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Abstract: Recent advances in the fusion technology of remotely sensed data have led to an increased
availability of extracted urban information from multiple spatial resolutions and multi-temporal
acquisitions. Despite the existing extraction methods, there remains the challenging task of fully
exploiting the characteristics of multisource remote sensing data, each of which has its own advantages.
In this paper, a new fusion approach for accurately extracting urban built-up areas based on the
use of multisource remotely sensed data, i.e., the DMSP-OLS nighttime light data, the MODIS land
cover product (MCD12Q1) and Landsat 7 ETM+ images, was proposed. The proposed method
mainly consists of two components: (1) the multi-level data fusion, including the initial sample
selection, unified pixel resolution and feature weighted calculation at the feature level, as well as pixel
attribution determination at decision level; and (2) the optimized sample selection with multi-factor
constraints, which indicates that an iterative optimization with the normalized difference vegetation
index (NDVI), the modified normalized difference water index (MNDWI), and the bare soil index
(BSI), along with the sample training of the support vector machine (SVM) and the extraction of urban
built-up areas, produces results with high credibility. Nine Chinese provincial capitals along the Silk
Road Economic Belt, such as Chengdu, Chongqing, Kunming, Xining, and Nanning, were selected
to test the proposed method with data from 2001 to 2010. Compared with the results obtained by
the traditional threshold dichotomy and the improved neighborhood focal statistics (NFS) method,
the following could be concluded. (1) The proposed approach achieved high accuracy and eliminated
natural elements to a great extent while obtaining extraction results very consistent to those of the
more precise improved NFS approach at a fine scale. The average overall accuracy (OA) and average
Kappa values of the extracted urban built-up areas were 95% and 0.83, respectively. (2) The proposed
method not only identified the characteristics of the urban built-up area from the nighttime light data
and other daylight images at the feature level but also optimized the samples of the urban built-up
area category at the decision level, making it possible to provide valuable information for urban
planning, construction, and management with high accuracy.

Keywords: Urban built-up areas; DMSP-OLS data; MCD12Q1 product; Landsat 7 ETM+ images;
multi-level fusion; SVM; sample training; iterative optimization; Silk Road Economic Belt

1. Introduction

Urban built-up areas are generally defined as the urban administrative region where the majority of
the area has been developed, and the municipal public facilities are widely available. These areas tend to
have a higher population density and more social-environmental problems than their surroundings [1,2].
One of the main advantages of remote sensing technology is that information about the extents
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and elements of the built-up areas can be identified and extracted for urban planning and resource
management, risk assessment, and disaster warning [3–5]. Methods for extracting and analyzing the
traditional optical remote sensing image data for urban built-up areas from QuickBird, Landsat, Systeme
Probatoire d’ Observation de la Terre (SPOT), and Moderate Resolution Imaging Spectroradiometer
(MODIS) are emerging continuously. It is worth stressing that the Defense Meteorological Satellite
Program-Operational Linescan System (DMSP-OLS) nighttime light data can effectively detect city
lights and extract information about cities, and the related theories and technologies have driven great
achievements in many fields, such as the extraction of urban scope, the monitoring of urban expansion
changes, and the prediction of socioeconomic factors, such as gross national product, power consumption,
and carbon emissions [6–10].

High-resolution optical remote sensing images and other high-quality land cover data products
are important data sources for the extraction of urban information [11–17]. Li et al. [18] proposed
an approach to detect built-up areas by using unsupervised learning technology, which was based
on remote sensing images with high resolution. Chen et al. [19] developed a field-based method
to automatically detect built-up areas from high-resolution satellite images. However, most of the
available data have a limited temporal coverage, which limits its usefulness for dynamic spatial or
temporal analysis. Problems arise when the same object exhibits different spectra and different objects
exhibit the same spectrum. If results are interpreted accurately, an analysis usually requires complex
computations or limited accuracy, leading to time consumption and instability. Additionally, most
high-resolution data and the associated extraction methods are mainly limited by their temporal
coverage or spatial characteristics. Moreover, labor-intensive and time-consuming disadvantages will
become increasingly obvious when considering a large number of scenarios. Undoubtedly, these are
the manifestation of the limited usefulness of large-scale studies, especially those predicated on urban
remote sensing, such as urban dynamic analysis and geographical condition monitoring.

Recent advances related to the data fusion of nighttime light data and other daylight images
aim to enable feature complementation and information enhancement and are potentially useful for
compensating for the disadvantages of the abovementioned single data sources in extracting urban
information [20–24]. Bhatti [25] proposed a novel method to extract built-up areas by integrating
temperature data, normalized difference vegetation index (NDVI), and the modified normalized
difference water index (MNDWI), which improved the overall accuracy of the extraction. Lin et al. [26]
proposed a maximum-entropy method for extracting urban areas from data collected in 2000, 2005
and 2010 by combining MODIS surface reflectance, MODIS NDVI, and DMSP-OLS data based on the
maximum-entropy model (MAXENT). Zhou et al. [27] developed a cluster-based method to estimate the
optimal thresholds and map urban extent from the DMSP-OLS NTL data based on the cluster size and
overall nighttime light magnitude, which can be used to map urban areas at different levels. Although
these methods can reduce the issues of over- and underestimation, the deficiencies of nighttime light
data resolution, such as the overlapping of adjacent pixels, geolocation error, and the limited temporal
coverage of the data products, can still be considered unavoidable influencing factors. Shi et al. [28]
proposed an improved Neighborhood Focal Statistic (NFS) method based on nighttime light data,
NDVI data, and water vector data in accordance with the approximation of the characterization trend
of each urban area in the nighttime light data and digital elevation model (DEM). The improved
NFS method primarily identifies central and marginal urban areas using maximum and minimum
NFS calculations based on the DMSP-OLS data while eliminating vegetation features and water
bodies with multisource geographic data integration to optimally extract the urban areas. However,
the abovementioned research mainly achieved data fusion at a single level or only discussed data
integration from the perspective of GIS (i.e., an overlay analysis). Huang et al. [27] proposed a novel
ensemble support vector machine (SVM) method, which combined multisource data (including remote
sensing and socioeconomic data). The core concept of his method is an adaptive thresholding technique,
which can be used to identify the diverse urban characteristics for mapping urban areas, especially for
prefecture-level cities. Substantial achievements have been obtained by the abovementioned fusion
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methods, especially for urban information extraction from high resolution images, nighttime light
data, and various other products. The following challenges may still be encountered: (1) Since urban
elements are characterized from different remote sensing data, the features dependent on the relevant
sample selection and training parameters or indices have not been comprehensively considered;
(2) The issue of differences in the resolution among multisource data has not been addressed properly.
Specifically, the adverse influences of the extraction result accuracy may still occur regardless of the
adopted fusion method.

