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Abstract: The Songnen Plain (SNP) is an important grain production base, and is designated as an
ecological red-line as a protected area in China. Natural ecosystems such as the ecological protection
barrier play an important role in maintaining the productivity and sustainability of farmland. Carbon
use efficiency (CUE), defined as the ratio of net primary productivity (NPP) to gross primary
productivity (GPP), represents the ecosystem capacity of transferring carbon from the atmosphere
to terrestrial biomass. The understanding of the CUE of natural ecosystems in protected farmland
areas is vital to predicting the impact of global change and human disturbances on carbon budgets
and evaluating ecosystem functions. To date, the changes in CUE at different time scales and their
relationships with climatic factors have yet to be fully understood. CUE and the response to land
surface phenology are also deserving attention. In this study, variations in ecosystem CUE in the SNP
during 2001–2015 were investigated using Moderate-Resolution Imaging Spectroradiometer (MODIS)
GPP and NPP data products estimated using the Carnegie-Ames-Stanford approach (CASA) model.
The relationships between CUE and phenological and climate factors were explored. The results
showed that ecosystem CUE fluctuated over time in the SNP. The lowest and highest CUE values mainly
occurred in May and October, respectively. At seasonal scale, average CUE followed a descending order
of Autumn > Summer > Spring. The CUE of mixed forest was greater than that of other ecosystems at
both monthly and seasonal scales. Land surface phenology plays an important role in the regulation of
CUE. The earlier start (SOS), the later end (EOS) and longer length (LOS) of the growing season would
contribute increasing of CUE. Precipitation and temperature affected CUE positively in most areas of
the SNP. These findings help explain the CUE of natural ecosystems in the protected farmland areas
and improve our understanding of ecosystem carbon allocation dynamics in temperate semi-humid to
semi-arid transitional region under climate and phenological fluctuations.

Keywords: carbon use efficiency; Phenology; climate factors; MODIS GPP/NPP; Songnen Plain

1. Introduction

In recent decades, driven by intensive human activity and climate change, the function of terrestrial
ecosystem has been disturbed and continuously degraded on regional and global scales. The increasing
levels of atmospheric CO2 concentrations and climate change have highlighted the need for a better
understanding of terrestrial carbon cycling and its responses to climate change. Gross primary production
(GPP) represents the capacity of the plants in an ecosystem to capture energy and carbon [1]. Net
Primary Productivity (NPP) is defined as the amount of atmospheric carbon that is captured by plants
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and transformed into biomass [2]. The GPP is the sum of NPP and autotrophic respiration (Ra), and Ra
plus heterotrophic respiration (Rh) comprises ecosystem respiration. GPP, NPP and Ra are the most
important and highly related constituents of carbon cycling. The carbon fixed by photosynthesis is
allocated to a variety of usages in plants, including growth and maintenance respirations and biomass
accumulation [3]. About 50–70% of the carbon fixation is returned to the environment through Ra [4,5].
Carbon allocation among plant processes (e.g., respiration, biomass production) and organs (e.g., leaves,
stem) is a key process in the carbon cycle because it determines the residence time and location of carbon
in the ecosystem [6,7]. For example, the residence times of the carbon used for maintenance respiration
and the carbon allocated to the structural biomass of organs are drastically different, ranging from a few
hours to a few years [6]. Therefore, the allocation process of carbon is highly relevant to understanding
ecosystem carbon stock and carbon cycles [6].

