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Abstract: As the key principle of precision farming, variation of actual crop evapotranspiration (ET)
within the field serves as the basis for crop management. Although the estimation of evapotranspiration
has achieved great progress through the combination of different remote sensing data and the FAO-56
crop coefficient (Kc) method, lack of the accurate crop water stress coefficient (Ks) at different
space–time scales still hinder its operational application to farmer practices. This work aims to explore
the potential of multispectral images taken from unmanned aerial vehicles (UAVs) for estimating the
temporal and spatial variability of Ks under the water stress condition and mapping the variability of
field maize ET combined with the FAO-56 Kc model. To search for an optimal estimation method,
the performance of several models was compared including models based on Ks either derived
from the crop water stress index (CWSI) or calculated by the canopy temperature ratio (Tc ratio),
and combined with the basal crop coefficient (Kcb) based on the normalized difference vegetation
index (NDVI). Compared with the Ks derived from the Tc ratio, the CWSI-based Ks responded well to
water stress and had strong applicability and convenience. The results of the comparison show that
ET derived from the Ks-CWSI had a higher correlation with the modified FAO-56 method, with an
R2 = 0.81, root mean square error (RMSE) = 0.95 mm/d, and d = 0.94. In contrast, ET derived from
the Ks-Tc ratio had a relatively lower correlation with an R2 = 0.68 and RMSE = 1.25 mm/d. To obtain
the evapotranspiration status of the whole maize field and formulate reasonable irrigation schedules,
the CWSI obtained by a handheld infrared thermometer was inverted by the renormalized difference
vegetation index (RDVI) and the transformed chlorophyll absorption in reflectance index (TCARI).
Then, the whole map of Ks can be derived from the VIs by the relationship between CWSI and Ks
and can be taken as the basic input for ET estimation at the field scale. The final ET results based on
multispectral UAV interpolation measurements can well reflect the crop ET status under different
irrigation levels, and greatly help to improve irrigation scheduling through more precise management
of deficit irrigation.

Keywords: UAV multispectral imagery; dual crop coefficient model; crop water stress index (CWSI);
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1. Introduction

In semiarid regions, the climate is characterized by long periods of drought and strong interannual
variability in rainfall amounts and distribution, leading to high year-to-year variability in agricultural
development and production [1]. The North China Plain is one of the most important agricultural
regions because it accounts for about one-fifth of national food production. In this area, rainfall cannot
meet the crop water requirements, and the overexploitation of groundwater aggravates water scarcity,
reduces the groundwater table, and threatens sustainable agriculture [2]. Irrigation is then necessary
to prevent water stress and ensure profitable yields. To determine the optimal irrigation scheduling
and adopt such strategies efficiently, it is necessary to have reliable methods of providing information
about the temporal and spatial variability of crop evapotranspiration (ET) within the field scale [3].

The direct ET measured methods consist of the use of a lysimeter, eddy covariance, Bowen ratio,
and soil water balance. However, they face important limitations due to expensive techniques and
low spatial representativeness of measurements, particularly in agricultural fields characterized by a
high level of heterogeneity in terms of crops and water status [4]. The indirect form can be made from
empirical equations that use agronomic, biophysical, and meteorological elements as input variables [5].
As the most widely used method for the determination of ET, the FAO-56 dual crop coefficient (Kc)
approach, published by the Food and Agriculture Organization in Irrigation and Drainage Paper No.
56 [6], has received favorable acceptance and application worldwide [5,7]. The dual Kc approach
describes the relationship between the daily evapotranspiration of a given crop and the reference
evapotranspiration (ET0) by separating the single crop coefficient into the basal crop coefficient (Kcb),
soil water evaporation (Ke) coefficient, and water stress coefficient (Ks). Although simple in design and
construction, the dual Kc method successfully incorporates a number of consistent and compensating
factors that distinguishes the ET of any unique crop from that of the reference ET [7]. However, the
method is mainly used for the ET estimation based on stationary measurements and cannot provide a
fine estimation due to inconsistent crop growth.

To explore the distribution of crop ET within the field scale, remote sensing technology provides a
dependable basis [8]. The crop coefficient generated from remote sensing based on canopy reflectance
responds to the actual crop condition, captures the variability among different local atmosphere
conditions and field spatial variability [9], and reflects the heterogeneity of plant development in large
irrigated fields [10–14]. Studies have established different inversion models between vegetation indices
(VIs) and Kcb [15–18]. For decades, satellite remote sensing images have been the main data sources to
integrate the FAO-56 for the estimation of crop ET. For example, Bellvert et al. [19] used a dataset of the
vegetation index (NDVI) derived from Landsat-8 to facilitate the estimation of the Kcb, and potential
crop water use. However, the low spatial and temporal resolution of satellite data limits its further
application in estimating ET within the field scale. At the same time, cloud cover remains a significant
challenge in satellite-based remote sensing [20].

As one of the most important emerging remote-sensing platforms, unmanned aerial vehicles
(UAVs) have been gradually employed in precise agriculture. Soon, UAVs will be vital tools for
growers as they can cover large areas, and take advantage of new sensing, mapping, and data analytical
technologies [21–23]. Real time mapping and rapid image analysis also provide the early detection of
plant water status for timely irrigation scheduling [24]. Based on these advantages, UAVs have broad
application prospects for more sophisticated ET management within the field scale. When dealing
with the estimation of ET based on a combination of UAV and the dual Kc method under water stress
conditions, four parameters are required: ET0, Kcb, Ke, and Ks. ET0 can be estimated using the FAO
Penman–Monteith formula and the collected meteorological data [25]. Ke is clearly correlated with
foliage cover and irrigation/rainfall event, and becomes negligible when the crop completely covers the
soil [26]. Many studies have validated that Kcb has a strong correlation with NDVI and foliage cover,
and applied to practical water requirement monitoring [16,27]. For instance, Han et al. [28] studied the
feasibility of UAV multispectral remote sensing in the estimation of maize crop coefficients at different
growth stages. The results showed a strong relationship between UAV-measured NDVI and Kcb, with
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an R2 value of 0.82. Although the assimilation of FAO-56 and remote sensing data has made such great
progress, discrepancies between the measured and simulated ET remained when water stress occurred.

