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Abstract: Today’s smartphones are equipped with embedded sensors, such as accelerometers
and gyroscopes, which have enabled a variety of measurements and recognition tasks. In this
paper, we jointly investigate two types of recognition problems in a joint manner, e.g., human
activity recognition and smartphone on-body position recognition, in order to enable more robust
context-aware applications. So far, these two problems have been studied separately without
considering the interactions between each other. In this study, by first applying a novel data
preprocessing technique, we propose a joint recognition framework based on the multi-task learning
strategy, which can reduce computational demand, better exploit complementary information
between the two recognition tasks, and lead to higher recognition performance. We also extend the
joint recognition framework so that additional information, such as user identification with biometric
motion analysis, can be offered. We evaluate our work systematically and comprehensively on two
datasets with real-world settings. Our joint recognition model achieves the promising performance
of 0.9174 in terms of F1-score for user identification on the benchmark RealWorld Human Activity
Recognition (HAR) dataset. On the other hand, in comparison with the conventional approach,
the proposed joint model is shown to be able to improve human activity recognition and position
recognition by 5.1% and 9.6% respectively.

Keywords: mobile sensing; human activity recognition; smartphone position detection; multi-task
learning; machine learning

1. Introduction

Today’s smartphones have become more powerful with the advancement of high-performance
computation hardware, lower-cost sensing technology, and intelligent operation systems. With
near-ubiquitous availability of smartphones equipped with various built-in sensors, smartphone
functions are not only limited to the original purposes, such as sound recording, display orientation
change, and screen back-light intensity control, but also able to provide an opportunity for the
development of innovative and smart sensing applications. These applications make a wide variety
of contextual information be extracted considering about the user, the device, and the environment.
In this paper, we present a framework that can recognize a user’s physical activity as well as the
smartphone position on the human body at the same time. It can be used as an enhanced and valuable
context-aware service for many applications requiring both human activity and smartphone position
information.
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User’s activity and smartphone’s position are two types of contextual information that has
inspired a variety of applications. Providing users’ physical activity information for the context-aware
application is a classical problem known as Human Activity Recognition (HAR). Commonly, human
activities that can be recognized include walking, jogging, sitting down, ascending the stairs, and so
on. The HAR has enabled many applications such as health monitoring, child and elderly care, and
fitness tracking in which user activities are key knowledge. On the other hand, the way a smartphone
is carried by a user is another type of contextual information from which many applications can
benefit. Typically, a smartphone can be held in hand(s), placed in the pants/jacket pocket, or stored
inside a backpack. The difference in smartphone position could affect the way users interact with
the smartphone. For example, a user may prefer headphone controls than screen touches when the
smartphone is placed inside the pants pocket or backpack; the sound volume of the smartphone should
be raised up automatically when a smartphone is placed inside a backpack. Moreover, these two types
of contextual information are closely related to each other. It has been shown that the smartphone’s
position can have a heavy influence on HAR because the same activity measured by a smartphone at
different body positions could exhibit distinct physical characteristics [1].

In previous studies, these two contexts were widely discussed in an independent manner, so
that the relationship between them has not been fully explored. Some related works studied position
recognition methods while the smartphone users are walking [2–4], but without discussing other
periodic human activities. The position-ware HAR model is designed to leverage smartphone on-body
position information as prior knowledge to improve HAR [1,5–7].

We aim to investigate multiple contexts in a joint manner, which can be considered to be
an extension of classical HAR research. The purpose is to recognize the user’s activity and the
smartphone’s position simultaneously and accurately from human movements. Such enhanced
context-aware service may contribute to different aspects of sensing applications. Especially in mobile
positioning applications, human activity and smartphone position are used as crucial contextual
information to trigger different location estimation algorithms [8,9].

We propose a joint recognition framework to explore complementary information among multiple
contexts. Intuitively, human activity and position recognition are two closely related tasks. Motivated
by this observation, we argue that joint learning of them may leverage useful information and produce
an improvement on recognition rates. For this purpose, the Multi-Task Learning (MTL) strategy is
an appropriate technique that has the potential to exploit the commonalities and differences across
multiple tasks [10,11]. In this study, the designed joint recognition model integrates the MTL strategy
with neural network architecture. In contrast to previous works, our approach uses only one global
model which outputs results of multiple tasks, which reduces computational demand and has the
potential to improve performance. Meanwhile, we propose a data preprocessing approach to deal with
the problem caused by smartphone orientation variation. It is a coordinate transformation technique
that converts acceleration data measured from the device coordinate system to the earth coordinate
system. With the comprehensive experiments, we show the robustness of the proposed framework in
solving the joint recognition problem.

The main contributions of this paper are as follows:

• We proposed a joint recognition model to mine multiple contextual information from motion
sensor signals of a smartphone. The feasibility and advantage of the proposed approach are
demonstrated by its promising results achieved on an existing real-world datasets [6]. More
than that, we extended the joint recognition model to an additional task, namely identifying
smartphone users with biometric motion analysis [12,13].

• We developed a data preprocessing approach to deal with the problem caused by smartphone
orientation variation. To evaluate this method, we collect a dataset that marks the sensor data
with orientation labels in addition to human activity and smartphone position.

• To the best of our knowledge, this is the first study that systematically shows the feasibility and
performance of mining multiple physical contextual information. We applied our framework
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on three machine learning models that have shown promising results in classical HAR tasks,
including simple Multilayer Perceptron (MLP) with the statistical feature, and Convolutional
Neural Network (CNN) and Long Short-Term Memory (LSTM) with powerful and automatic
data representation ability.

The contents of this article are organized as follows. In Section 2, we first review the previous
works about position-aware models, deep learning models and multi-task learning models used in
HAR. Section 3 gives a detailed description of our framework, including a proposed preprocessing
technique targeting the problem of smartphone orientation variation and neural network architecture
for mining multiple information jointly. Section 4 systematically examines two components in our
framework by using a series of experiments. Some further discussion is given in Section 5. At last, we
highlight our conclusions and future works in Section 6.