Carbon use efficiency (CUE) is defined as the ratio of NPP to GPP, which indicates the ecosystem
capacity in transferring CO2 into biomass and carbon sequestration [8]. CUE is an important functional
parameter of ecosystems and can be used for comparing carbon cycle differences in various ecosystems [9].
The index is intuitive and easy to compare between different vegetation types, and to apply to different
time scales [7]. A higher CUE indicates a higher growth transfer per unit of carbon sequestration.
In practice, GPP usually represents the total amount of carbon captured through photosynthesis, and
NPP is the net carbon stored in plant after the reduction of GPP through by plant respiration [1]. CUE is
also a measure of how GPP is partitioned into NPP and Ra [7]. Less Ra may result in larger carbon
reserve accumulation. Hence, CUE is related to photosynthetic process, and it is also regarded as
an important indicator for characterizing ecosystem functions. How efficiently an ecosystem is able
to convert GPP into plant and soil storage greatly determines the carbon sequestration of terrestrial
ecosystems, so CUE changes strongly affect ecosystem carbon budgets [10]. Quantitative analysis of
spatial-temporal changes of CUE and its influencing factors will help better understand the effects of
climate change on carbon processes of ecosystems [11].

Satellite remote sensing provides critical information for investigating large-scale and long-term
variability of ecosystem CUE. Piao et al. [12] demonstrated that CUE of different vegetation differed
greatly from the south temperate to the tropic ecoregions based on a global forest C-flux database,
and found that the spatial patterns of forest annual Ra at the global scale were largely controlled
by temperature. Zhang et al. [1] reported that CUE exhibited a pattern depending on the climatic
characteristics-based upon Moderate-Resolution Imaging Spectroradiometer (MODIS)-derived NPP
and GPP data. He et al. [13] investigated spatial variations in CUE from different models and analyzed
the responses of CUE to precipitation and temperature. Tang et al. [3] established a global database of
site-year CUE based on field observations for five ecosystem types and diagnosed the spatial variability
of CUE with climate and other environmental factors (e.g., soil variables). Two prominent gradients of
CUE in ecosystem types and latitude were found worldwide. CUE varied with ecosystem types, being
the highest in wetland and lowest in grassland. CUE decreased with latitude, showing the lowest
values in tropics, and the highest CUE were found in higher-latitude regions. The above studies were
based on annual scales and advanced the knowledge of understanding the global pattern of CUE.
However, monthly scale analysis of CUE has rarely been studied.

From individual plants to an entire ecosystem, phenology directly or indirectly regulates carbon
fluxes (e.g., photosynthesis and respiration) between the land surface and the atmosphere [14] through
altering physiological and structural characteristics, including photosynthetic rate, canopy conductance
and albedo [14–16]. Vegetation phenological changes are closely related to spatial-temporal dynamics
of carbon cycle [17]. The change in the length of the growing season may have an important impact on
vegetation growth, which will cause changes in the GPP and NPP [18]. CUE and its relationships with
land surface phenology (LSP) deserve attention.

The Songnen Plain (SNP), located in temperate semi-humid to semi-arid transition ecological
fragile zone in Northeast China, is highly sensitive to global change. As a key agricultural area and
important grain commodity base, the SNP is among the designated ecological red-lines as protected
farmland area in China. The natural terrestrial ecosystem acts as an ecological protection barrier
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for the croplands in the SNP. The productivity and sustainability of terrestrial ecosystems are vital
to maintaining regional and national food and ecological security. Due to the combined effects of
vulnerable physical conditions and excessive human activities, the SNP suffered from high risk of
land degradation during the past century. Concerns for the aggravation of desertification have led to
many measures and management actions for ecological and environmental protection. The trend of
desertification and exacerbation has gradually slowed down [19]. Previous studies have mostly focused
on the land cover/use change and effects of agricultural activities on environment [20]. In addition,
most studies only focused on the condition of protected farmland, while ignoring the productivity
and sustainability of natural terrestrial ecosystems around it. There is a lack of reports about the
spatial-temporal patterns of ecosystem-level CUE and their response to phenology and climate change
in the SNP region. This study attempts to fill in the gaps in the knowledge regarding biotic and abiotic
impacts on CUE of the SNP region.