The accurate estimation of Ks is the key to accurately estimate crop ET using UAV remote sensing
data under water stress conditions. Specifically, Ks represents the fraction of potential transpiration
rate, with a value from 1 to 0, according to the level of water stress, which is directly related to the
water content in the root zone. Less attention has been paid on determining the water stress coefficient
Ks from the remote sensing data because there are difficulties in estimating soil and root zone moisture
(or root zone depletion) from remote sensing data [29]. It is necessary to use a new indictor, which
is easy to obtain and can respond to real-time plant-water status. Studies [30,31] have proven that
canopy temperature (Tc) is closely related to soil water content, actual transpiration, and crop water
stress status. Therefore, Ks and canopy temperature are definitely related to each other. Olivera et
al. [32] used the vegetation and soil temperatures retrieved from LST (land surface temperature) data
derived from the eddy covariance system to estimate the Ks. This method is based on the polygon
defined in the LST–VI space, which needs a large amount of temperature data and has a complex
analysis procedure. Recently, studies have evaluated indices based on Tc that require less information
for detecting crop water stress and have shown that Ks is related to several crop water stress indices.
For instance, Bausch et al. [18] successfully used a ratio of canopy temperature as a substitute for the
soil moisture based Ks. The ET difference between the two deficit irrigation treatments for the 25-day
investigative period calculated by Tc ratio and water balance techniques was 21 mm and 4 mm. Kullberg
et al. [33] observed that using an appropriate Ks method had the potential to improve irrigation
scheduling to properly manage stress and ensure optimum crop yield under a limited irrigation water
supply. A noted advantage of non-dimensional crop indices such as CWSI (crop water stress index)
is that they are typically considered to be scalable to Ks for ET estimation (i.e., Ks = 1 − CWSI). This
is also the basis behind the Tc ratio approach, although it has dimensionality restrictions [34]. For
the estimation of Ks based on water stress indices, most studies have used handled or stationary
infrared thermometers [33–35]. A ground-based platform is still time consuming and labor intensive.
Additionally, like the estimation by counting root zone depletion, it is impractical to estimate ET by
combining the Kcb of large image pixels with Ks based on ground-point measurements due to the
heterogeneities of the crop and soil status.

With the development of agricultural technology, high-resolution thermal imagery acquired by
UAVs has been used to map plant water stress indices such as the CWSI, and water deficit index (WDI).
However, when Kcb and Ks are obtained from different sensors (i.e., multispectral and thermal sensors),
the problem of data fusion and matching will be obstacles to ET estimation with the UAV system.
For example, as the image resolution obtained by the two sensors is different, image matching with
different resolutions requires a complicated process. Most importantly, the biggest effect is not only on
the pixel mixing due to the downscale, but on the georectification and co-registration of the images,
therefore, the asynchronous time and space of the Ks and Kcb may influence the acquisition of maize
ET. Previous studies have indicated that multispectral VIs have significantly high correlation with
water stress indicators. For example, Samuel et al. [36] summarized the common spectral vegetation
indices (VIs) that have been correlated to plant water stress. Studies [37–39] suggested that the
renormalized difference vegetation index (RDVI) and transformed chlorophyll absorption in reflectance
index (TCARI) are useful in plant stress monitoring. Therefore, the synchronized acquisition of Kcb
and Ks using one sensor (i.e., a multispectral camera) should be explored.

This study aimed to estimate more accurate ET maps with UAV-based multispectral images over
maize in the semiarid region of the North China Plain by applying the FAO-56 dual Kc approach.
More specifically, we first compared the ET derived from water stress indices (CWSI and Tc ratio) and
NDVI to that calculated with the modified FAO-56 dual Kc method by evaluating the suitable water
stress indicator for local maize ET estimation. Next, we investigated the potential of assimilating ET
estimation with VIs data (multispectral UAV) through the retrieve relation between the water stress
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index and VIs to eliminate discrepancies caused by using data at different scales and obtain a high
resolution (4.7 cm) spatial-temporal ET map.

2. Materials and Methods

2.1. Study Site and Experimental Design

A 1.13 ha research field located in Zhaojun Town, Dalate Banner, Ordos, Inner Mongolia, China
(40◦26’0.29”N, 109◦36’25.99”E, Elev. 1010 m; Figure 1a) was chosen to conduct the study. Maize (Junkai
918) was planted on 20 May 2017 with a 0.58 m row spacing and 0.25 m plant spacing, and the row
direction was east–west. The maize emerged on 1 June, headed on 20 July, and was harvested on 7
September (silage), with a 110-day lifespan.

The study field was divided into five treatment (TRT) zones (Figure 1b) with three different levels
of irrigation at the vegetative, reproductive, and maturation growth stages. Each treatment zone had
one sample plot (Figure 1b), and each sample plot had five sample sites (Figure 1c). The five water
treatments are given in Table 1. The total crop water requirement of the full watered maize field during
the late vegetative, reproductive, and maturation stages was 407 mm, which was close to the total
applied water (402 mm) of the control treatment zone (TRT 1). Water for other TRTs was applied
proportionally to that for TRT 1. Since TRTs 1, 2, and 3 represented the three levels of irrigation, only
these zones were taken for the analysis. Irrigation water was applied during the growing season
by using a centered pivot irrigation system (Valmont Industries Inc., USA), with the coefficient of
uniformity of the first span (research field) of 82.7% with a speed of 20%, or at 88.3% with a speed of
40%, as calculated by the modified formula of Heermann and Hein [40] by using R3000 sprinklers. The
amount of water applied to each treatment was measured and recorded by MIK-2000H flow meters
(Meacon Automation Technology Co. Ltd., Hangzhou, China), and the accuracy of the flow meters
was better than 1%. The actual amount of irrigation and rainfall at each growth stage are shown in
Table 1. The soil type is a loamy sand according to the soil taxonomy of the United States Department of
Agriculture. More detailed information about the soil characteristics are listed in Table 2. To eliminate
the interference of nutritional stress and weeds, fertilizer and herbicide were applied according to the
planting experience.
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Table 1. Total applied water depth for each experimental treatment in the late vegetative, reproductive,
and maturation stages where (07.04–07.28), (07.29–08.20), and (08.21–09.07) are the dates of the different
growth stages. The water amount includes that of irrigation and precipitation, and the percentage of
full treatment is shown in parentheses.

Treatment
Applied Water Depth/mm

Late Vegetative
(07.04–07.28)

Reproductive
(07.29–08.20)

Maturation
(08.21–09.07) Total

TRT 1 188 (100%) 132 (100%) 82 (100%) 402
TRT 2 158 (84%) 91 (69%) 23 (28%) 272
TRT 3 158 (84%) 125 (95%) 43 (52%) 326
TRT 4 158 (84%) 128 (97%) 43 (52%) 329
TRT 5 158 (84%) 124 (94%) 82 (100%) 365

2.2. Framework and Parameters for Assimilating Remote Sensing Data into FAO-56 Crop Coefficient Method

Figure 2 shows the assimilation of remote sensing data into the FAO-56 dual crop coefficient
method for the estimation of evapotranspiration in this study. Unlike the traditional FAO-56 single
crop coefficient method, canopy reflectance was used to reflect crop growth and water stress, and then
the dual crop coefficient was obtained based on the UAV-measured spectral data. Finally, point-scale
evapotranspiration was extended to the whole field through the UAV multispectral images under
different irrigation levels. Table 2 shows the soil characteristics and parameters used in the modified
FAO-56 dual crop coefficient assimilation procedure for maize.
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Figure 2. Hierarchical framework integrating the data obtained from an unmanned aerial vehicle
(UAV) remote sensing system and ground measurements into the FAO-56 dual crop coefficient method.
LAI, leaf area index; CWSI, crop water stress index; NDVI, normalized difference vegetation index; Kcb,
basal crop coefficient; Ks, water stress coefficient; CET, cumulative evapotranspiration; VIs, vegetation
indices; WB, soil–water balance.
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Table 2. Soil characteristics and parameters used in the modified FAO-56 dual crop coefficient
assimilation procedure for maize.