2. Related Work

In this section, the related works in smartphone-based HAR will be presented, including
position-aware HAR, smartphone on-body position recognition, and deep learning and Multi-Task
Learning for HAR.

2.1. Position Recognition and Position-Aware Human Activity Recognition

As the off-the-shelf sensors are embedded in the smartphone, recognizing human activity and
smartphone position have been widely investigated separately in previous studies. In general, their
efforts are categorized as two branches: one is the smartphone on-body position recognition; the other
is position-aware HAR.

The smartphone on-body position recognition has been previously studied to improve
context-aware applications [2–4]. For instance, Alanezi [2] proposed a service for smartphone position
recognition that can improve performance of fall detection application. However, these studies only
explored the smartphone position detection while the users are walking [3,4], without discussing other
periodic human activities.

The position-aware HAR uses the smartphone on-body position information as the prior
knowledge to improve HAR. Generally speaking, there are two main approaches: (a) two-stage
classification, and (b) one-stage classification approach.

The two-stage classification method detects the smartphone positions at first; next, human
activities can be recognized by a set of position specified activity classifiers or one generalized
activity classifier. The position specified activity classifiers refer to training a classifier for each
position, and selecting the activity classifier according to the obtained position information in the first
stage [1,5,6]. By contrast, one generalized activity classifier for final HAR takes the features produced
by an adjustment technique as input [7]. The adjustment technique narrows the feature difference
among smartphone positions. As a result, one generalized classifier can be used to identify the same
activity on different smartphone positions.

Even though the two-stage classification approach is feasible in position-aware HAR, such a
cascaded model involves multiple models to maintain high performance. Obviously, it requires high
computation latency and energy consumption in mobile computing.

In contrast, the one-stage approach is a more efficient position-aware HAR model that recognizes
the human activities and smartphone positions in one step with one generalized classifier. Its
classification targets are a set of multiple subclasses of predefined activities and positions, where each
subclass is defined as a tuple (activity, position). For example, the walking activity with the phone
in the trouser pocket or in a backpack is classified separately. Since that, the one-stage classification
approach is also suitable for our purpose. However, there are still some limitations in the previous
works. Lu et al. [14] proposed a split-and-merge technique to improve HAR. In the split process,
the one-stage classification results were used as intermediates and not shown in detail; and only the
HAR results were presented in the merge process. Antos et al. [15] achieved 87.1% accuracy in split
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process without considering the negative effect on smartphone orientation variation. Besides that, it
is worth mentioning that this split-and-merge technique becomes naive when the number of target
human activities and smartphone positions increases dramatically.

Unlike the previous related works, we aim to investigate a feasible approach that is robust to our
joint recognition problem as well as reduces computational demand. We argue that the relationship
between HAR and smartphone position recognition has not been fully explored, assuming that these
are two closely related tasks. Furthermore, leveraging their relevant information may provide extra
robustness to the joint recognition model.

2.2. Deep Learning for Human Activity Recognition

Deep learning is within the scope of machine learning and normally employs deep models to
learn data representation automatically from raw input [16]. One appealing feature of deep learning is
high representational capability without relying on a mass of expert knowledge. Due to its powerful
function, it can relieve the efforts on designing feature that are usually limited by human domain
knowledge [17,18]. Recent years have witnessed the achievement of deep learning in many fields,
e.g., computer vision, speech recognition, and natural language processing.

Previous studies have explored lots of existing deep models in the domain of HAR. The main
efforts were concentrated on the supervised learning scheme. One of the commonly used deep
models is Deep Neural Network (DNN). Some studies [19,20] only employed DNN as a classifier,
which takes a hand-engineered feature of the sensor data as input. Hammerla et al. [21] used a
5-hidden-layer DNN to improve recognition rates by performing automatic representation learning
and classification. Another powerful and popular architecture is Convolutional Neural Network
(CNN). In practice, it not only is it skilled in analyzing image data, but it can also capture the local
dependency and scale invariance of sensor data. The main research interests of applying CNN include
input adaptation (e.g., data-driven [22,23] and model-driven approach [24,25]), task-specified pooling
method and weight-sharing [26]. In addition, the Recurrent Neural Network (RNN) is a classical
architecture for modeling sequential data by using the temporal correlations between neurons [27]. The
mainline of RNN-based models deals with resource-constrained environments while still achieving
good performance [26]. On the other hand, some studies focused on learning data representation by
using unsupervised deep models, such as Autoencoder [28,29] and Restricted Boltzmann machine [30].
In this study, we only target the aforementioned supervised learning models.

2.3. Multi-Task Learning in Human Activity Recognition

Multi-Task Learning (MTL) is a learning paradigm in machine learning and its purpose is to take
advantage of useful information contributed by multiple related tasks to improve the generalization
performance of all the tasks [11]. MTL has shown significant advantage to single-task learning
because of its ability to facilitate knowledge sharing between tasks [31], e.g., bioinformatics and health
informatics [32,33], web applications [34,35] and remote sensing [36–38].

Even though MTL has been used successfully in many applications, there are limited works that
focus on MTL-based HAR. Sun et al. [39,40] proposed a personalized HAR method by applying MTL.
In their models, each task corresponds to a specific person. Peng et al. [41] developed a model to
recognize complex human activity based on MTL, which leverages the classical HAR as a related task
to complex HAR. By using the representation learned from classical HAR as a low-level shared feature,
state-of-the-art results of complex HAR are achieved. Our work is inspired by the above studies, which
allows us to explore the useful information in HAR and position recognition.