The objectives of this study are to: (1) estimate CUE of different ecosystems and investigate their
monthly and seasonal changes based on MODIS GPP and NPP data from 2001 to 2015; (2) explain
how phenology and climatic factors contribute to variations in ecosystem CUE, in order to improve
our understanding of the carbon budget in temperate semi-arid and semi-humid transitional zone
ecosystems and their driving mechanisms.

2. Materials and Methods

2.1. Study Area

The SNP is located in the central part of Northeast China, in a range of 121◦38′ to 128◦33′E,
42◦49′ to 49◦12′N, with a total area of 22.35 × 104 km2 (Figure 1). It is an alluvial plain situated in the
central Songliao Basin between the Xiaoxing’an and Changbai Mountains, through which the Songhua
River and the Nenjiang River flow [10]. The SNP belongs to a temperate continental semi-humid and
semi-arid monsoon climate zone, characterized by four seasons with a hot, rainy summer and a cold,
dry winter and with significant windy days. The annual precipitation is between 350 and 800 mm [11].
Soils are fertile with chernozem, meadow soil, and black soil widely distributed. From west to east, the
natural ecosystem type is typical grassland, meadow steppe and forest steppe, respectively. It is an
important ecological protection barrier in the Northeast.
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2.2. Data and Processing

In this study, CUE at the monthly and seasonal scale derived from MODIS data products and
the ancillary data were used to explore the spatial-temporal variations of CUE of natural ecosystems
and their responses to climate and LSP changes. The main steps are as follows: (1) estimating NPP at
monthly scale by the CASA (Carnegie-Ames-Stanford approach) model; (2) calculating monthly CUE
of different ecosystems and performing the trend analysis; (3) extracting LSP metrics and analyzing the
effects of phenology and climatic factors on the variations of ecosystem CUE by the correlation and
partial correlation analysis methods. Figure 2 illustrates the technical approach of this study.
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Figure 2. The flow chart of the research approach.

MODIS and Meteorological Data

The MOD17A2H version 6 GPP product is a cumulative 8-day composite of values based on the
radiation use efficiency concept, which can be potentially used as an input to data models to compute
energy, carbon, water cycle processes and biogeochemistry of vegetation [12]. Monthly Normalized
Difference Vegetation Index (NDVI) spatial distribution data set was obtained from the MOD13A2.
For the calculation of NPP, the Maximum Value Composite (MVC) was used to synthesize the monthly
NDVI data. The phenological parameter extraction was based on 16-day data. Each time period of the
MODIS data included 6 images.

The MODIS land cover type dataset (MCD12Q1) was downloaded from the Land Processes
Distributed Active Archive Center (LP DAAC) (https://lpdaac.usgs.gov/) [13]. In this study, land cover
data from 2001 to 2015 were adopted. According to the International Geosphere-Biosphere Program

https://lpdaac.usgs.gov/
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(IGBP) class scheme and the regional characteristics of the SNP, natural ecosystem included the following
four types, deciduous broad-leaved forest (DBF), mixed forest (MF), grassland (GRA) and wetland
(WET).

The total monthly radiation was obtained from 7 radiation stations (Figure 1). The remaining
meteorological data of 29 meteorological stations within and near the SNP from 2001 to 2015 were
acquired from the National Meteorological Information Center (http://data.cma.cn/). Most studies
suggest that precipitation and temperature be the main meteorological factors affecting CUE [3,13].
In this study, monthly precipitation (mm) and temperature (◦C) were computed from May to November
in order to explore the relationship between CUE and climate factors in growing seasons. MODIS,
meteorological and other data were all resampled at a resolution of 1 km. Table 1 summarizes and
describes the characteristics of the data and sources.

Table 1. Description of the data used in this study.