Parameters Value Source

Soil texture
sand 80.7% observed
powder 13.7% observed
clay 5.6% observed

Average field hold capacity (θfc) 0.13 m3/m−3 observed
Average permanent wilting point (θwp) 0.056 m3m−3 observed
Average soil bulk density 1.56 g/m3 observed
Maximum crop height 2.73 m observed
Maximum effective root depth (Zr, max) 0.1 m FAO-56 [6]
Minimum effective root depth (Zr, min) 1 m FAO-56 [2]
The fraction of available soil water (p) 0.65 Zhao et al. [41]
The threshold water content (θj) 0.084 m3m−3 observed
canopy extinction coefficient for solar radiation (k) 0.7 Ding et al. [42]
NDVImax (maximum NDVI value at full vegetation cover) 0.87 observed
NDVImin (minimum NDVI value of bare soil) 0.07 observed

2.2.1. Meteorological Factors and Soil Water Content

The weather data were obtained from an automated weather station located on a grass reference
surface (0.95 ha) that was 1000 meters away from the research field, with observations of rainfall, air
temperature (Ta), humidity, net solar radiation (Rn), and wind speed (2 m above the reference surface).
Except for rainfall, the data acquisition interval was 30 minutes.

Soil water content (SWC) was measured two or three times each week on the day before or after
irrigation within each sampling plot by the traditional gravimetric method [43]. At each sampling
plot, three sampling sites were randomly chosen around the center. The samples were collected by soil
augers at depths of 30 cm, 60 cm, 90 cm, and 120 cm. Soil samples were put in aluminum boxes to
avoid the influence of evaporation. Basically, the gravimetric method involves taking soil samples,
weighing, oven-drying, and reweighing them, then expressing the moisture content (i.e., loss in weight)
as a percentage of the oven-dry weight. This is the weight or mass basis of expressing soil moisture
content. Then, by multiplying the bulk density, the results can be expressed in terms of volume [44].
The average SWC (θ) was estimated by interpolating the soil moisture observations of the different
depths belonging to the root-zone of maize.

2.2.2. Measurement of Maize Parameters

Maize canopy temperature (Tc) and UAV multispectral data were synchronously collected under
clear sky at solar noon. Tc was collected during the full foliage cover period (6–29 August 2017
including the reproductive and maturation stages). A handheld infrared thermometer (Raytek ST60+,
Raytek Inc., Santa Cruz, CA, USA) was used to measure Tc with a measurement error of ±1 ◦C or
±1% of the reading. The larger values were adopted in the practical application. The temperature and
spectral ranges of the Raytek ST60+ are −32–600 ◦C and 8–14 µm, respectively. The emissivity value
was set to 0.97 [45]. To avoid the interference of soil, the thermometer was used to sweep the canopy
(about 120◦) perpendicular to the row, 30 cm above the canopy, and at a 15◦ horizontal angle. At each
sample site, three measurements were made to obtain the Tc. The values averaged over one sampling
site or over one plot (yellow circle in Figure 1c) were taken to represent their status.

The main plant parameters needed to run the modified FAO-56 model (see Section 2.2.3) are
canopy height (h) and leaf area index (LAI). A random sampling method was used to collect the LAI
and plant height of maize. An LAI-2200C canopy analyzer (LI-COR Biosciences, Lincoln, NE, USA)
was used to measure the LAI of maize; 10 sampling points were randomly selected for each plot and
the average value was obtained. For each plot plant height of maize, 15 representative maize plants
were randomly selected and measured by tape measure. Cubic spline interpolation is a piecewise
regression approach that uses third-order polynomials for interpolation between a series of paired
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data points [14]. Thus, cubic spline was used to process the measured LAI and plant height data, and
then the daily sequence of maize LAI and plant height data were obtained.

2.2.3. The Modified FAO-56 Dual Crop Coefficient Method

In FAO-56, the actual ET is defined as the product of crop coefficient (Kc) and reference
evapotranspiration (ET0) [26]. In the dual Kc model, Kc is split into two factors that separately
describe the evaporation (Ke) and transpiration (Kcb) components. The method has been widely used
in scheduling irrigation and improving agricultural production [46]. FAO-56 ET is estimated as follows:

ET = ET0 ∗ (KcbKs + Ke), (1)

where ET is in mm/d; Ke is the evaporation coefficient of the bare soil fraction; Kcb is the basal crop
coefficient; Ks is the water stress coefficient; and ET0 is the grass reference evapotranspiration in
mm/d. The stages of canopy temperature acquisition and ET estimation were in the period of high
coverage (i.e., vegetation cover ranging from 0.79 to 0.84 as estimated by an empirical equation based
on NDVI [47]). With Ke = 0.25 × (1 − fc) [26], it had a minor influence on total ET and was ignored.

The ET0 of this reference surface was estimated according to the following Penman–Monteith
equation:

ET0 =
0.408∆(Rn −G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
, (2)

where Rn is the net radiation at the crop surface; G is the soil heat flux density (as the magnitude of the
1-day or 10-day soil heat flux beneath the grass reference surface is relatively small, it may be ignored,
thus Gday = 0 [26]); T is the mean daily air temperature at 2 m height; u2 is the wind speed at 2 m
height; es is the saturation vapor pressure; ea is the actual vapor pressure; ∆ is the slope vapor pressure
curve; and γ is a psychrometric constant.

The basal crop coefficient, Kcb, is generally obtained from the guidelines of FAO-56 by looking-up
the tabulated value at every growth stage and then linearly interpolating it to obtain the daily values.
The approach from the original FAO-56 dual Kc procedures cannot calculate the daily actual value
of Kcb [42]. Feng et al. [48] modified Kcb with LAI through eddy covariance systems near the
experimentation site, which illustrated that the modified dual crop coefficient method could estimate
maize ET accurately on the North China Plain. Therefore, in order to evaluate the dynamic changes of
ET in the maize field more accurately, the canopy height and LAI were used to modify the dynamic
Kcb. The modified FAO-56 Kcb value can be calculated by Equations (3) and (4):

Kcb− Tab = Kc,min +
(
Kcb, f ull −Kc,min

)
(1− exp[−kLAI]) , (3)

Kcb, f ull = min(1 + 0.1h, Kc,max) + [0.04(u2 − 2) − 0.004(RHmin − 45)]
(

h
3

)0.3

, (4)

where Kc,min is the minimum for bare soil (0.15); Kcb,full is the estimated basal Kcb for vegetation having
full ground cover; Kc,max is the maximum Kc (1.2); RHmin is the minimum relative humidity (%); and k
is the canopy attenuation coefficient of radiation, and the value of k is listed in Table 2.