3. Methods

Our joint recognition task is defined as a supervised learning task following classical HAR
research. A workflow is shown in Figure 1. Similar to previous research, the motion sensor signals of
the smartphone are collected in the beginning. In our case, the used sensors include the accelerometer
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and rotation vector sensor that are both easy to obtain in modern smartphones. The acceleration
data returned by accelerometer has shown effectiveness in describing body motions in previous HAR
research [42]. The rotation vector sensor describes the orientation of the device in the form of a vector
that can be used to help the coordinate transformation of acceleration data, which we will address
later in this section. After that, each input data instance is a segmentation of continuous sensor signals
within a given window size. In this study, we are particularly interested in two components which can
have a significant influence on the recognition rate. One of the core components in our framework
is a data preprocessing method which aims to remove the negative effect of smartphone orientation
variation on recognition. It is a coordinate transformation technique and output acceleration data
under the earth coordinate system that is independent of smartphone orientations. Following that,
we design a joint recognition model that is qualified for output results of multiple tasks and has the
potential to improve recognition performance on each task.

Figure 1. A framework of joint human activity and smartphone position recognition.

3.1. Task Definition

Our model is a typical MTL paradigm for multi-channel time series recognition. In our case, each
input data instance, sampled from motion sensors signals within a fixed size window, is assigned
with class labels of multiple tasks. Given M tasks {Tm}M

m=1 that are assumed to be related, we aim to
leverage the knowledge contained in all or some related tasks to improve the learning of a model for
Tm by using MTL strategy.

Each data sample of our joint recognition task is given by (X, y1, . . . , ym, . . . , yM). The input
instance X ∈ Rd×l is multi-channel time series, where l is sampling window size and d is the
channel number of time series. ym ∈ Rcm

is a label in the form of one hot vector with class
number cm of m-th task. X = (S, Q) is composed of two types of sensor signals, where S and Q
are collected from accelerometer and rotation vector sensor respectively. Specifically, at time-step t,
the accelerometer expresses acceleration force of a device for three axes by a vector st = [s(x)

t , s(y)t , s(z)t ]>;
the ration vector sensor describes the orientation of device by as a quaternion vector, e.g., qt =

[cos(θ/2), v(x)sin(θ/2), v(y)sin(θ/2), v(z)sin(θ/2)]> , in which the device has rotated through an angle
θ around an axis (x, y, or z), the v(x), v(y), and v(z) represent unit rotation of three axes.

A data preprocessing method that is a coordinate transformation function fc(·), will be applied
on input instance X before learning how to recognize jointly. This function transforms the acceleration
sensor signals S from smartphone standard built-in coordinate system to earth coordinate system by
using rotation vector sensor signals Q, which is defined as E = fc(X = (S, R)). In the downstream
recognition model, the transformed results E will be seen as input data instance.

In the stage of recognition, the purpose is to learn one global model to output classification results
of multiple tasks simultaneously. For each task Tm, the goal is to learn a mapping function f m : E→ ym

that is able to estimate a conditional probability distribution P(ŷm| fc(X)) based on the training set and
predict class labels of test instances by ȳm = arg maxŷm P(ŷm| fc(X)). The joint learning of multiple
tasks follows the general definition of MTL, where the total loss of multiple tasks is optimized together.

3.2. Coordinate Transformation

For a recognition model, the basic assumption for the data instances are Independent and
Identically Distributed (i.i.d.) so that samples in training and test sets can be selected randomly
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and uniformly. Supposing the smartphones are always placed in fixed orientations, the original
acceleration data measured along with a built-in standard 3-axis coordinate (in Figure 2a) of the
smartphone are satisfied with that assumption. As a result, using original acceleration data as input, it
is easy to obtain a relatively reliable recognition model. Meanwhile, since the acceleration pattern for a
specific movement is consistent, a clear physical interpretation can be found for movements and used
for recognition. For example, when a user holds a smartphone in portrait orientation, a clear physical
interpretation can be made to the measurement on these three axes. For example, jumping or taking
an elevator can be measured on the y-axis; horizontal movement such as skating or riding a bus can be
measured on the x or z-axis. Stepping or running could be measured in all three axes in which one or
two would be dominant and have a significantly larger value.

(a) (b)

Figure 2. Two coordinate systems defined in Android smartphones: (a) Built-in standard 3-axis
coordinate system: x axis is horizontal and pointing to the right of device; y axis is vertical and pointing
to the up of device; z axis is vertical to x and y and pointing out of screen; (b) Earth coordinate system:
x axis is tangential to the ground at the device’s current location and points approximately East; y is
tangential to the ground at the device’s current location and points toward the geomagnetic North
Pole; and z points toward the sky and is perpendicular to the ground plane.

However, in practice, users may freely place smartphones on different orientations, which has a
negative effect on recognition. With the smartphone orientation variation, the original acceleration
values on three dimensions will also change, so that the acceleration data of the same movement
presents different patterns, as shown in Figure 3a–d. in other words, the data of the same movement
is actually sampled from different coordinate spaces and belongs to different data distributions.
Therefore, using original data from undefined orientations as input in the testing stage is equivalent to
recognizing data instances Out-of-Distribution, which will dramatically degrade the performance. The
intuitive interpretation is that the physical interpretation developed above for original acceleration
data will be untenable.

To build a recognition model robust to smartphone orientation variation, the key idea is to
transform all training and testing instances to the same data distribution. The intuitive approach is
to find an appropriate coordinate system in which a physical interpretation can always be relied on.
One solution is to track the users’ motion in a global reference frame, which aims to transform the
original acceleration data into a fixed earth coordinate system [43] (as shown in Figure 2b). After
transformation, the measurement of acceleration relies on earth coordinate axes and belongs to a unified
data distribution, which is independent of smartphone orientation. In our study, all acceleration data
will be transformed into earth coordinates before recognition.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. While a user is walking with a smartphone placed in the pocket, the acceleration data
of 4 orientations are shown. The (a–d) are visualizations of original acceleration data measured in
the built-in standard 3-axis coordinate system. With the same movement, the data from different
orientations perform differently. In the (e–h), the transformed original acceleration data under the
earth coordinate system shows the consistent pattern.
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The coordinate transformation technique applied in this study is a quaternion-based method.
It is commonly used in a location estimation system for transforming acceleration measurement
and calculating device position under the world coordinate system. Compared with the
Euler angle-based approach that may face the problem of gimbal lock and has been used
by Ustev et al. [43], the quaternion base method is more effective and convenient. The
simple form of quaternion vector collected from rotation vector senor is expressed as: qt =

[cos(θ/2), v(x)sin(θ/2), v(y)sin(θ/2), v(z)sin(θ/2)]> = [a, b, c, d]>. The key to transformation is the
transformation matrix that can be calculated by description of Diebel et al. [44] :

Rt =

1− 2c2 − 2d2 2bc− 2ad 2bd + 2ac
2bc + 2ad 1− 2b2 − 2d2 2cd− 2ab
2bd− 2ac 2cd + 2ab 1− 2b2 − 2c2

 (1)

Continually transforming original acceleration data to earth coordinate system is given by:

et = Rtst (2)

where et is the output in earth coordinate system, and st is the original acceleration data measured in
the device coordinate system.