To address the abovementioned problems, which are associated with the fusion extraction methods
for urban built-up areas, as well as to improve the credibility and effectiveness of the final results,
a new fusion approach for extracting urban built-up areas is proposed based on multisource data
sets, i.e., DMSP-OLS nighttime light data, the MODIS land cover product (MCD12Q1) and Landsat
7 ETM+ images. The proposed approach mainly consists of two steps: (1) multi-level data fusion,
which is composed of the initial sample selection, unified pixel resolution, and feature weighted
calculation, as well as pixel attribution determination at the decision level, enhancing the characteristics
of urban built-up area samples and providing for the subsequent SVM optimization. (2) SVM iterative
optimization with multi-factor constraints, which considers the abovementioned fusion results as
samples of urban built-up areas, and several indices related to vegetation, water, and bare soil as
samples of a non-urban built-up area. This process refines the sample training and obtains the final
urban built-up extraction results with high creditably. To validate the flexibility and robustness of the
proposed method, experiments were conducted for several typical regions in the Chinese domestic
cities along the Silk Road Economic Belt. The experimental results revealed the spatial patterns and
processes of urban expansion at a large spatial scale over nearly a decade but also demonstrated that
the proposed approach can be applied to urban thematic studies that use multisource, multi-temporal,
and multi-resolution remote sensing data. In particular, the characterization of urban ground objects is
strengthened. More importantly, the proposed method effectively improved the extraction accuracy of
urban built-up areas.

The remainder of this paper is organized as follows: Section 2 introduces the study area and
materials. Section 3 describes the proposed approach. The experimental results and discussion are
provided in Section 4, and conclusions are drawn in Section 5.

2. Study Areas and Materials

The Silk Road Economic Belt is an economic development area formed on the basis of the “ancient
silk road” and a major strategy proposed by the Chinese President Xi Jinping in his speech at the
Nazarbayev University in Kazakhstan in 2013 [29]. Domestic regions along the Silk Road Economic
Belt mainly cover five northwestern provinces (Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang) and
four southwestern provinces (Chongqing, Sichuan, Yunnan, and Guangxi), as shown in Figure 1.
Capital cities such as Xi’an, Lanzhou, Xining, Yinchuan, Urumqi, Chongqing, Chengdu, Kunming,
and Nanning are the key experimental areas for information fusion and the subsequent extraction
of the urban built-up areas in this paper. Therefore, accurately and efficiently extracting information
from urban built-up areas at multi-spatial and multi-temporal scales is of great significance to fully
understand the urbanization process in western China.

The DMSP-OLS data, MODIS land cover product (MCD12Q1), and Landsat 7 ETM+ image data
were used in this research. The main characteristics of each data source are summarized in Table 1.
Note that all datasets were acquired in 2010 and covered several of the cities considered in this study.

The DMSP-OLS data with a 2 km global spatial resolution and were provided by the National
Geophysical Data Center. Stable nighttime light images, one of the DMSP-OLS products, are annual
raster graphic images that show the average nighttime light intensity, which includes lights in urban
and rural areas and other permanent lights but excludes noise, such as moonlit clouds or fire [30,31].
Specifically, the digital number (DN) values of these images represent the average light intensity, which
ranges from 0 to 63. Pixels with a value equal to 0 represent a completely dark area, which is not the



Remote Sens. 2019, 11, 2516 4 of 17

focus of this study, whereas a relatively high DN value represents greater light intensity and more
human activity.Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 17 
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Figure 1. Nighttime light image covering nine Chinese provinces in the Silk Road Economic Belt
in 2010.

Table 1. Description of the Multisource remote sensing data sets used in this study.

Data Source Product Description Spatial Resolution Time

DMSP-OLS data

Yearly stable nighttime light composites, which
show the average nighttime light intensity,

including light emission from fires disasters,
large-scale burning, the surface of the sea and

cities at night with an anti-interference function
to reduce the noise caused by clouds and water.

2 km

2001 to 2010

MODIS
landcover
product

MCD12Q1 product, which is obtained from
annual Terra and Aqua observations, usually

describing 17 types of land cover surfaces,
including 11 natural vegetation types, 3

land-development and inlay types, and 3 types
other than vegetation and developed land.

0.5 km

Landsat 7 ETM+
images

Sensor with Enhanced Thematic Mapper Plus
(ETM+) equipment, which induces surface
reflection of the solar radiation and thermal

radiation, including 8 bands of sensors covering
different wavelengths from infrared to visible

light.

30 m 2010

The MODIS land cover product (MCD12Q1) is an annual data product with a global land coverage
obtained by a MODIS sensor with a resolution of 500 meters [32]. This product mainly captures
evergreen coniferous forests, evergreen broad-leaved forests, deciduous-coniferous forest, deciduous
broad-leaved forests, mixed forests, jungles, bushes, tropical grasslands/grasslands with trees, crops,
water, bare land, or low vegetation, as well as urban and built-up areas. For the information fusion and
extraction for urban built-up areas, the land cover type with the attribute value of 13 in the MCD12Q1
product is classified as the built-up area land cover type, while ground objects corresponding to other
attribute values are uniformly classified into the non-built-up area land cover type. Moreover, in this
study, the Maryland University Vegetation Classification Scheme [33] was used to classify and extract
the local elements in the MCD12Q1 data based on the natural environment and urban development
characteristics of the test area to provide a data foundation for the subsequent fusion and extraction.
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The Landsat-7 satellite was launched by NASA on April 15, 1999, and the main sensor it possesses
is the Enhanced Thematic Imager (ETM+) [34]. The multi-spectral data from the Landsat 7 ETM+ sensor
has eight bands: the visible bands, i.e., band 1–3; the near-infrared band, i.e., band 4; the shortwave
infrared bands, i.e., bands 5 and 7; the thermal infrared band, i.e., band 6, which was not considered in
this paper; and the panchromatic band, i.e., band 8. The spatial resolution of bands 1–5 and band 7 is
30 m and that of bands 6 and 8 are 60 m and 15 m, respectively. Bands 1–5, band 7, and band 8 were
used in the preprocessing step for extracting the indices of vegetation, water, and bare soil as well as
conducting the optimized processing of the ETM+ image during the multi-band fusion. This can lay
a foundation for the later error matrix verification and visualized comparison of the extraction results.

Additionally, information on the boundaries of the urban administrative divisions and urban
spatial structures was gathered from a 1:25 million administrative division boundary map released by
the National Geomatic Center of China in 2012 [35–38].