The crop water stress coefficient Ks related to the actual root zone water content is a key parameter
for calculating and simulating soil water conditions. Several linear and curvilinear functions have been
proposed to adjust for the effects of decreasing available water on ET or for the Ks used in Equation (1).
The simple linear model for estimating Ks as described in FAO-33 is commonly used and calculated by
Equation (5) ,which is an equivalent expression to the FAO-56 Ks procedure [49].

Ks − FAO =

 1, θ ≥ θ j
θ−θwp
θ j−θwp

=
θ−θwp

(1−p)(θ f c−θwp)
,θwp < θ < θ j

, (5)
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θ j = (1− p)
(
θ f c − θwp

)
+ θwp , (6)

where θ is the mean volumetric soil water in the crop root zone and θj is the threshold water content,
where transpiration decreases linearly due to water stress. Ks = 1 for θ ≥ θj. p is the fraction of available
soil water that can be deleted from the root zone before moisture stress. The θfc is the field capacity,
and θwp is the permanent wilting point. All θ (m3 m−3) represent averages over the effective root zone
(Zr). The rooting depth Zr (m) is assumed to vary between a minimum value (maintained during the
initial crop growth stage at 0.1 m) and a maximum value (that reached 1 m at the beginning of the
mid-season stage). The maximum value was measured in the field and was equal to 1 m, according to
FAO-56 [6]. When the θ was lower than θj, the crop begins to reach the stress period (Ks < 1), and if θ
is less than θwp, the crop does not absorb water from the root zone (Ks = 0). Values for Equations (5)
and (6) are listed in Table 2.

2.2.4. UAV (Unmanned Aerial Vehicle) Multispectral System, Data Collection, and VI (Vegetation
Index) Calculation

In this study, a hexacopter UAV multispectral remote sensing system (Figure 3) was developed
with a Pixhawk autopilot (CUAV, Guangzhou, China), a RedEdge multispectral camera (MicaSense,
Inc., USA), and a MOY brushless gimbal (Moyouzhijia, Huizhou, China). Its maximum load was
5 kg, and the maximum flight duration was 30 minutes. The RedEdge multispectral camera has a
focal length of 5.5 mm, a field-of-view angle of 47.2◦, and an image resolution of 1280 × 960 pixels.
The bandwidths and central wavelengths for the 5-band RedEdge are 20 nm at 475 nm (blue), 20 nm
at 560 nm (green), 10 nm at 668 nm (red), 10 nm at 717 nm (red edge), and 40 nm at 840 nm (near
infrared). The camera was equipped with a light intensity sensor and two 3 m × 3 m gray plates
(Group 8 Technology, Provo, UT, USA). The light intensity sensor can correct the influence of external
light changes on spectral images during aerial photography. The gray plate has fixed reflectivity; it can
correct the reflectivity of multispectral images, generate reflectivity images, and extract the VI. The
multispectral images of the gray plate (reflectivity 58%) collected simultaneously at the same height
were used to perform radiometric correction. In Pix4DMapper a vignetting polynomial was used for
radiometric correction. Then, the spectral reflectance of the objects was obtained. Flight planning was
conducted with Mission Planner ground control station software, which allows the user to generate
a route of waypoints as a function of the sensor field of view (FOV), the degree of overlap between
images, and the ground resolution needed.
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Figure 3. Schematic diagram of the UAV multispectral remote sensing system developed in this study. Figure 3. Schematic diagram of the UAV multispectral remote sensing system developed in this study.

During the study period (20 June to 29 August 2017), 11 UAV flights were conducted on sunny
days between 11:00 and 13:00 local time (Chinese standard time, 11:44–13:44) with the RedEdge camera
lens vertically downward, and an 80% heading and side overlap. The flight height, speed, and pixel
resolution were 70 m (relative flying height), 5 m/s, and 4.7 cm, respectively. A total of 2185 images (five
bands) were collected during a single flight and Pix4DMapper software was used for image mosaicking.

To establish the regression models between UAV-based multispectral VIs and crop coefficients
(NDVI vs. Kcb and TRCAI/RDVI vs. Ks), three VIs were selected: NDVI [50], transformed chlorophyll
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absorption in reflectance index (TCARI) [51], and the renormalized difference vegetation index
(RDVI) [52]. In addition, cubic spline interpolation was used to determine the VI values between two
flight overpasses. Their calculation equations are as follows:

NDVI =
ρnir − ρred

ρnir + ρred
, (7)

TCARI = 3
[(
ρrededge − ρred

)
− 0.2

(
ρrededge − ρgreen

)(
ρrededge/ρred

)]
, (8)

RDVI =
ρnir − ρred
√
ρnir + ρred

, (9)

where ρnir, ρred, ρrededge, and ρgreen are the reflectance values of ground objects in the near-infrared, red,
red-edge, and green bands, respectively.

2.2.5. Crop Coefficient Estimation Using Reflectance Data

Reflectance-based basal crop coefficient (Kcb) methods have been used to improve the irrigation
scheduling of maize. NDVI is one of the most widely used indices for estimating crop parameters.
This index is highly sensitive to variations of LAI and the fraction of the ground that is covered by
vegetation, (fc). The NDVI has a linear relationship with fc along the whole range of vegetation cover [47].
Accordingly in this study, Equation (10) was used for fc estimation. In this study, one 12 m × 12 m area
was selected as the spectral sampling plot in each treatment (yellow box in Figure 1b). Studies [53,54]
showed that Kcb can be estimated from fc.

fc =
NDVI −NDVImin

NDVImax −NDVImin
, (10)

where NDVImin and NDVImax are the minimum and the maximum values of the NDVI associated
with bare soil and dense vegetation, respectively. Once fc has been obtained through Equation (10), the
Kcb can be estimated as:

Kcb−NDVI = 1.13 fc + 0.14, (11)

The two different Ks obtained from CWSI and Tc ratio were derived from the handheld infrared
thermometer, with daily values taken around local times between 11:00 and 13:00 (local time), which
are approximate times of peak stress.

Jackson et al. [30] showed that CWSI is inversely related to the water use of the crop under
consideration; Ks can also be calculated from CWSI by:

Ks−CWSI = 1−CWSI, (12)

One of the widely used methods for estimating CWSI is based on measured canopy
temperature [30,55]. The CWSI is defined in Equation (13).