3.3. Multi-Task Learning for Joint Recognition

MTL leverages useful information among tasks by jointly optimizing their training objectives.
Each training objective represents a hypothesis made from a task and delivers a training signal to
guide the update of model parameters. From the perspective of machine learning, MTL can be viewed
as a form of inductive transfer. Inductive transfer improves a model by introducing an inductive bias,
which leads to a model tending to prefer the hypothesis of a specific task. In MTL, the inductive biases
will be provided by all the tasks, making the model prefer hypotheses that can explain all tasks [10].

MTL explores the commonalities and differences among tasks, where two types of data
representations are maintained in the model. A shared representation denotes the commonalities
among tasks, which is interpreted as the learned common knowledge. It will improve the
generalization ability of the model and reduce the risk of overfitting on specific task [10]. In contrast,
task-specific representations reveal differences discovered among tasks. As a result, MTL has the
potential to improve performance while effectively limiting the number of employed parameters in
the model.

To perform MTL, we make use of a hard parameter sharing method to learn shared and
task-specific data representation. The architecture of our joint recognition model is illustrated in
Figure 4, including shared and task-specific layers.

On the input side of the model, a backbone network is composed of several shared hidden layers
parametrized by θ. The backbone network follows supervised information propagated from all tasks
to learn its parameters, in order to generate a shared representation vector v ∈ Rds

. In this study, we
will investigate several fashioned neural network architectures for representation learning as backbone
networks, and the detailed structure will be introduced in Section 3.4.
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Figure 4. Hard parameter sharing for Multi-Task Learning integrated in neural networks.

After that, in the head network, each task is assigned with a branch of task-specific layers. For
the m-th task, its task-specific layers, parameterized by θm, include some hidden layers for producing
task-specific representation vector and an output layer for final prediction. The joint recognition
model outputs all predictions simultaneously, which means there is no prioritization between tasks in
our study. Specifically, in each hidden layer, a fully connected layer followed by a Rectified Linear
Unit (ReLU) function is used to transform v. With few layers, a task-specific feature vm ∈ Rdm

will
be produced, where the dimension is uniformly set as dm = 100. In the final output layer, a fully
connected layer first generates an unnormalized probability vector am, and then a so f tmax function
outputs the predicted probability distribution. The probability for each class is given by:

P(ŷm
(u)|E) =

eam
(u)

∑cm
u=1 eam

(u)
, (3)

where the am
(u) and ŷm

(u) is the u-th element among cm. The predicted class label is assigned to the one
with the highest probability, i.e., arg maxŷm P(ŷm|E)).

In the training stage, the recognition model is trained by minimizing the discrepancy between
predictions and labels. The cross-entropy cost function is used as the training objective to reflect the
discrepancy between the prediction and ground truth:

Lm =
N

∑
n=1

H(ym
n , f m(En; θ, θm)) (4)

where H(·, ·) is the cross-entropy for two distributions, and f m(·) parameterized by θ and θm is a
task-specific mapping function representing the predicted conditional probability distribution P(ŷm|E),
and subscript n denotes the n-th training sample among N. The optimal parameter θ∗ can be obtained
by jointly minimizing loss functions of all tasks on the training dataset:

θ∗ = arg min
(θ,θ1,...,θM)

(
M

∑
m=1

ηmLm) (5)

ηm =
cm

∑m=1 cm , ∀m ∈ 1, . . . , M (6)

where ηm is the weight of m-th task.

3.4. Backbone Networks

We plan to exploit three kinds of neural network architectures as backbone networks separately.
The designed architectures have different representational abilities to sequential data, including the
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Multilayer Perceptron (MLP) from classical models, and Convolutional Neural Network (CNN) and
Long Short-Term Memory (LSTM) from deep learning models. The input data instance, acceleration
data under earth coordinate system, is considered to be sequential data E = [e1, . . . , et, . . . , eT ] with a
length T, whose each time-step contains three axes’ values et = [e(x)

t , e(y)t , e(z)t ]>.

3.4.1. Multilayer Perceptron (MLP)

MLP is a type of simple artificial neural network consisting of only feed-forward neurons. It can
take input from the previous layer and execute the non-linear transformation with hidden layers.

A 3-layer MLP takes a hand-crafted statistical feature vector as input, as shown in Figure 5.
To capture the statistical information of sequential data, 13 kinds of feature values are calculated
on each axis: mean, variance, standard deviation, minimum value, max value, skewness, kurtosis,
jitter, mean value crossing rate, mean of autocorrelation, standard deviation of autocorrelation, mean
of autocovariance, and standard deviation of autocovariance. All feature values of three axes are
concatenated to form the input feature vector with the dimension d = (3× 13). The hidden layers are
fully connected layers followed by ReLU activation functions, and the number of neurons in each layer
is empirically stetted as 512.

Figure 5. Architecture of simple Multilayer Perceptron with hand-crafted statistical feature as input.