3. Methods

A new fusion approach for extracting urban built-up areas from multisource remotely sensed
data was proposed with a high degree of reliability. The flowchart in Figure 2 mainly includes the
following: (1) Preprocessing of the DMSP-OLS data, MCD12Q1 product, and Landsat 7 ETM+ images;
(2) multi-level data fusion, including the initial sample selection, unified pixel resolution and feature
weighted calculation at the feature level, as well as the determination of the pixel attribution at the
decision level; and (3) Sample iterative optimization with multi-factor constraints, including the refined
sample selection and iterative mechanism for the final urban built-up area results. The details of each
step are described as follows.

Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 17 

 

deciduous broad-leaved forests, mixed forests, jungles, bushes, tropical grasslands/grasslands with 
trees, crops, water, bare land, or low vegetation, as well as urban and built-up areas. For the 
information fusion and extraction for urban built-up areas, the land cover type with the attribute 
value of 13 in the MCD12Q1 product is classified as the built-up area land cover type, while ground 
objects corresponding to other attribute values are uniformly classified into the non-built-up area 
land cover type. Moreover, in this study, the Maryland University Vegetation Classification Scheme 
[34] was used to classify and extract the local elements in the MCD12Q1 data based on the natural 
environment and urban development characteristics of the test area to provide a data foundation for 
the subsequent fusion and extraction. 

The Landsat-7 satellite was launched by NASA on April 15, 1999, and the main sensor it 
possesses is the Enhanced Thematic Imager (ETM+) [35]. The multi-spectral data from the Landsat 7 
ETM+ sensor has eight bands: the visible bands, i.e., band 1–3; the near-infrared band, i.e., band 4; 
the shortwave infrared bands, i.e., bands 5 and 7; the thermal infrared band, i.e., band 6, which was 
not considered in this paper; and the panchromatic band, i.e., band 8. The spatial resolution of bands 
1–5 and band 7 is 30 m and that of bands 6 and 8 are 60 m and 15 m, respectively. Bands 1–5, band 7, 
and band 8 were used in the preprocessing step for extracting the indices of vegetation, water, and 
bare soil as well as conducting the optimized processing of the ETM+ image during the multi-band 
fusion. This can lay a foundation for the later error matrix verification and visualized comparison of 
the extraction results. 

Additionally, information on the boundaries of the urban administrative divisions and urban 
spatial structures was gathered from a 1:25 million administrative division boundary map released 
by the National Geomatic Center of China in 2012 [36,37]. 

3. Methods 

A new fusion approach for extracting urban built-up areas from multisource remotely sensed 
data was proposed with a high degree of reliability. The flowchart in Figure 2 mainly includes the 
following: (1) Preprocessing of the DMSP-OLS data, MCD12Q1 product, and Landsat 7 ETM+ images; 
(2) multi-level data fusion, including the initial sample selection, unified pixel resolution and feature 
weighted calculation at the feature level, as well as the determination of the pixel attribution at the 
decision level; and (3) Sample iterative optimization with multi-factor constraints, including the 
refined sample selection and iterative mechanism for the final urban built-up area results. The details 
of each step are described as follows. 

 
Figure 2. Flowchart of the proposed approach. 

3.1. Data Preprocessing 

Figure 2. Flowchart of the proposed approach.

3.1. Data Preprocessing

The preprocessing operations were first performed on the nighttime light data, land coverage
data, and Landsat 7 ETM+ remote sensing images. The details are presented as follows:

(1) Regarding the saturation phenomenon of the DMSP-OLS stable nighttime light data series and
the discontinuity phenomenon related to its multiple sensors [35–37], this article used the calibration
method of long time series DMSP-OLS nighttime light datasets proposed by Cao et al. [39]. The major
steps are the mutual calibration of the raw data images and the calibration between each image series
from 2001 to 2010. Next, the areas of interest are extracted from the abovementioned result sets with
a mask and then converted to the WGS-84 coordinate system.
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(2) Regarding the preprocessing of land cover data, the “urban and built-up areas” raster datasets
were extracted for subsequent fusion and extraction according to the self-classification system and the
threshold definition of each element of the ground objects in the MCD12Q1 product. Next, the areas
of interest are extracted from the abovementioned result sets with a mask and then converted to the
WGS-84 coordinate system.

(3) Regarding the preprocessing of Landsat 7 ETM+ remote sensing data, in addition to converting
the data to the WGS-84 coordinate system and extracting the areas of interest with a mask, there was
also the fusion processing of its own bands and the index calculation of its corresponding ground
objects to provide the data foundation for the subsequent extraction. Specifically, the fusion bands
were calculated with Equations (1)–(3) as NDVI [40], MNDWI [41], and BSI [42] in accordance with the
spectral characteristics of natural elements such as vegetation, water, and bare soil. The index results
were saved as rasters in the form of vegetation, water, and bare soil sample sets. The specific indices
are calculated as follows:

NDVI =
ρNIR − ρRed

ρNIR + ρRed
(1)

MNDWI =
ρGreen − ρMIR

ρGreen + ρMIR
(2)

BSI =
(ρSWIR1 + ρRed) − (ρNIR + ρBlue)

(ρSWIR1 + ρRed) + (ρNIR + ρBlue)
(3)

where NDVI is the most widely applied metric parameter to represent the vegetation cover and growth
status on the land surface; MNDWI represents the water metric parameter of vegetated areas and
urban areas; and BSI represents bare soil in urban areas. ρRed is the red band, ρGreen is the green band,
ρBlue is the blue band, ρNIR is the near-infrared band, ρMIR is the medium-infrared band, and ρSWIR1 is
the shortwave infrared band.

Considering that Landsat 7 ETM+ data are far superior to nighttime light data and land coverage
data in terms of spatial resolution and spectral band richness, the extraction result could be used
as a reference for the future verification of various methods [43,44]. To better verify the results of
the built-up areas extracted by various methods, this paper also fused the original Landsat 7 ETM+

spectral bands 1–5 (30 m) and 7 (30 m) with the panchromatic band 8 (15 m) to obtain six fusion bands
with a resolution of 15 m. Then, the SVM classifier was utilized to extract built-up areas from the
fused images. The 15 m resolution extracted dataset was obtained for the quantitative verification and
comparative analysis of the different extraction methods.

3.2. Multi-Level Data Fusion

Based on the characteristics of feature-level and decision-level fused remote sensing data, urban
built-up areas and their relation to the data fusion and feature extraction processes were considered
the focus of this study. A multi-level data fusion method was proposed to enhance the characterization
of urban built-up areas and to provide fusion samples for subsequent SVM sample training and
iterative optimization.

Specifically, the data fusion method is composed of initial sample selection, unified pixel resolution
and feature weighted calculation at the feature level, and pixel attribution determination at the decision
level. DMSP-OLS nighttime light data and MCD12Q1 products were used as examples in Figure 3,
and the flowchart and more details are described below.

