex river
and floodplain topographies and the corresponding storage effects is still limited by the quality
of suitable datasets such as digital elevation models (DEMs) with global coverage [56]. Moreover,
these large-scale hydrodynamic models are still limited for accurately quantifying the complex and
fine-scaled dynamics of periodically inundated and potentially shifting inundated areas across large
regulated river basins and over long periods of time [18]. Remote sensing technology provides an
effective way for quantifying and monitoring surface water dynamics over large areas and long
periods of time. With the development of big data and cloud computing technologies, more and more
high-quality, long time series, and high-resolution surface water observation datasets can be easily
generated. These datasets can be used as valuable input to the hydrodynamic models, or as important
reference to calibrate or validate the models [57]. This study proposed a simple but effective model
that integrates one of this kind of dataset with flood frequency analysis. It is anticipated that this kind
of remote sensing derived dataset could also be integrated with hydrodynamic models to achieve more
robust and more reliable flood inundation modeling results.

6. Conclusions

Time series flow observed at gauges provide rich information for studying flood return frequency,
but information of spatial extent of flooding is still lacking [58]. Satellite observation is an efficient
method for acquiring spatial inundation over large river basins. According to Huang et al. [59], there
are three advantages to integrate remotely sensed data with in situ gauge flow data. First, flow data can
help select appropriate remote sensing images for flood detection. Second, remote sensing helps flood
observation transfer from point-based to region-based. Last, flow data usually have long enough time
series for hydrological analysis, which endows remotely sensed inundation hydrological characteristics.

This study proposed a simple but efficient method that integrates time series flow data and a
global water observation product to model the flood inundation dynamics. Since a close relationship
between flow and inundation is required as the basis of the model, it is important that a large river basin
be divided into small hydrological zones first. This is why we adopted the zone-gauge framework for
modeling inundation in the MDB. Through validation analysis as described herein, it has been proven
that under this framework, the assumptions and basis of the model are tenable for most of MDB.
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However, it has to be noted that there are still some other uncertainties that may affect the modeling
results. For example, inundation variations caused by other drivers other than river dynamics, such
as precipitation, groundwater seepage, irrigation, as well as various land and water management
strategies, are usually not related to the gauge flow [8]. This would obviously affect the assumption
basis of the model.

This study used a Landsat-derived water observation product that has a much longer time series
than MODIS data, which obviously would benefit the proposed modeling method. However, the
coarse temporal resolution of Landsat would also probably missed rapid inundation, which affects
the modeling results. In the future, we are expecting some water observation data sources that have
both high spatial resolution and high temporal resolution. This may be acquired from very advanced
satellite missions (e.g., CubeSat), or generated through blending multiple data sources, such as MODIS,
Landsat, Sentinel-1/2, etc.

As demonstrated in the MDB case study, the proposed modeling method can be applied to any river
basin that has a long time series of observed flow data that can be linked to WOfS or any other remotely
sensed inundation extent, such as GSWD. The inundation frequency and inundation probability maps
show patterns of historic floodplain inundation and projects future possible inundation status. They
are useful for revealing water status, estimating water stress and pre-formulating water regime for
riverine ecosystems. This method is relatively easy to implement and would provide environmental
researchers and managers with important information to assist them for water resource management
and wetland ecosystem studies.
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