3.4.2. Convolutional Neural Network (CNN)

The Convolutional Neural Network (CNN) is a popular deep feed-forward neural network that is
inspired by the natural visual perception mechanism of the living creatures. The main components of
CNN are designed to take advantage of the 2D structure of an input image, including convolution
operations for feature extraction and pooling operations for down-sampling. The convolutional layers
exploit spatially local correlation by enforcing a local connectivity pattern between neurons of adjacent
layers. Combined with pooling layers, CNN can learn discriminative data representations, which
leads to extremely effective analysis systems.

CNN has great potential to identify salient patterns from sequential data. For this purpose,
a CNN architecture, stacking multiple one-dimensional convolutional layers and pooling layers, can be
adapted to sequential data. Each one-dimensional convolutional layer contains several convolutional
filters that have two valuable characteristics. One is local connectivity pattern. A filter can capture
local temporal dependency of sub-sequence for feature extraction. After a filter sliding across the
entire sequence, a feature map for the whole sequence will be derived based on a set of subsequences.
Another one is the shared parameters mechanism. It makes a filter learn a specific response field for
inputs, in order to give the strongest response to inputs with the salient pattern. Moreover, combined
with the pooling layer, only the discriminative feature produced from a salient pattern will be delivered
to subsequent layers. As a result, the convolution operation allows CNN to identify the local salience of
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the inputs regardless of their positions in the sequence. This mechanism endows the obtained feature
with translation invariance. Meanwhile, with several convolutional filters (specified by different
parameters), multiple salient patterns learned from different aspects are jointly considered in the CNN.

As shown in Figure 6a, the one-dimensional convolution in layer-1 operates on sliding windows
of elements (width k). The convolutions in deeper layers are defined in a similar way. The
hyper-parameter of designed CNN architecture is shown in Figure 6b, which is an example of
employing sensor signals within window size 50 as input. In general, CNN processes the input
sequential data layer by layer, where each layer uses the output feature maps of the previous layer
as input. In layer-(l), the feature maps produced by F(l) one-dimensional convolutional filters are
considered to be a sequence, e.g., Z(l) = [z(l)1 , . . . z(l)t , . . . z(l)

T(l) ] with a length T(l), where the z(l)t ∈ RF(l)

represents the feature vector at time-step t. Formally, in layer-(l + 1), each feature element in z(l+1)
t

produced by a one-dimensional convolution filter is defined as:

z(l+1)
t = σ(

F(l)

∑
f=1

ẑ(l, f )
t w(l+1, f ) + b(l+1, f )), (7)

where

• Fl is the number of feature maps in layer-(l);

• w(l+1, f ) ∈ Rk is a weight vector in filter that covers the f -th feature map in layer-(l), and k is filter
size;

• b(l+1, f ) is a bias value for the f -th feature map;

• ẑ(l, f )
t ∈ R1×k denotes the f -th feature map in a subsequence in layer-(l); corresponds to the entire

subsequence including all feature maps is defined as Ẑ(l)
t = z(l)t:t+k−1 = [z(l)t , . . . , z(l)t+k−1].

Additionally, the feature maps in the previous layer are pooled over the local temporal
neighborhood by the max pooling operation, which progressively reduces the spatial size
of representations.

(a)
(b)

Figure 6. Architecture of designed Convolutional Neural Network: (a) One-dimensional convolution
and max pooling; (b) Hyper-parameter of designed architecture that is an example employing sensor
signals within window size 50 as input. The “Conv, 3× 1, s1, 18/ReLU” denotes a 1D convolutional
layer with filter size 3, stride 1, filter number 18, ReLU activation function. The “Max Pooling, 2× 1, s2”
represents a 1D max pooling layer with size 2, stride 2.
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3.4.3. Long Short-Term Memory (LSTM)

The Long Short-Term Memory network is extended from the Recurrent Neural Network (RNN).
RNN is an artificial network where connections between computation units form a directed cycle,
which allows information to flow forward along the sequence. The RNN can use its computation
units to achieve dynamic temporal memory and learn the temporal context of input data within the
sequence. In addition, LSTM improves the computation unit of RNN, which selectively memorizes the
temporal information by introducing the gate mechanism.

The LSTM has an inherent advantage in capturing temporal order information of sequence. This
is achieved by the recurrent connection between LSTM units that captures the long-term temporal
dependency of sequence. The LSTM unit maintains a hidden state ht for every element of a sequence
to selectively store/access the sequential information changing over time. Meanwhile, it recurrently
performs the same transition function on each hidden state, which relies on the recorded information
of previous elements. At time-step t, a simple form of transition function is denoted as:

ht = LSTM(et, ht−1), (8)

based on the new input et, and ht−1 from the previous LSTM unit. As a result, the recurrent connection
grantees that the LSTM learns the temporal relationships of sequence. In addition, to manipulate the
temporal relationship on a long scale, a gate mechanism is introduced in the LSTM unit.

In detail, an LSTM unit includes four components: a memory state ct that can be updated, erased,
and read out, three kinds of gates that control the information flow, e.g., the input gate it, output gate
ot, and forget gate ft are used to control the reading, writing, and memory updating respectively. For
a one-layer LSTM, at time-step t, except for et and ht−1, the memory state ct−1 from the previous
LSTM unit also participates into current update. The updating mechanism of an LSTM unit is shown
as below:

it = sigmod(Wiet + Uiht−1 + bi) (9)

ft = sigmod(W f et + U f ht−1 + bi) (10)

ot = sigmod(Woet + Uoht−1 + bi) (11)

c̃t = tanh(Wcet + Ucht−1 + bc) (12)

ct = ft ◦ ct−1 + it ◦ c̃t (13)

ht = ot ◦ tanh(ct) (14)

where Wi, W f , Wc, Wo, Ui, U f , Uc, Uo are weights matrix, bi, b f , bc, bo are bias-vectors. The operator ◦
stands for element-wise multiplication.

A standard practice for modeling sequence using LSTM is shown in Figure 7. The sensor signals
are processed by a 2-layer LSTM in a sequential way from the beginning to the end. At each time-step,
the LSTM unit takes the triaxial sensor values as input; and the hidden unit of the LSTM unit is set as
100. The last hidden state that models the dependency relationship of all previous data in layer-2 is
considered to be the learned representation of the whole sequence.
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Figure 7. Brief illustration of designed Long Short-Term Memory network.