(1) In the initial sample selection step, the SVM classification method was used to obtain the
feature parameters of the built-up areas from the DMSP-OLS data and the MCD12Q1 product. On the
one hand, it should be considered that the built-up urban areas are illuminated artificially at night, and
the corresponding pixels in nighttime light images have larger DN values than those of the surrounding
dark rural areas [45,46]. Based on this, the patches whose DN values fall within the range of [60, 63]
could be chosen as the initial sample of the built-up area land cover type from the DMSP-OLS data
and patches whose DN values fall within the range of [0, 3] could be selected as the initial sample of
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the non-built-up area type from the DMSP-OLS data. On the other hand, patches that belong to the
type “urban and built-up areas” in the MCD12Q1 product could be chosen as the initial sample of the
built-up area land cover type, and patches not conforming to this land cover type could be chosen
as the initial sample of the non-built-up area type from the MCD12Q1 product. Meanwhile, the post
probability value P [47], which indicates the actual probability that a pixel belongs to a given category,
can be obtained after the SVM classifications based on the DMSP-OLS data and MCD12Q1 product. By
combining the extraction results of the SVM classification and the ETM+ fusion image, the overall
accuracy value ω in the corresponding error matrix can be calculated.
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(2) Large differences existed in the resolutions between the DMSP-OLS data and MCD12Q1
product. During the pixel resolution unification step, the overall accuracy and post probability value
of each pixel at the original resolution of 0.5 km was downscaled to a 2 km resolution. This means that
the integrated pixels and their corresponding values could be obtained by downscaling the resolution,
which laid the foundation for the subsequent feature weighted calculation.

(3) In the feature weighted calculation step, the feature weighted models (Equations (4) and (5))
were adopted to separately calculate the tendency degree (that is, the weighted value YBu

i, j , which

refers to the built-up area type, and the weighted value YNBu
i, j , which refers to the non-built-up area

type) with the overall accuracy and the post probability value for pixel i (as above) for the j data
source, i.e., the DMSP-OLS data and MCD12Q1 product. Then, weighted values corresponding to the
abovementioned data sources for pixel i were summarized to determine the total weighted value TBu

i
and the total weighted value TNBu

i : YBu
i, j = ωBu

i PBu
i , i = 1, 2, 3, . . . , n; j = 1, 2, 3, . . . , m

YNBu
i, j = ωNBu

i PNBu
i , i = 1, 2, 3, . . . , n; j = 1, 2, 3, . . . , m

(4)

where Yi, j represents the weighted value Y of each pixel i in the data source j, which is equal to the
product of the overall accuracy ω and the post probability P, n is the total number of the pixels in
the data source j, and m is the total number of the kinds of data sources. The weighted value can be
regarded as the influence degree or tendency degree of different data sources on the determination
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of each pixel attribute type, where the weighted value of the built-up area type of pixel i in the data
source j is YBu

i, j , while the weighted value of the non-built-up area type of the pixel i is YNBu
i, j .


TBu

i =
m∑

j=1
YBu

i, j , i = 1, 2, 3, . . . , n; j = 1, 2, 3, . . . , m

TNBu
i =

m∑
j=1

YNBu
i, j , i = 1, 2, 3, . . . , n; j = 1, 2, 3, . . . , m

(5)

where Ti represents the total weighted value of each pixel, which is obtained by summarizing the
corresponding Yi, j of each data source j, reflecting the sum of the weights from all the data sources to
each pixel i belonging to different types. The attribute value of the tendency degree of the built-up area
“Bu” of the given pixel i in all data sources is TBu

i , while the attribute value of the tendency degree of
the non-built-up area “NBu” of the pixel i is TNBu

i .
(4) In the pixel attribution determination step, the true type Di of the pixel i was determined

through the decision analysis model (Equation (6)) based on each TBu
i and TNBu

i .{
Bu, TBu

i − TNBu
i > 0

NBu, otherwise
(6)

where Di represents the final attribution type of each pixel i, which is determined by comparing TBu
i

and TNBu
i of the pixel. If TBu

i is greater than TNBu
i , it indicates that the weighted results of all the data

sources will be the built-up area type “Bu” towards the pixel i; otherwise, the weighted results of all
the data sources will be the non-built-up area type “NBu” towards the pixel i.

After the abovementioned processing operations, the set of urban built-up areas could be obtained.
Not only did our proposed method greatly enhance the characteristic information of the land cover
type “Bu” but it also provided guarantees for the sample iterative optimization with multi-factor
constraints in the next stage.

3.3. Sample Iterative Optimization with Multi-Factor Constraints

According to the characteristics of each spectral band of the Landsat 7 ETM+ image and concepts
related to SVM sample training [27], a method of sample iterative optimization with multi-factor
constraints was proposed to extract information at a finer scale. The results of the multi-level data fusion
for urban built-up areas mentioned in Section 3.2, together with the results of the index calculations of
the vegetation, water, and bare soil in the Landsat 7 ETM+ image, were regarded as the multi-factor
constraints. These factors were included in the sample refined selection between the urban built-up
area class and non-built-up area class. After that, the final results of the urban built-up area were
obtained through the SVM iterative optimization. Specifically, the set of urban built-up areas resulting
from the process described in Section 3.2 was used as the criteria for the built-up area type. Pixels
satisfying this condition were used as samples of the urban built-up area in the subsequent SVM iterative
optimized extraction. Meanwhile, the distributions of the NDVI, MNDWI, and BSI values associated
with vegetation, water, and bare soil elements in the corresponding experimental areas were calculated.
These were used as multiple natural element factors, which were involved in the sample selection of
the non-built-up area type. The larger the value of each natural element index is, the more prominent
the characteristics of the corresponding ground object elements. Based on this, the range of extreme
values of each element index can be determined and set. Pixels falling within the range of extreme values
have the maximum probability of belonging to natural elements such as vegetation, water, and bare soil.
These pixels were used as the non-built-up area samples to be included in the subsequent SVM iterative
optimized extraction. Taking the distribution of the NDVI value in Suzhou as an example (shown in
Figure 4), approximately 100 sample points, as shown by the red and highlighted symbols, were selected
from the Landsat 7 ETM+ images based on the visual interpretation of the images. From the statistical
analysis, it can be observed that the NDVI values of the highlighted point clusters are within the range of
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a certain value, such as 0.25 and 0.45, both of which were used to identify the above-highlighted clusters.
If the given NDVI values fall within a range of value domains (such as [0.25, 0.45] in Figure 4b), then that
range was set as the range of extreme values corresponding to the samples of vegetation. According to
the abovementioned rules, the ranges of the extreme values corresponding to MNDWI and BSI were
obtained. Those pixels falling within the ranges of the extreme value could be used for reflecting the
features of ground objects, such as vegetation, water, or bare soil, as well as unified into the refined
sample pixel of the non-urban built-up areas in Suzhou. In Figure 5, the areas enclosed in the red boxes
are forested land, inner lake, and dirt road; the NDVI, MNDWI, and BSI values of all the pixels in these
areas are also within the range of the value domains and can be used as non-urban built-up area samples.
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The refined samples of the built-up area type and the non-built-up area type are processed through
SVM iterative optimization and classification by referring to our related research [48]. When the SVM
classification is completed, the patch of built-up area and its proportion in the total area before and
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after the calculation were compared to see whether it is consistent with the subsequent conditions of
the iteration.