CWSI =
dTm − dTLL

dTUL − dTLL
, (13)

where dTm, dTLL, and dTUL are the actual measurement, lower limit, and upper limit of the
canopy–air temperature difference (Tc−Ta), respectively. More detailed information about local
CWSI measurements can be found in Zhang et al. [39]. CWSI = 0 indicates no water stress, while
CWSI = 1 indicates the most severe stress.

Zhang et al. [39] established linear regression models (R2 = 0.80, p < 0.001) between TRCAI/RDVI
and CWSI (Equation (14)). The local calibration of CWSI performed in [39] was also retained here.
Thus, we could integrate the remote sensing data into the Ks model by establishing a stable relationship
between VIs and CWSI. According to the relationship between Ks and CWSI (i.e., Ks = 1 − CWSI)
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and to rescale the Ks value between 0 and 1, the linear regression models can been shown as per
Equation (15):

CWSI =


0 (TCARI/RDVI ≤ 0.195)
2.41 ∗ (TCARI/RDVI) − 0.47 (0.195 < TCARI/RDVI < 0.609)
1 (0.609 ≤ TCARI/RDVI)

, (14)

Ks−CWSI =


1 (TCARI/RDVI ≤ 0.195)
1− (2.41 ∗ (TCARI/RDVI) − 0.47) (0.195 < TCARI/RDVI < 0.609)
0 (0.609 ≤ TCARI/RDVI)

, (15)

An alternative method to evaluate water stress that only requires the crop canopy temperature
was proposed by Bausch et al. [35]. The relationship between Ks and Tc ratio is as follows:

Ks−Tc ratio = Tc ratio =
TcNS

Tc
, (16)

where Tc ratio is a stress coefficient proposed as a surrogate for the water stress coefficient Ks from
FAO-56. Tc is the canopy temperature and TcNS is the temperature of a fully irrigated, non-stressed
canopy, which was chosen as the lowest canopy temperature observed at the given timestamp including
all treatments [34]. This temperature ratio was found to be capable of quantitatively monitoring
water stress and can potentially be used in the place of the water stress coefficient when soil water
measurements are not available.

2.2.6. Evapotranspiration Comparison and Statistical Analysis

Due to the lack of validation information from an eddy covariance tower or lysimeter, the ET
estimated by the modified dual Kc method [42,48] was used to validate the model. Ding et al. [42]
found good agreement between the predicted ET and transpiration using the modified model and
the measurements through the lysimeter for maize in 2010, with a slope of linear regression of 0.99
(R2 = 0.90) and 1.01 (R2 = 0.92). Feng et al. [48] also obtained similar results and suggested that the
modified dual crop coefficient method was suitable for calculating the actual daily ET of the main
crops across the North China Plain. Studies [56,57] also used the local ET estimated by the FAO-56
Kc method to validate the derived ET from their model. Thus, employing the ET data estimated by
the modified FAO-56 dual Kc method as the validation set had certain accuracy in this study. The
simulated daily ET of the maize derived from the two Ks methods and NDVI-based Kcb methods
(ET-CWSI and ET-ratio) were compared with the values obtained from the modified FAO-56 dual
crop coefficient method. The ET-CWSI, ET-ratio, and ET-FAO values were compared by using a linear
regression analysis and the statistical parameters of the coefficient of determination (R2), root mean
square error (RMSE), and index of agreement (d) were used as a relative measure of the difference
among variables. Perfect agreement would exist between the observed and modeled values if d = 1.

Finally, we compared the cumulative evapotranspiration (CET) obtained by the VI method with
the water balance approach to evaluate the ability of ET determination by UAV. Cumulative ET
obtained by the soil–water balance [58] was used as the reference ET, and a relatively simple relation is
expressed as:

(Pr + I) + U −RO− ET −DP− ∆SW = 0, (17)

where Pr is the effective precipitation; I is the irrigation depth; U is the ground water replenishment;
RO is the runoff from the soil surface; and DP is the deep percolation of water moving out of the root
zone. ∆SW is the change between the first and last measurements of soil water storage within the root
zone. All terms are expressed in mm. As soil water content sensors buried at different depths in the
field showed that the soil moisture at 1.2 m changed little during the study period and the terrain
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inclination was <5%, the U, RO, and DP were also considered as zero. Based on the soil–water balance
(Equation (17)) and the above criteria, the CET was determined as follows:

CET = Pr + I − ∆SW, (18)

3. Results

3.1. Meteorological Conditions and Maize Status

The temporal evolution of ET0, daily average air temperature (ATa), and canopy temperature
(Tc) of three different treatments for different growth periods are shown in Figure 4. The ATa and
other meteorological data for the ET0 calculation were obtained from an automatic weather station.
Observations showed the three parameters decreased as the maize growth period progressed. Driven
by the ATa, ET0 presented a similar pattern to ATa, which conformed to the standard Penman–Monteith
equation. The highest ATa and ET0 reached 28 ◦C and 9.69 mm during the studied period. Although
higher air temperatures may increase ET0, it can also influence Tc and affect crop transpiration when Tc
exceeds the suitable canopy temperature for maize growth. The Tc of three different water treatments
used for calculating the water stress index (CWSI and Tc ratio) showed a certain numeric gradient from
6 to 29 August 2017. Overall, Tc increased with the degree of water deficit. Average Tc of TRTs 1 (full
irrigation), 2 (severe deficit irrigation), and 3 (light deficit irrigation) were 26.4 ◦C, 28.3 ◦C, and 26.5 ◦C,
respectively. The highest Tc in TRT 2 reached 34 ◦C.
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Figure 4. Daily reference evapotranspiration (ET0), average daily air temperature (Ta), and canopy
temperature (Tc) during the studied period.