4. Results and Analysis

In this section, we evaluate our framework for joint activity and the position recognition task.
The detailed information of experimental datasets is introduced first. The experimental settings are
given, including basic evaluation rules and optimization hyper-parameters. Following that, the benefits
of two main components in our framework, coordinate transformation and joint recognition with MTL
strategy will be reported separately.

4.1. Dataset

The two components of our framework will be evaluated on two datasets individually. The widely
investigated human activities and smartphone positions in various kinds of literature are investigated
in these datasets.

To verify our solution to the smartphone orientation variation problem, we collected a dataset
labeling the sensor data with smartphone orientations, positions, and human activities. We collected a
dataset with motion sensor data of 4 activities from 2 subjects. The human activities include walking,
ascending stairs, descending stairs, and running. For each activity, there were 3 different Android
devices placed at different body positions: a Huawei Nova 2s placed in a pants pocket, a Samsung A9
Star held in hand, a XiaoMi RedMi 4X inside backpack pocket. The smartphones in pants pockets and
hand are placed on 4 orientations; and 8 orientations are labeled when a smartphone was stored in
a backpack. In total, each activity was measured for around 80 min with a frequency of 50 Hz. The
sensor type includes acceleration, gyroscope, magnetic, gravity, linear acceleration and rotation vector.
Although this dataset covers a relatively small number of activities, on-body positions, and users, it
is still fair enough for testing algorithm considering the smartphone orientation in the recognition
task. This is because investigating the problem of smartphone orientation variation is not affected by
other factors.

To evaluate our joint recognition strategy, we exploited the RealWorld HAR [6] dataset which
collected the sensor data of 8 activities in 7 on-body positions from 15 volunteers. To the best of our
knowledge, this dataset includes the most smartphone positions so far. The experimental data was
gained from different physical characteristics of eight males and seven females (age 31.9± 12.4, height
173.1± 6.9, and weight 74.1± 13.8). The activities performed by each one includes climbing downstairs
(A1), climbing upstairs (A2), jumping (A3), lying (A4), standing (A5), sitting (A6), running/jogging
(A7), and walking (A8). Every user was equipped with a set of smartphones (Samsung Galaxy S4) and
a smart-watch (LG G Watch R). These devices were located on seven different on-body positions (chest
(P1), forearm (P2), head (P3), shin (P4), thigh (P5), upper arm (P6), and waist (P7)). For each activity,
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the sensor data on different on-body positions were collected concurrently at a sampling rate of 50
Hz. The more important, the recorded videos show that the data was collected in a real-world setting.
For instance, users could stroll in the city or jog in the forest; the users’ movements were performed in
their preferred ways, such as walking at different speeds, sitting/standing while eating, or holding the
phone. However, in this dataset, the subjects commonly place the smart devices in fixed orientations
and the rotation vector sensor is unavailable. Therefore, it cannot be used for verifying our assumption
about coordinate transformation.

4.2. Experimental Setting

We defined an experimental setting following several rules. First, F1-score was seen as the
evaluation metric to report the performance of recognition models. Second, without special instructions,
the default evaluation mode was 10-fold cross validation with stratified sampling to guarantee that all
folds own the same ratio of target classes. Apart from that, we respectively reported the performances
of three types of neural network architectures that have different representational abilities. It is worth
mentioning that recognition models are all subject-dependent models, where the training and test
data are attached to the same subjects. Considering this, the results given in the next sections were
calculated by the aggregating results of all subjects.

4.3. Optimization Hyper-Parameters

The machine learning model requires several hyper-parameters in the optimization procedure.
Normally, an optimal approach for setting the hyper-parameters is to select them from a set of
hyper-parameter candidates by prior experiences, such as grid search. However, due to large
computational demands for deep learning architecture, the aforementioned hyper-parameter search
method is infeasible.

In this study, we set manually the same hyper-parameters given to all the recognition models.
The maximum training epoch was set to 1000. In each epoch, the recognition model was trained
with several iterations, where each iteration contains a batch of training data with batch size 64. To
minimize the joint cost function, we applied a stochastic gradient descent algorithm by using Adam
optimizer [45] with a fixed learning rate of 10−4. The gradient was clipped by setting the global norm
value [46] as 5. Meanwhile, there was a 20% dropout [47] on learned representation before inputting
the output layer. We used early termination to select the best model. When facing the divergence,
i.e., the loss of model on testing dataset no longer decreases more than 50 epochs, we selected the
model with the minimum loss on the testing dataset.

4.4. Coordinate Transformation

In this section, the coordinate transformation as a preprocessing approach will be evaluated by
using the collected dataset. To this end, the acceleration data before and after coordinate transformation
will be employed as an input of the model separately. The baseline performance was built by using a
10-fold cross validation where the training and test data are Independent and Identically Distributed
(i.i.d.). Moreover, a Leave-one-orientation-out cross validation was taken as main evaluation mode
that samples the training and test data from exclusive orientations. Additionally, the coordinate
transformation method was quantitatively evaluated by changing the different window sizes of
acceleration data.

The benefit of coordinate transformation can be observed from Figure 8 that shows F1-scores
of single-task models for activity and position recognition. The input data instances of these models
are original or transformed acceleration data within 10 seconds. Using original acceleration data
without the coordinate transformation, recognition models in 10-fold cross validation produce a strong
baseline. However, the performance in Leave-one-orientation-out cross validation decreases dramatically.
As discussed in Section 3.2, such phenomenon is caused by smartphone orientation variation problem
which produces test data samples Out-of-Distribution. After a coordinate transformation, there is no
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longer any apparent gap between two evaluation modes. It is obvious that coordinate transformation
improves the generalization ability of models on test dataset collected from unseen smartphone
orientations. This is mainly achieved by transforming all acceleration data to a unified earth coordinate
system so that the data of all orientations are expressed with identical data distribution. Although our
dataset contains a relatively small number of activities and positions, these results still are persuasive
because the coordinate transformation technique is independent of activities, positions or subjects.