θ =
Areapresent −Areaprevious

Areatotal
(7)

where Areapresent, Areaprevious, and Areatotal represent the patch area of the built-up area obtained from
the previous iteration, the current iteration and the total area of the urban patch, respectively; θ is
the proportion of the differences in the two iterative classification results in the total urban area.
The relationships among Areapresent, Areaprevious, and θwere evaluated repeatedly based on Equation (7).
With multiple iterations, when θ was completely converged (at θ ≤ 0.08), the results of the previous
iteration and the current iteration were very close, so the current iterative result could be the optimal
refinement result. This would satisfy the high credibility requirements of urban built-up area extraction.

4. Experimental Results and Discussion

This study focused on nine capital cities (including Xi’an, Lanzhou, Xining, Yinchuan, Urumqi,
Chongqing, Chengdu, Kunming, and Nanning) along the Silk Road Economic Belt in Western China.
The spatial resolution of the Landsat 7 ETM+ fusion image had a finer resolution than that of
the nighttime light data and global land coverage data; therefore, the extraction results from the
ETM+ fusion image were used as a reference for the following experiments. To quantify the overall
performance of the traditional threshold dichotomy method [49], the improved NFS method [28], and
the proposed method in this paper, an accuracy assessment was carried out at the provincial and
municipal scales that considered those methods used in the different extraction schemes. Each result
was compared with those extracted from the ETM+ fusion images based on the visual and quantitative
comparison of the spatial distribution and the form of the pattern spots.

4.1. Urban Extraction from 2001 to 2010

Figure 6 shows the dynamics of urban expansion over the period 2001 to 2010 based on the results
of the urban built-up area extracted by the method proposed in this paper. As shown in Figure 6, the red
spots characterize the urban built-up areas with relatively concentrated populations and frequent
activities in the provincial capital cities, such as Chengdu, Chongqing, Kunming, and Nanning, in 2001;
the green spots characterize the expansion of the abovementioned urban built-up areas from 2001 to
2010, while the gray mixed areas represent non-built-up areas. It can be observed that the green spots
in the abovementioned areas are significantly expanded along the outer edges of the built-up areas,
shown in red, in 2001, indicating that the urban expansion in the area along the Silk Road Economic
Belt is significant in the past decade. This expansion is mainly seen in the urban-rural integration area
with the urban built-up areas as the centers and the spread into the non-urban areas.
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4.2. Accuracy Assessment Based on Finer-Resolution Remote Sensing Data

Regarding visual verification, nine provincial capital cities (Xi’an, Lanzhou, Xining, Yinchuan,
Urumqi, Chongqing, Chengdu, Kunming, and Nanning) were used as examples in this section for
studying the areas along the Silk Road Economic Belt. Based on the extraction results of the ETM+

fusion images in 2010, visual verification was conducted at the provincial scale for the threshold
dichotomy, the improved NFS method, and the method proposed in this paper. As shown in Figure 7,
the results extracted by the abovementioned three methods are very similar to those of the ETM+

image extraction. Nevertheless, the patches extracted by the threshold dichotomy method are the
roughest according to the manual intervention of the threshold comparison and adjustment, which
can be seen in Figure 7c. Specifically, the results obtained from the threshold dichotomy method
covered not only the regions of the extraction results from the ETM+ image but also a large number
of commission errors. The results of the built-up areas extracted by the improved NFS method are
shown in Figure 7d. As there is a process of eliminating water and vegetation elements involved in this
method based on the NDVI calculation and overlay analysis of the vector data layer, both the overall
contour of the built-up area and the patch details are superior to those obtained by the dichotomy
method. It should be noted that differences still exist in the extraction results of the ETM+ image,
as shown in Figure 7f. For example, the misclassification of the patches in Nanning, Yinchuan, and
Urumqi are relatively distinct, and the number and the range of the overall patch exceeds those of the
ETM+ image extraction results. Compared with the above two methods, the proposed approach could
eliminate natural elements such as water, vegetation, and bare soil. This can be observed intuitively
from the spatial distribution of patches in Figure 7e, which matches with the extraction results of the
ETM+ fusion image. Although the land cover around the cities varies in detail, such as the size and
shape of the built-up area patches, our proposed method can still efficiently identify the locations and
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boundaries of the urban built-up area patches and have the highest consistency with the extraction
results of the ETM+ fusion image.
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Figure 7. Results of built-up area extraction in 2010 by the proposed approach and several
reference methods. (a) The Defense Meteorological Satellite Program-Operational Linescan System
(DMSP-OLS) image; (b) the Landsat 7 ETM+ image; (c) the threshold dichotomy method; (d) the
improved neighborhood focal statistics (NFS) method; (e) the proposed method; (f) the ETM+ fusion
image extraction.

Based on the extraction results of the abovementioned provincial capital cities, Chengdu, Kunming,
Nanning, and Chongqing were selected as key examples of the accuracy validation in this section.
By referring to the extraction results of the ETM+ fusion images for 2010, confusion matrix parameters,
such as the overall accuracy (OA), Kappa coefficient, commission error (CE), and omission error (OE),
can be utilized to verify the accuracy of the threshold dichotomy method, the improved NFS method,
and the method proposed in this paper. As shown in Table 2, in these cities, the overall accuracy
of our proposed method is higher than that of the other two methods, and the commission and
omission errors of the proposed method are the lowest among these methods. Moreover, the average
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of the Kappa coefficient is maintained above 0.83. The average of the OA values exceeds 95%, while
the CE and OE values are less than 20%. For instance, the Kappa coefficient and OA values of the
fusion extraction method proposed in this paper were improved by 0.08 and 4.48%, respectively,
in comparison with those of the improved NFS method in areas in Chongqing; this is an increase of
0.11% and 8.31%, respectively, in comparison with the extraction results of the threshold dichotomy
method. The proposed method produces a decrease of 10.21% and 1.72% for the CE and OE values,
respectively, in comparison with those of the improved NFS method. The proposed method also
optimized the CE and OE values by 18.38% and 9.84% in comparison with the extraction results of the
threshold dichotomy. Therefore, the method proposed in this paper has been shown to have a high
ability to extract built-up areas surrounded by a variety of complex natural ground objects as well as to
suppress the adverse effects caused by error transmission that might be generated between different
resolutions and different areas to a certain extent.