LAI is closely related to canopy structure, leaf number, and size, and has a strong effect on crop
transpiration. When the crop is under water stress, leaf growth is affected (i.e., curl). Variation in the
LAI can also influence canopy spectral information such as the NDVI. Figure 5 shows the changes of
the NDVI and LAI from the vegetative to maturation stages (20 June to 29 August 2017) under three
different irrigation treatments. The growth variables, NDVI and LAI, exhibited comparable seasonal
patterns (i.e., first increased, and then decreased from early crop development to maturation). Due to
the saturation of the NDVI, the maximum value of NDVI appeared faster than that of the LAI. The
NDVI reached its maximum value of 0.84 in the late vegetative stage (DOY 207), while the LAI was
still increasing up until the late reproductive stage (DOY 223). The average NDVI values for TRT 1,
TRT 2, and TRT 3 were 0.69, 0.67, and 0.70 from the late vegetative to maturation stages, respectively,
which was in line with the water stress levels. The NDVIs of TRT 1 and TRT 3 were approximately the
same during the study stages, even though TRT 3 experienced light drought. The maximum difference
between TRT 1 and TRT 3 was 0.03 on DOY 177. Furthermore, responses of different crop growth stages
to crop water stress ere also different. The differences in the NDVI among the three treatments during
the reproductive stage were smaller than those during the vegetative and maturation stages. For



Remote Sens. 2019, 11, 2519 12 of 22

example, the differences between the NDVIs of TRT 1 and TRT 2 for the vegetation, reproductive, and
maturation stages were 0.06, 0.01, and 0.08, respectively. The LAI patterns of the different treatments
presented larger differences than those of the NDVI. Especially from the middle vegetative to middle
reproductive stages, the maximum difference between the LAIs of TRT 2 and TRT 3 was 0.73 on DOY
207, illustrating that the LAI is more sensitive to water stress than the NDVI. On the other hand, the
above facts show that it is not feasible to estimate ET only from the NDVI under water stress condition.
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Figure 5. Seasonal variation of NDVI (normalized difference vegetation index) and LAI (leaf area index)
under different treatments during the vegetation to early maturation stages. V, R, and M represent the
vegetative, reproductive, and maturation stages, respectively.

3.2. Kcb and Ks Calculated by Different Methosd

The basal crop coefficient, Kcb-Tab, calculated by the modified FAO-56 method (Equations (3)
and (4)), was used to assess the capability of the reflectance-based basal coefficient model to provide
accurate estimates of ET over the maize field under three treatments. According to the results computed
by two methods in Figure 6, Kcb derived from UAV multispectral measurements closely tracked
modified Kcb-Tab over the crop cycle and two Kcb responded well to the LAI (Figure 5) in different
grown stages. They increased fast in the vegetative stage and then entered an asymptotic regime when
the surface was almost covered by leaves (80%) in the reproductive stage. During the late reproductive
stage, the Kcb values began to decline and the slope of the decrease in TRTs 2 and 3 were higher than
TRT 1 due to the water stress. The Kcb-Tab and Kcb-NDVI in the three treatments also showed certain
value differences. In general, the Kcb values increased with the irrigation levels. For instance, the
average observed Kcb-NDVI were 0.86, 0.81, and 0.84 for TRT 1, 2, and 3, respectively.Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 22 
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Figure 6. Comparison of the Kcb values calculated by using two methods in three different treatments:
TRT 1 (a), TRT 2 (b) and TRT 3 (c). The Kcb-NDVI values were retrieved from regression model
(Equations (10) and (11)) of Kcb vs. NDVI, and Kcb-Tab were calculated by the modified FAO-56
method (Equations (4) and (5)).
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Kcb only accounts for the potential evapotranspiration and the actual ET should be modified
with Ks for crops undergoing deficit-irrigation. Two Ks obtained by the water stress indices CWSI
and Tc ratio, which were calculated in turn by Tc, Ta, and Tc NS derived from the measurements of the
handheld infrared thermometer, were used to evaluate the effects of water deficit on crop ET. Figure 7
shows the daily values of irrigation/rainfall events and different Ks values from various approaches
for TRT 1 (Figure 7a), TRT 2 (Figure 7b), and TRT 3 (Figure 7c). The three Ks values increased after
irrigation/rainfall and decreased with no irrigation/rainfall, responding well to irrigation/rainfall events.
The Ks values for different levels of deficit irrigation in the reproductive and maturation stages had
a clear numerical gradient. As TRT 1 was in the full irrigation area, the Ks calculated by the soil
water content data (Equations (5) and (6)) was equal to 1, but a considerable part of the Ks calculated
by the water stress indices was less than 1 (see Figure 7a). It is probable that even a well-watered
crop could have a high canopy temperature because of very hot day. TRT 2 presented the lowest
Ks values when compared with TRTs 1 and 3. The averaged Ks-CWSI, Ks-Tc ratio, and Ks-FAO were
0.94, 0.89, and 1 for TRT 1; 0.72, 0.81, and 0.66 for TRT 2; and 0.91, 0.88, and 0.88 for TRT 3 (see
Table 3), respectively, indicating that TRTs 1 and 3 had less water stress than TRT 2. The daily changes
of Ks calculated by different methods showed similar patterns, as depicted in Figure 7, while the
sensitivity of different methods to water deficit was different, and the specific values between the three
methods displayed relatively large differences in this study. On the whole, Ks-CWSI and Ks-FAO had
greater variability than Ks-Tc ratio under water stress conditions, and the minimum Ks-FAO was as
low as 0.38, while Ks-Tc ratio was 0.63 in the three treatments. Due to the drought resistance of crops,
a reduction of water in the root zone does not immediately lead to crop stress. Thus, the canopy
temperature may be a more realistic parameter than soil water content to represent the stress coefficient
due to the complicated physiological processes that plants undergo as they encounter water stress and
compensate for this stress.
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Figure 7. Ks obtained by using CWSI, Tc ratio, and soil moisture data for (a) TRT 1, (b) TRT 2, and (c) TRT
3 from 6 to 29 August 2017. The depths (mm) of individual irrigation (I) and precipitation (P) events
are plotted as vertical bars.

Table 3. Mean values of Ks-CWSI, Ks-Tc ratio, and Ks-FAO for each irrigation treatment from 6 to 29
August 2017.

Treatment Ks-CWSI Ks-Tc ratio Ks-FAO

TRT 1 0.94 0.89 1
TRT 2 0.72 0.81 0.66
TRT 3 0.90 0.88 0.88

3.3. Model Selection for Estimating Crop ET

Maize ET for the three irrigation treatments during 6–29 August 2017 was calculated by various
techniques. As the canopy temperature and soil water content (θ) acquisition were in the period of
high coverage, and two or three days after the irrigation and precipitation. Thus, the minor influence of
evaporation on total ET was ignored. The derived ET from the combination of two water stress indices
and the combined NDVI-based Kcb (i.e., ET-CWSI and ET-ratio) were validated at the field scale using
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the modified FAO-56 ET (ET-FAO) by using three performance measure criteria (i.e., coefficient of
determination (R2), root mean square error (RMSE), and index of agreement (d)). The value of d, which
is presented in Figure 8a,b, was greater than 0.9 which indicates that ET based on water stress had
a strong fit for the ET-FAO. However, ET-CWSI showed the least bias with an acceptable accuracy
with an R2 = 0.81 and RMSE of about 0.95 mm/day (NRMSE = 11.1%), while the ET-ratio had an
overall slightly lower correlation than the CWSI with a lower R2 = 0.68 and RMSE about 1.26 mm/day
(NRMSE = 14.6%). Thus, the validation results from the R2 and RMSE viewpoints demonstrated that
the CWSI method was better than the Tc ratio and could be used as a quantitative index to calculate
maize evapotranspiration in this study.
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Figure 8. Scatterplots of ET obtained using two stress coefficient methods vs. ET obtained by modified
FAO-56 dual crop coefficient method in three treatments from 6 to 29 August 2017. Methods include
CWSI (a), Tc ratio (b). Black dotted line is the 1:1 line. The regression relation, coefficient of determination
(R2), root mean square error (RMSE), and index of agreement (d) are also shown.