Figure 8. Performance of recognition models using original or transformed acceleration data in two
different evaluation modes.

The results in Figure 9 are presented for evaluating the impact of window size with respect
to coordinate transformation. All results were produced under the Leave-one-orientation-out cross
validation in which the acceleration data under the earth coordinate system are taken as input. Given
the acceleration data with different window sizes {10.0s; 7.5s; 5.0s; 2.5s}, the corresponding total
numbers of data instances are {8005; 10, 766; 16, 265; 32, 840} respectively. In general, the longer the
window size, the higher the recognition performance will be derived. Interestingly, the results of
models present different changing tendencies along with progressively shrinking window sizes. The
performance of CNN and MLP tend to descend when smaller window sizes were employed. In
contrast, the performances of LSTM were improved with shortening the sequence length and reached
the highest score at the 2.5s.

Figure 9. A quantitative analysis for coordinate transformation by using acceleration data within
different window sizes.

4.5. Multi-task Learning for Joint Recognition

We evaluated our joint recognition approach with the RealWorld HAR dataset [6] which contains
more human activities, smartphone positions, and subjects. To make a fair comparison, we adopted
the same setting in the original research [6]. When the window size is one-second-long and overlaps in
half, the number of data instances is 892, 808.

The performances of our solution were evaluated by three types of experiments. First, we
contrasted our results with the original results, the state-of-the-art solutions [6] which aim to recognize
dynamic and stationary activities by employing smartphone positions as prior knowledge. Second,
to show the advantage of our method, we added an extra related task to identify smartphone users
from human movement. Finally, considering that jointly recognizing smartphone positions and users
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from human movement is more reasonable, we applied our solution only on dynamic activities for
evaluation of actual use.

To further examine how MTL leverages useful information from related tasks, the experiments
were conducted on two types of learning strategies. Taking results in Table 1 as an example, in each type
of model, the ST and MT respectively denote the single-task model and joint recognition model-based
MTL strategy, and the number of task-specific layers (hidden layers of classifiers) is marked at the
end of learning types. For instance, the ST-3L represents a single-task model using a backbone
network for feature extraction and 3-layer-classifier for prediction; the MT-0L and MT-3L denote the
multi-task models using 0 and 3 task-specific layers receptively. However, the MT-0L means using
shared representation directly as input for multi-task recognition. Correspondingly, the model of
MT-3L further transforms a shared feature vector to multiple task-specific features, where each task
has 3 simple non-linear hidden layers. Additionally, the S-A/P refers to results of subject-specific and
activity/position-specific model used by Sztyler et al. [6].

Table 1 presents F1-scores of models when the sensor data are collected from stationary and
dynamic activities. The performance of our models all surpass the original results significantly. Our
best F1-scores of activity and position recognition are around 0.89 and 0.98, which much higher than
0.84 and 0.89 of S-A/P, even with a simple MLP model that was also used by Sztyler et al. [6]. Moreover,
based on the MTL strategy, using one global model for joint recognition is conducive to reducing the
number of models than S-A/P. The S-A/P is a position-aware HAR solution whose best performances
were produced by stacking three levels of Random Forest classifiers: in the beginning, dynamic and
static activities were distinguished using first-level classifiers; next, the second-level classifier was
used to identify where the smartphone is placed on the human body; the third-level included a set of
activity recognition classifiers each belonging to a specific position. Meanwhile, all their results were
reported under the subject-specific models, where a position-aware model was trained for each subject
on the data of all activities and positions.

Table 1. Recognition rates (F1-score) of human activity, smartphone position and smartphone user
when using sensor data of all activities.

Model Type Learning Type Activity Position User Average

MLP ST-3L 0.8837 0.9852 0.8364 0.9018
MT-3L 0.8910 0.9866 0.8484 0.9087

CNN ST-3L 0.8714 0.9862 0.8181 0.8919
MT-3L 0.8855 0.9848 0.8300 0.9001

LSTM ST-3L 0.8932 0.9810 0.8511 0.9084
MT-3L 0.8919 0.9802 0.8515 0.9079

Random Forest S-A/P 0.84 0.89 – 0.865

Although the models can maintain a certain degree of accuracy, their performances still can be
further corrected because of the existing sensor data of stationary activities (e.g., lying (A4), standing
(A5) and sitting (A6)) seem to confuse the classifiers. For example, identifying smartphone positions or
users from stationary activities is not reasonable. In this case, the models still work due to the gravity
measurements contained in acceleration data which might be useful. Therefore, to clearly observe the
feasibility, we further evaluated our models on only dynamic activities.

The performance of all tasks is both improved by only employing dynamic activities data in
Table 2. Especially the activity recognition and user identification in LSTM-MT-3L, the F1-scores have
reached to 0.9240 and 0.9174 respectively. Meanwhile, the best average F1-scores are all raised than
results in Table 1, e.g., +3.71% (LSTM-MT-3L), +2.31% (CNN-MT-3L) and +0.93% (MLP-MT-3L). It
suggests that jointly mining human activity, smartphone position and user information from dynamic
movement is more reasonable in practice, which is in line with the intuition.
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Table 2. Recognition rates (F1-score) of human activity, smartphone position and smartphone user
when using sensor data of dynamic activities.