Table 2. Comparison of the obtained accuracy and error values among the different algorithms.

Study Areas Method Kappa OA (%) CE (%) OE (%)

Chengdu
Threshold dichotomy 0.67 88.65 41.67 11.59
Improved NFS 0.72 91.41 37.52 3.79
Proposed method 0.78 95.38 18.98 10.99

Kunming
Threshold dichotomy 0.76 86.73 29.31 25.49
Improved NFS 0.80 90.49 5.98 28.23
Proposed method 0.85 97.98 13.42 12.86

Nanning
Threshold dichotomy 0.69 88.42 39.01 43.65
Improved NFS 0.72 92.37 37.85 10.86
Proposed method 0.80 98.16 17.95 12.63

Chongqing
Threshold dichotomy 0.81 90.11 31.57 12.83
Improved NFS 0.84 93.94 23.40 4.71
Proposed method 0.92 98.42 13.19 2.99

Compared to other existing built-up area extraction methods, our proposed method devotes
greater attention to the characterization of urban built-up areas and the surrounding ground objects in
different data sources regardless of whether the analysis is based on nighttime light data or daylight
data. The proposed method not only implemented the fusion of nighttime light data and other
multisource, multi-temporal, and multi-resolution remote sensing images at the feature level and
decision level but also considered the sample fusion of multiple characterization factors of built-up
areas and non-built-up areas, thus enhancing the credibility of information extraction of the urban
built-up areas. However, it does have some limitations and areas for improvement, which should not be
ignored. First, the influence of nighttime light saturation and problems associated with using sensors of
various quality, especially the low resolution of DMSP-OLS nighttime light data, are still unavoidable.
Second, the test scales and coverage area involved in this study only reached the municipal level.
Therefore, the scales of the nation, the continent, and even the world have not yet been considered.
Third, new nighttime data, such as NPP-VIIRS and LJ1-01, can be adopted to improve the fusion of
nighttime light data and daylight data. Overall, the proposed method has the potential to extract urban
built-up areas with satisfactory accuracy.

5. Conclusions

In this paper, the urban built-up area, which reflects urban development and human activities,
was regarded as the main research object. Based on the remote sensing data fusion theory at the feature
level and decision level, a new fusion approach for extracting urban built-up areas from multisource
remotely sensed data was proposed. The approach includes the multi-level fusion at the feature level
and decision level, as well as sample iterative optimization with multi-factor constraints based on
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DMSP-OLS data, the MCD12Q1 product, and Landsat 7 ETM+ images. Specifically, the multi-level
fusion is performed to enhance the characterization of urban built-up areas and provide fusion
samples for the sample iterative optimization. The sample iterative optimization is used to refine the
SVM sample training by taking into account the multi-factor constraints and iterative optimization
mechanism, leading to final extraction results with high credibility. The results of the proposed
method for extracting built-up areas in domestic cities along the Silk Road Economic Belt in China
showed a high consistency with those of the ETM+ fusion image compared with the conventional
threshold dichotomy method that is only based on the combination of DMSP-OLS nighttime light
data and statistical data as well as the state-of-art improved NFS method. Moreover, spatial patterns
and processes of urban expansion in the Silk Road Economic Belt for nearly a decade were revealed
comprehensively at the provincial or municipal scales.

A comparative analyses of these advanced built-up area extraction methods confirm the superior
performance of the proposed method. (1) The proposed method achieved high accuracy and eliminated
natural elements to a great extent while obtaining extraction results consistent with the more precise
improved NFS approach at a fine scale. The average OA and average Kappa values of the extracted
urban built-up areas were 95% and 0.83, respectively, which were based on the results of the ETM+ fusion
image extraction at the 15 m resolution. (2) The proposed method demonstrated the characteristics of
the built-up areas in the nighttime light remote sensing images and conventional optical images at
the feature and decision levels. Several relevant parameters and index interval settings completely
accounted for the regional differences. (3) The proposed method is applicable to the special studies,
such as urban expansion monitoring and analysis, of various well-established cities. These studies not
only reveal the spatio-temporal dynamics of urban development at the municipal and provincial levels
accurately and realistically but also provide valuable reference information for the decision makers
at government institutions, especially for identifying the urban or regional development conditions,
making urban plans and properly allocating urban resources.

Future research will focus primarily on two aspects: (1) The analyzed scale of the proposed
method will be extended to a broader scale, such as the national scale or continental scale, to verify
and complement the universality of the method. (2) Other multisource and multi-temporal datasets
will be exploited to further validate the performance of the proposed method. In particular, in the field
of nighttime light remote sensing, the close combination of the DMSP-OLS data, NPP-VIIRS data, and
LJ1-01 data will be used for both time series and spatial scale representations.

Author Contributions: Conceptualization, S.L.; Data curation, X.M.; Formal analysis, S.L.; Funding acquisition,
C.L.; Investigation, X.T.; Methodology, X.M. and S.L.; Supervision, C.L. and X.T.; Validation, S.L.; Writing–original
draft, X.M.; Writing–review & editing, X.T. and S.L.

Funding: This research was funded by the National Key Research and Development Plan of China
(No. 2018YFB0505400), the Natural Science Foundation of China (No. 41631178, 41871375, 41601354), and
the Fundamental Research Funds for the Central Universities (No. 22120180005),the Opening Foundation funded
by Key Laboratory of Advanced Engineering Surveying of National Administration of Surveying, Mapping and
Geo-information (No. TJES1801) and by Key Laboratory of Cities Mitigation and Adaptation to Climate Change
in Shanghai (CMACC).

Acknowledgments: We would like to thank the National Geomatics Center of China (NGCC), the National
Oceanic and Atmospheric Administration (NOAA), the National Geophysical Data Center (NGDC), the Center for
Earth Observation and Digital Earth (CEODE), the Data Center for Resources and Environmental Sciences (RESDC)
in Chinese Academy of Sciences for supporting the use of their data, as well as Professor Jun Chen for providing
valuable comments in our study. This work was partly supported by the National Key Research and Development
Plan of China (Project Nos. 2018YFB0505400), the Natural Science Foundation of China (Project Nos. 41631178,
41871375, 41601354), and the Fundamental Research Funds for the Central Universities (No. 22120180005).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Du, P.; Li, X.; Cao, W.; Luo, Y.; Zhang, H. Monitoring urban land cover and vegetation change by
multi-temporal remote sensing information. Min. Sci. Technol. 2010, 20, 922–932. [CrossRef]

http://dx.doi.org/10.1016/S1674-5264(09)60308-2


Remote Sens. 2019, 11, 2516 15 of 17

2. Zhang, P.; Sun, Q.; Liu, M.; Li, J.; Sun, D. A strategy of rapid extraction of built-up area using multi-seasonal
Landsat-8 thermal infrared Band 10 images. Remote Sens. 2017, 9, 1126. [CrossRef]

3. Ge, W.; Yang, H.; Zhu, X.; Ma, M.; Yang, Y. Ghost City Extraction and Rate Estimation in China Based on
NPP-VIIRS Night-Time Light Data. ISPRS Int. J. Geo-Inf. 2018, 7, 219. [CrossRef]

4. Tolpekin, V.A. Detection of built-up area in optical and synthetic aperture radar images using conditional
random fields. J. Appl. Remote Sens. 2014, 8, 083672.