3.4. Maize Evapotranspiration Maps Based on UAV Multispectral Remote Sensing Imagery

We retrieved the maize evapotranspiration map by combining the Ks map based on UAV
TCARI/RDVI (Equation (15)) with the Kcb map based on the NDVI, according to the FAO-56 dual crop
coefficient method. Figure 9 and Table 4 show the results of ET on DOY 217, 221, 231, and 241 during
the reproductive and maturation stages. ET was seen to decrease with decreasing irrigation among
the three different irrigation levels. On DOY 217, the highest value of ET in the study field reached
approximately 8 mm because of the previous day’s rainfall. In addition, different treatments presented
similar mean ET on DOY 217. On DOY 231 and 241, there were relatively less ET because of higher
temperature and less irrigation or rainfall, with maximum values of approximately 5 mm, and 4 mm,
respectively. On DOY 221, 231 and 241, the minimum ET can be found in TRT 2. In these three days,
the mean ET of TRT 2 was 5.72 mm, 4.23 mm and 1.33 mm, respectively. Especially on DOY 241, most
of the maize was in a state of almost no transpiration due to a long-term lack of irrigation/rainfall.
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Figure 9. Maize evapotranspiration maps retrieved by combining CWSI-TCARI/RDVI (Equation (14)
and (15)) and Kcb-NDVI (Equation (10) and (11)) regression models. (a) and (b) are evapotranspiration
maps for the reproductive (DOY 217 and DOY221) stages. (c) and (d) are the evapotranspiration maps
for the maturation (DOY231 and DOY241) stages.

Table 4. Coefficient of variation (CV; %) and mean ET over each sample area under different water
treatments on DOY 217, 221, 231, and 241.

Time
TRT 1 TRT 2 TRT 3

Mean (mm) CV (%) Mean (mm) CV (%) Mean (mm) CV (%)

DOY 217 6.72 10 6.91 8 7.20 8
DOY 221 6.41 8 5.72 12 6.68 7
DOY 231 5.05 11 4.23 16 4.94 10
DOY 241 2.59 13 1.33 34 2.12 18

The different soil texture and soil heterogeneity led to different water, fertilizer, gas, and heat
conditions and different crop growth status. We could even observe the differences of ET in the
same treatment through the high spatial resolution (4.7 cm) multispectral images. Table 4 shows the
treatment values of CV (coefficient of variation) and mean ET. The different water treatments in spatial
variations of field ET capacity from the reproductive to maturation stage were distinct. On the whole,
CV increased with decreased ET and increased water stress. In addition, CV increased over the maize
growth period in TRTs 2 and 3, which illustrated that the prolonged water stress distinctly detected
spatial fluctuations in field soil heterogeneity via its influences on maize evapotranspiration condition.
For instance, in the deficit irrigation treatment TRTs 2 and 3, CVs increased from 9% to 34% and 8% to
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18% with the accumulation of water stress. On the other hand, a higher CV in TRT 2 demonstrated that
the dual effect of soil heterogeneity and water stress could severely affect maize ET.

Next, the cumulative daily values of ET from 6 to 29 August 2017 for the three irrigation treatments
were calculated by two techniques. (1) The VIs (the average value of the entire treatment zone) method,
where daily crop water requirement (ET) was calculated by multiplying the daily crop coefficients of
daily ET0 (Equation (1)). As above-mentioned, crop coefficients were derived through the relationships
between Kcb and NDVI, and between Ks and TRCAI/RDVI. In addition, a cubic interpolation was
used to determine the values of VIs (NDVI, TRCAI, and RDVI) between two UAV flights. (2) The water
balance approach (Equation (18)). As presented in Table 5, the total water consumption of the three
treatments for the study period were 75 mm, 53 mm, and 67 mm, respectively. The difference between
the cumulative ET calculated by the VIs method and water balance approach were 2.6 mm, 8.9 mm,
and 5 mm, respectively. Note that the retrieved ET were similar to the crop water consumption.

Table 5. Cumulative ET from the 6–29 August 2017 investigative period calculated by the VI (vegetation
index) method and water balance approach for the three irrigation treatments.

Treatment VIs (mm) WB (mm)

TRT1 72.4 75
TRT2 61.9 53
TRT3 72 67

4. Discussion

Daily ET represents the most important process for the determination of the surface and
mass-energy interaction for both water resource management and agricultural practices. At present,
there are mainly two types of models for ET assessment. The first involves models using thermal band
based energy-balance approaches (SEB) [59,60]. The second method utilizes the empirical VI model.
Though the surface energy balance models are able to estimate ET with fine accuracy. Deficiencies
in the current suite of thermal data sources (e.g., plenty of data requirements, biases, inaccurate
calibration, poor spatial or temporal resolution) can strongly limit the applicability of such procedures
for the continuous monitoring of ET at a high spatiotemporal resolution [61]. Due to the longstanding
familiarity and widespread use within the irrigation community of crop coefficient approaches and
their relative operational simplicity, reflectance-based crop coefficients might elicit a successful and
far-reaching approach for improving irrigation management [12]. Multispectral VIs calculated from
canopy reflectance can be used to simulate real-time Kcb. Figure 6 shows that there was a strong
similarity between the Kcb-NDVI and Kcb-Table. With the help of UAVs, we can provide more
sophisticated Kcb information for irrigation management. Studies [29,62] showed that the VI-Kcb
model can perform well under well irrigation conditions, but that it could be difficult to capture actual
ET under the water stress condition. Water stress evaluation (Ks) based on soil water storage in the root
zone is the traditional and common method, but is costly and there is a shortage of representation. For
instance, Er-Raki et al. [29] reported that the original FAO-56 model may overestimate eddy covariance
measurements because of the misrepresentation of the soil stress factor.