Model Type Learning Type Activity Position User Average

MLP
ST-3L 0.8968 0.9859 0.8625 0.9151
MT-0L 0.8536 0.9742 0.8129 0.8802
MT-3L 0.9002 0.9857 0.8680 0.9179

CNN
ST-3L 0.9019 0.9893 0.8693 0.9202
MT-0L 0.8880 0.9831 0.8836 0.9183
MT-3L 0.9067 0.9854 0.8774 0.9232

LSTM
ST-3L 0.9265 0.9917 0.9115 0.9432
MT-0L 0.9080 0.9878 0.9043 0.9334
MT-3L 0.9240 0.9906 0.9174 0.9440

The benefit of MTL can be observed by contrasting single-task models with joint recognition
models. On the whole, the promotions of all average F1-scores are slightly higher than the single-task
models except for LSTM-MT-3L in Table 1. The highest one achieved is +0.82% in CNN-MT-3L in
Table 1. For specific tasks, such as user identification, all performances are consistently improved
under joint models, where the maximum improvement is +1.21% in MLP-MT-3L in Table 1. Even the
MTL strategy cannot perfectly improve the performance of all tasks, it works well for the reduction
of computation demand and latency by efficiently leveraging shared parameters. In contrast with
single-task models, the joint model only employs one backbone network but achieves comparable
results. Additionally, adding task-specific layers has an obvious effect on results. As can be seen,
the performances in learning type of MT-0L in Table 2 are not optimal because the shared feature of
multi-tasks commonly plays a role for regularization in small size dataset.

5. Discussion

Jointly mining multiple physical context information from the motion sensor is a relatively new
research question. Despite its importance, there is very little research that investigates the same
question on the RealWorld HAR dataset. Moreover, to our knowledge, the position-aware HAR
presents one of the best approaches to the benchmark dataset of RealWorld HAR. Therefore, we
focus on comparing this state-of-the-art approach with our proposed joint method. In our paper, we
actually implemented three different models (in both the single-task and multi-task setting) to solve
this problem. In general, the LSTM-based joint model could outperform the other three competitors
including MLP, CNN, and the Random Forest.

The experimental results show that our approach can improve the model’s generalization ability
on the data collected from unseen smartphone orientations. Although the proposed coordinate
transformation method still lacks accuracy compared to the state-of-the-art solutions, we must highlight
that it is still feasible. Most of the commonly used coordinate transformation methods may suffer
from the problem of error propagation causing by gravity pollution, magnetic interference, inherent
sensor noise and so on. For instance, as investigated by Shen [48], the rotation matrix calculation is
most accurate when measured in the stationary position because it assumes only acceleration due to
gravity is present. In the research community of location estimation and orientation tracking, many
efforts have been made to minimize existing errors [48,49]. In terms of our joint recognition task,
the minimum requirement for our coordinate transformation technique is to recover the consistent
acceleration pattern and keep its periodicity. Although the error propagation may be inevitable, this
will not affect the periodicity and consistency of acceleration patterns, as shown in Figure 3. At the
same time, the experimental results also verify the irrelevance of error propagation to our application.

We applied our framework on three types of widely used neural networks to provide learned
lessons for future research. One of interesting results is that models illustrate different robustness to
changing the sampling window size in Figure 9, such as the apparent performance gap between CNN
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and LSTM. Practically, large length of sequence makes LSTM hard to train when there is no essential
method to maintain the memorized information. One convenient remedy is extracting features from
ordered subsequences before applying LSTM, e.g., a hybrid model [50] combining CNN and LSTM.
On the other hand, in Table 1, there is no significant gap among different models and the simple MLP
achieves comparable results with deep models. Such a phenomenon lays on the other side of the recent
popular belief, employing deep learning models with complex architecture and high representational
capability is the first candidate for HAR. On the contrary, the models clearly demonstrate different
representational abilities when the data of stationary activities are removed in Table 2. Apparently,
the LSTM is a suggested model since it is superiors to others.

The deep neural network models are computationally expensive and memory-intensive, which
impedes their wide deployment in devices with restricted resources. In recent years, compression
and acceleration for deep neural networks have become a valuable research topic [51]. Our approach
leveraging shared architecture for computation demand reduction is theoretically feasible. To further
support this solution, we calculate the number of model parameters in Table 3. Comparing the
single-task model (ST-3L) with the multi-task model (MT-3L), the total number of parameters is
reduced significantly. In experiments, the model hyper-parameters were configured empirically to
ensure high recognition performance. Actually, further cutting parameters can be achieved by carefully
changing or searching for their hyper-parameters. For instance, it is valuable to shrink the model
size of MLP by finding reasonable hyper-parameters for hidden neurons and hidden layers in a fully
connected layer.

Table 3. The number (million) of parameters employed by single-task models and multi-task model of
each type.

Model Type ST-3L MT-3L

MLP 0.62 m × 3 0.76 m
CNN 0.14 m × 3 0.29 m
LSTM 0.19 m × 3 0.26 m

6. Conclusions and Future Work

In this study, we presented a framework for jointly mining human activity and smartphone
position from motion sensors. This framework can be used as an enhanced context-aware service
to improve many existing sensing applications. We proposed a data preprocessing approach to
eliminate the negative effect of smartphone orientation variation on recognition. It is a coordinate
transformation technique based on quaternion, which leverages the acceleration sensor and rotation
vector sensor in an Android smartphone. Our method transforms the original acceleration data to
a global earth coordinate system that is independent of smartphone orientation. We evaluated the
proposed approaches with a collected dataset that contains labels not only for human activity and
smartphone position but also for smartphone orientations. The evaluation results illustrated that the
proposed method improved the generalization ability of our model on different orientations’ data.

On the other hand, a joint recognition model is proposed to output the results of multiple tasks.
We designed this model at the base of the MTL strategy to explore the commonalities and differences
among related tasks. It is different from those previous widely investigated approaches that involve
multiple models and require high computational resources, such as a position-aware model. Our joint
recognition model can produce the highest performance by using one global model. In experiments, we
show that our approach significantly outperformed the original results on RealWorld HAR dataset [6].

As future work, the enhanced context-aware service can be tested on sensor data collected from a
huge amount of smartphone users including the elderly population and children. Such recorded data
will provide an opportunity to explore the similarity and difference of human movements when users
have diverse physical characteristics. For this reason, we plan to explore the combination of advanced
feature extraction technique [52] and MTL strategy. Furthermore, obtaining a joint recognition with a
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small amount of label data is also valuable, which might be achieved by integrating the MTL with the
approach of learning from few examples [53].
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