5. Bhaskaran, S.; Paramananda, S.; Ramnarayan, M. Per-pixel and object-oriented classification approachs for
mapping urban features using Ikonos satellite data. Appl. Geogr. 2010, 30, 650–665. [CrossRef]

6. Haas, J.; Ban, Y. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the
Pearl River Delta. Int. J. Appl. Earth Observ. Geoinf. 2014, 30, 42–55. [CrossRef]

7. Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using
DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [CrossRef]

8. Li, H.; Wu, Y.; Huang, X.; Sloan, M.; Skitmore, M. Spatial-temporal evolution and classification of
marginalization of cultivated land in the process of urbanization. Habitat Int. 2017, 61, 1–8. [CrossRef]

9. Ma, X.; Tong, X.; Liu, S.; Li, C.; Ma, Z. A Multisource Remotely Sensed Data Oriented approach for Ghost
City” Phenomenon Identification. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 99, 2310–2319.
[CrossRef]

10. Dong, L.; Pan, J.; Feng, Y.; Wang, W. Spatial Difference Pattern of House Vacancy in China from Nighttime
Light View. Econ. Geogr. 2017, 37, 62–69.

11. Liu, S.; Tong, X.; Bruzzone, L.; Du, P. A novel semisupervised framework for multiple change detection
in hyperspectral images. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing
Symposium, Fort Worth, TX, USA, 23–28 July 2017; pp. 173–176.

12. Amarsaikhan, D.; Ganzorig, M.; Blotevogel, H.H.; Nergui, B.; Gantuya, R. Integrated approach to extract
information from high and very high resolution RS images for urban planning. J. Geogr. Reg. Plan. 2009, 2,
258–267.

13. Li, K.; Chen, Y. A Genetic Algorithm-Based Urban Cluster Automatic threshold approach by Combining
VIIRS DNB, NDVI, and NDBI to Monitor Urbanization. Remote Sens. 2018, 10, 277. [CrossRef]

14. Xu, H. A new index for delineating built-up land features in satellite imagery. Int. J. Remote Sens. 2008, 29,
4269–4276. [CrossRef]

15. Xiang, D.; Tang, T.; Hu, C.; Fan, Q.; Su, Y. Built-up area extraction from polSAR imagery with model-based
decomposition and polarimetric coherence. Remote Sens. 2016, 8, 685. [CrossRef]

16. Pesaresi, M.; Gerhardinger, A.; Kayitakire, F. A robust built-up area presence index by anisotropic
rotation-invariant textural measure. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2008, 1, 180–192.
[CrossRef]

17. Waqar, M.M.; Mirza, J.F.; Mumtaz, R.; Hussain, E. Development of new indices for extraction of built-up area
and bare soil from Landsat Data. Open Access Sci. Rep. 2012, 1, 1–4.

18. Li, Y.; Tan, Y.; Deng, J.; Wen, Q.; Tian, J. Cauchy graph embedding optimization for built-up areas detection
from high-resolution remote sensing images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8,
2078–2096. [CrossRef]

19. Chen, Y.; Qin, K.; Jiang, H.; Wu, T.; Zhang, Y. Built-up area extraction using data field from high-resolution
satellite images. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium,
Beijing, China, 10–15 July 2016; pp. 437–440.

20. Wang, X.; Liu, S.; Du, P.; Liang, H.; Xia, J.; Li, Y. Object-based change detection in urban areas from high
spatial resolution images based on multiple features and ensemble learning. Remote Sens. 2018, 10, 276.
[CrossRef]

21. Su, Y.; Chen, X.; Wang, C.; Zhang, H.; Liao, J.; Ye, Y.; Wang, C. A new approach for extracting built-up
urban areas using DMSP-OLS nighttime stable lights: A case study in the Pearl River Delta, Southern China.
GISci. Remote Sens. 2015, 52, 218–238. [CrossRef]

22. Xin, X.; Liu, B.; Di, K.; Zhu, Z.; Zhao, Z.; Liu, J.; Zhang, G. Monitoring urban expansion using time series of
night-time light data: A case study in Wuhan. China. Int. J. Remote Sens. 2017, 38, 6110–6128. [CrossRef]

23. Hu, T.; Huang, X.; Li, J.; Zhang, L. A novel co-training approach for urban land cover mapping with unclear
Landsat time series imagery. Remote Sens. Environ. 2018, 217, 144–157. [CrossRef]

http://dx.doi.org/10.3390/rs9111126
http://dx.doi.org/10.3390/ijgi7060219
http://dx.doi.org/10.1016/j.apgeog.2010.01.009
http://dx.doi.org/10.1016/j.jag.2013.12.012
http://dx.doi.org/10.1016/j.landurbplan.2012.02.013
http://dx.doi.org/10.1016/j.habitatint.2017.01.001
http://dx.doi.org/10.1109/JSTARS.2018.2824302
http://dx.doi.org/10.3390/rs10020277
http://dx.doi.org/10.1080/01431160802039957
http://dx.doi.org/10.3390/rs8080685
http://dx.doi.org/10.1109/JSTARS.2008.2002869
http://dx.doi.org/10.1109/JSTARS.2015.2394504
http://dx.doi.org/10.3390/rs10020276
http://dx.doi.org/10.1080/15481603.2015.1007778
http://dx.doi.org/10.1080/01431161.2017.1312623
http://dx.doi.org/10.1016/j.rse.2018.08.017


Remote Sens. 2019, 11, 2516 16 of 17

24. Zhang, T.; Huang, X. Monitoring of Urban Impervious Surfaces Using Time Series of High-Resolution
Remote Sensing Images in Rapidly Urbanized Areas: A Case Study of Shenzhen. IEEE J. Sel. Top. Appl. Earth
Observ. Remote Sens. 2018, 11, 1–17. [CrossRef]

25. Bhatti, S.S.; Tripathi, N.K. Built-up area extraction using Landsat 8 OLI imagery. GISci. Remote Sens. 2014, 51,
445–467. [CrossRef]

26. Lin, J.; Liu, X.; Li, K.; Li, X. A maximum entropy approach to extract urban land by combining MODIS
reflectance, MODIS NDVI, and DMSP-OLS data. Int. J. Remote Sens. 2014, 35, 6708–6727. [CrossRef]