To deal with these defects, Ks estimation is mainly divided into direct and indirect methods. In
indirect methods, they usually need to first obtain the potential ET (PET) and actual ET, and then
calculate Ks through the soil–water balance. It is difficult to obtain the actual ET because sophisticated
and costly instruments such as eddy covariance and lysimeters are generally limited. On the other
hand, estimating Ks through the indirect method is not only laborious, but is also not time-effective.
Diarra et al. [63] highlighted the uncertainty of indirect assessment in detecting crop water stress in
light of the decision making process for irrigation planning. Therefore, the direct calculation of Ks
is very important for the application of the FAO-56 dual Kc method. Some studies have employed
water stress indices derived from temperature data as the proxy. For instance, Kullberg et al. [33] used
four canopy temperature–based methods (CWSI, degrees above non-stressed (DANS), degrees above
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canopy threshold (DACT), and Tc ratio derived from infrared thermal radiometer) to calculate Ks and
estimate ET in a deficit irrigation experiment of corn. A similar observation was made by this study
when estimating Ks for maize with the CWSI. Figure 9 shows that the Ks derived CWSI was useful to
estimate ET, with an acceptable accuracy of R2 = 0.81 and RMSE about 0.95 mm/day when compared
with the modified FAO-56 Kc method. Bausch et al. [35] also obtained similar results using Tc ratio. The
applicability of the water stress index may be different in different areas and cultivation conditions,
so it is necessary to choose the local appropriate water stress index. Furthermore, the water stress
indices based on canopy temperature may be a more realistic parameter than soil–water content to
represent the stress coefficient due to the complicated physiological processes that plants undergo as
they encounter water stress [35]. In Figure 7, we can see that the Ks values calculated by CWSI are
not 1, as are the FAO-56 Ks in full-irrigation TRT 1. It is probable that even a well-watered crop could
have a high canopy temperature because of other changes in microclimate such as air temperature
and vapor pressure deficit (VPD) [64]. The change in the air temperature surrounding the leaf will
change the leaf temperature and directly affect the gradient of water vapor between the leaf and the
atmosphere. Water deficit stress and heat stress may be induced by changes in available water, VPD,
and increased ambient air temperature [65].

Stationary infrared thermometers were mainly used for validating the relationship between water
stress indictors and Ks [33,35], which can be greatly constrained by transport and operator costs and it
can be difficult to obtain large area images of crop. These shortcomings may cause significant errors
due to the difficulty of achieving a spatially-homogenous, targeted soil, or plant water status. More
importantly, it is difficult to obtain Kcb and Ks on a large area at the same time. Kcb and Ks from
different platforms and scales will inevitably lead to errors in estimating ET, especially with the high
heterogeneities of soil and crops. Several studies [36,66,67] have revealed the feasibility of mapping
crop water conditions using spectral vegetation indices, taking advantage of the high spatial resolution
capabilities that are more difficult in the thermal region. The RDVI and TCARI were developed
to reduce the variability of the photosynthetically active radiation due to the presence of diverse
non-photosynthetic materials and are useful in plant stress monitoring to capture the changes in canopy
structures caused by water stress [36,68]. Compared to the Ks calculated by on-site measurements, the
Ks based on VI-Ks regression models could better reflect the water stress conditions of maize at the
field scale. Taking DOY 231 as an example, the mean ET could well reflect TRT 2 (69%) and TRT 1
(100%) in the reproductive stage, with the corresponding values of 5.05 mm and 4.23 mm, respectively.
Table 5 confirmed the utility of VIs to help constrain the ET components under three different water
treatments. Cumulative estimated ET differed from the observed by only 2.6 mm, 8.9 mm, and 5 mm
for TRTs 1, 2, and 3, respectively. The result during the 24-day investigative period confirmed that
the model may be suitable for clearly distinguishing the different irrigation schemes. In addition, we
could obtain accurate ET only through the meteorological and UAV multispectral images.

Previous studies have reported on combining the FAO-56 Kc model with Landsat [13,57,69],
SPOT [25,70], and Sentinel 2 [71] data to estimate the crop coefficient and map crop water consumption.
However, with satellite remote sensing, a pixel represents a large area. It is difficult to observe the
variability in crop status on the field scale and to formulate precise irrigation plans. In addition, newly
higher resolution observation platforms may be too costly for crop monitoring. In contrast, UAVs
can monitor field ET information scale up information from the leaf to canopy/field levels and maybe
suitable technology for actual problem scouting within the field scale. From the ET maps (Figure 9), we
can observe that the evapotranspiration of crops varied even with the same treatment. Table 4 shows
the mean and CV values of different treatments due to the different soil texture and soil heterogeneity
in the field. Explicitly, because of the dual effect of soil heterogeneity and water stress, the CV of
ET reached 34% on DOY 241. Acquiring such data for planning is probably the role most people
envisage when they think of UAV remote sensing for precision agriculture. For example, Shi et al. [72]
proposed a decision support system for variable rate irrigation through field ET maps acquired by
multispectral UAV images, which were inputs to the fuzzy inference system and were successful in
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providing a duty-cycle control map for a central pivot variable rate irrigation system. Compared with
satellite remote sensing data, using UAV for field information management has unique advantages,
but there are still challenges in its application. UAV remote sensing images usually need to be acquired
on-site by researchers, which may lead to problems if the research area is remote and difficult to reach,
and the UAV cannot take long-distance photographs due to battery power limitations, so there are
certain limitations in wider-range crop monitoring. Moreover, using UAVs for planning has high costs
for data acquisition and analysis. To make monitoring economically worthwhile for farmers, new
methods of analysis are needed to bring costs down. Even so, UAV technology is now available to give
farmers the data products they have long been requesting from remote sensing [73]. In sum, this study
demonstrates the feasibility of mapping maize crop ET under the water stress condition and monitor
its spatial variability at a field scale by using UAV-based VI-Kcb and VI-Ks regression models.

5. Conclusions

As the most widely used approach for calculating crop evapotranspiration (ET), the FAO-56 dual
Kc method has been increasingly used and improved with remote sensing data. However, the accurate
estimation of the temporal and spatial variability of crop ET within the field scale is still a challenge,
especially when water stress occurs. To better monitor water requirements under water stress and
provide a simpler and more maneuverable method for farming practices, this study investigated
whether an UAV-based multispectral remote sensing system could map the evapotranspiration of
maize under different levels of deficit irrigation at the field scale as a supplement to the dual crop
coefficient model. We confirmed that CWSI can be a better index assimilated into local maize ET
estimation under deficit irrigation. The comparison results show that the ET derived from Ks-CWSI
had a higher correlation with the modified FAO-56 Kc method, with a coefficient of determination
value of 0.81, root mean square error value of 0.96 mm/d, and index of agreement value of 0.94. Based
on which, a stable relationship between VIs and crop coefficients (Kcb and Ks) can be assimilated
into the FAO-56 dual Kc method for field maize ET estimation. Thanks to the UAV system, we could
obtain high-resolution images with higher frequencies for finer irrigation management. In summary,
this study demonstrates the feasibility of mapping maize crop evapotranspiration and monitoring its
spatial variability within the field scale by using UAV-based multispectral images under the water
stress condition. Future experiments will incorporate the ground validation (eddy covariance or
lysimeter) of ET to provide an independent assessment of model accuracy and use more convenient
and reliable water stress indices to evaluate crop stress and quantify crop evapotranspiration over a
longer crop growth period.
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