27. Huang, X.; Hu, T.; Li, J.; Wang, Q.; Benediktsson, J.A. Mapping Urban Areas in China Using Multisource
Data with a Novel Ensemble SVM Method. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4258–4273. [CrossRef]

28. Shi, K.; Chen, Y.; Yu, B.; Xu, T.; Li, L.; Huang, C.; Liu, R.; Chen, Z.; Wu, J. Urban expansion and agricultural
land loss in China: A multiscale perspective. Sustainability 2016, 8, 790. [CrossRef]

29. Shi, K.; Yu, B.; Huang, C.; Wu, J.; Sun, X. Exploring spatiotemporal patterns of electric power consumption in
countries along the Belt and Road. Energy 2018, 150, 847–859. [CrossRef]

30. Zhou, N.; Hubacek, K.; Roberts, M. Analysis of spatial patterns of urban growth across South Asia using
DMSP-OLS nighttime lights data. Appl. Geogr. 2015, 63, 292–303. [CrossRef]

31. Li, A.; Zhang, Z.; Su, H.; Li, Y.; Lei, B. Research on “Ghost Town” Index Based on Landsat Data Products and
DMSP/OLS Nighttime Light Data: A Case Research of Anhui Province. Sci. Mosaic 2017, 6, 172–176.

32. Li, X.; Zhou, Y. A stepwise calibration of global DMSP/OLS stable nighttime light data (1992–2013). Remote Sens.
2017, 9, 637.

33. Liang, D.; Zuo, Y.; Huang, L.; Zhao, J.; Teng, L.; Yang, F. Evaluation of the consistency of MODIS land cover
product (MCD12Q1) based on Chinese 30 m GlobeLand30 datasets: A case study in Anhui Province, China.
ISPRS Int. J. Geo-Inf. 2015, 4, 2519–2541. [CrossRef]

34. Estoque, R.C.; Murayama, Y. Classification and change detection of built-up lands from Landsat-7 ETM+

and Landsat-8 OLI/TIRS imageries: A comparative assessment of various spectral indices. Ecol. Indic. 2015,
56, 205–217. [CrossRef]

35. National Bureau of Statistics of the People’s Republic of China. China City Statistical Yearbook; China Statistics
Press: Beijing, China, 2002.

36. National Bureau of Statistics of the People’s Republic of China. China City Statistical Yearbook; China Statistics
Press: Beijing, China, 2006.

37. National Bureau of Statistics of the People’s Republic of China. China City Statistical Yearbook; China Statistics
Press: Beijing, China, 2011.

38. National Fundamental Geographic Information System, National Geomatics Center of China. Available
online: http://ngcc.sbsm.gov.cn/ (accessed on 7 May 2019).

39. Cao, Z.; Wu, Z.; Kuang, Y.; Huang, N. Correction of DMSP/OLS night-time light images and its application
in China. J. Geo-Inf. Sci. 2015, 17, 1092–1102.

40. Zhang, Q.; Wang, P.; Chen, H.; Huang, Q.; Jiang, H.; Zhang, Z.; Zhang, Y.; Luo, X.; Sun, S. A novel approach
for urban area extraction from VIIRS DNB and MODIS NDVI data: A case study of Chinese cities. Int. J.
Remote Sens. 2017, 38, 1–16. [CrossRef]

41. Chao, Z.; Sheng, M. Study on extraction approachs for water information in Nantong city, China using
Landsat7 ETM+ data. Int. Conf. Remote Sens. 2011, 51, 771–774.

42. Chen, X.; Wen, X.; Guo, L. Study on urban heat island effect in Nanchang based on landsat 8 satellite images.
Acta Agric. Jiangxi 2017, 29, 103–108.

43. Ma, X.; Tong, X.; Liu, S.; Ma, Z. Extraction of built-up areas in Chinese silk road economic belt based on
DMSP-OLS data. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium,
Fort Worth, TX, USA, 23–28 July 2017; pp. 5877–5880.

44. Jiang, W.; He, G.J.; Long, T.F.; Wang, C.; Ni, Y.; Ma, R.Q. Assessing light pollution in China based on nighttime
light imagery. Remote Sens. 2017, 9, 135. [CrossRef]

45. Small, C.; Pozzi, F.; Elvidge, C.D. Spatial Analysis of Global Urban Extent from DMSPOLS Night Lights.
Remote Sens. Environ. 2005, 96, 277–291. [CrossRef]

46. Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-time light composite data
for extracting built-up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [CrossRef]

47. Wu, B.; Zhang, L.; Li, P. Unmixing of Hyperspectral Imagery Based on Probabilistic Outputs of Support
Vector Machines. Geomat. Inf. Sci. 2006, 31, 51–54.

http://dx.doi.org/10.1109/JSTARS.2018.2837222
http://dx.doi.org/10.1080/15481603.2014.939539
http://dx.doi.org/10.1080/01431161.2014.960623
http://dx.doi.org/10.1109/TGRS.2018.2805829
http://dx.doi.org/10.3390/su8080790
http://dx.doi.org/10.1016/j.energy.2018.03.020
http://dx.doi.org/10.1016/j.apgeog.2015.06.016
http://dx.doi.org/10.3390/ijgi4042519
http://dx.doi.org/10.1016/j.ecolind.2015.03.037
http://ngcc.sbsm.gov.cn/
http://dx.doi.org/10.1080/01431161.2017.1339927
http://dx.doi.org/10.3390/rs9020135
http://dx.doi.org/10.1016/j.rse.2005.02.002
http://dx.doi.org/10.1080/2150704X.2014.905728


Remote Sens. 2019, 11, 2516 17 of 17

48. Ma, X.; Tong, X.; Liu, S.; Luo, X.; Xie, H.; Li, C. Optimized sample selection in SVM classification by combining
with DMSP-OLS, Landsat NDVI and globeland30 products for extracting urban built-up areas. Remote Sens.
2017, 9, 236. [CrossRef]

49. He, C.; Shi, P.; Li, J.; Chen, J.; Pan, Y.; Li, J.; Zhuo, L.; Toshiaki, I. Study on the Reconstruction of China’s
Urbanization Process in 1990s Based on DMSP/OLS Night Light Data and Statistical Data. Chin. Sci. Bull.
2006, 51, 856–861. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/rs9030236
http://dx.doi.org/10.1007/s11434-006-2006-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Areas and Materials 
	Methods 
	Data Preprocessing 
	Multi-Level Data Fusion 
	Sample Iterative Optimization with Multi-Factor Constraints 

	Experimental Results and Discussion 
	Urban Extraction from 2001 to 2010 
	Accuracy Assessment Based on Finer-Resolution Remote Sensing Data 

	Conclusions 
	References