Dataset Source Temporal
Resolution Time Range Spatial

Resolution

GPP MOD17 8-day composite 2001–2015 1 km
Land cover MCD12Q1 annual 2001–2015 1 km

NDVI MOD13 16-day composite 2001–2015 0.25 km
Temperature http://data.cma.cn/ monthly 2001–2015 /
Precipitation http://data.cma.cn/ monthly 2001–2015 /

Solar radiation http://data.cma.cn/ monthly 2001–2015 /

2.3. Estimating NPP with the CASA Model

We estimated the monthly vegetation NPP of the SNP based on the CASA model, which considers
the physiological and ecological characteristics of vegetation and the environmental conditions related
to growth [14]. Vegetation NPP estimation was derived by using vegetation cover type, NDVI, monthly
average temperature, total precipitation and solar radiation [15]. The basic calculation formula of the
CASA model is as follows [21]:

NPP(x, t) = SOL(x, t) × FPAR(x, t) × 0.5× Tε1(x, t) × Tε2(x, t) ×Wε(x, t) × εmax (1)

where SOL(x,t) is the total solar radiation at pixel x for month t. FPAR(x,t) is the fraction of
photosynthetically active radiation absorbed by vegetation. 0.5 indicates the proportion of solar active
radiation (0.4–0.7 µm) that can be utilized by vegetation to the total solar radiation. Tε1(x,t) and Tε2(x,t)
represent temperature stress coefficients, Wε(x,t) is the coefficient of water stress, and εmax is the
maximum light use efficiency under ideal conditions [22]. Comparison between the calculated NPP
and the reported study conducted in Northeast China and the western part of Jilin Province [23,24] as
the cross checking and validation of the analysis. Mao et al. [23] verified the NPP by comparing the
simulated value with the flux observation data. The simulated value was close to the measured value,
and the error was within 25%.

2.4. Calculation of CUE

The CUE of ecosystem describes the relationship between photosynthesis and respiration, which
is an important indicator of the ability of plants to transfer carbon [16]. As one of the key controlling
factors of ecosystem carbon storage, CUE is defined as follows [19]:

CUE =
NPP
GPP

(2)

where GPP represents the ability to capture energy and carbon through photosynthesis plants and
the total amount of carbon assimilation. NPP reveals the energy of plants stored after losing carbon
from GPP through autotrophic respiration [17]. The higher CUE means the greater the proportion of

http://data.cma.cn/
http://data.cma.cn/
http://data.cma.cn/
http://data.cma.cn/
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GPP kept by ecosystems after self-consumption. However, uncertainty issues have been recognized by
studies using public-domain data, e.g., with respect to water use efficiency (WUE) [25].

2.5. Extraction of Land Surface Phenology Metrics

We used the dynamic threshold method to extract metrics of LSP. The polynomial method was
used to fit and reconstruct the NDVI time series data from 2000 to 2016. The software TIMESAT with a
seasonal parameter of 0.5, an adaptation strength of 2.0, a Savitzky–Golay window size of 2, and an
amplitude of 20% was run in MATLAB R2015b (The Mathworks, Inc., Natick, MA, USA). The parameters
were set according to Qi et al. [18]. The start of growing season (SOS) and the end of season (EOS) for
each year were calculated, and the length of season (LOS) was obtained as the difference between SOS
and EOS in each grid.

2.6. Statistical Analysis

Spatial trend of CUE was examined by applying a linear regression model with time as the
independent variable and CUE as the dependent variables, respectively. The trend analysis method
was used to analyze trend in seasonal CUE changes for the period 2001–2015. The outputs of the trend
analysis are the maps of regression slope values, expressed by the following formula [19]:

Slope =
n×

∑n
i=1 i×Ai −

∑n
i=1 i

∑n
i=1 Ai

n×
∑n

i=1 i2 −
(∑n

i=1 i
)2 (3)

where Slope is the slope of the fitted regression line at each pixel. n represents year range. i is 1 for the
first year, 2 for the second year, and so on. Ai represents the CUE of the year i. A negative regression
coefficient (Slope < 0) indicates a decline of CUE, whereas a positive value (Slope > 0) depicts an
increase trend. F test was used to determine the significance of change trend.

To investigate the role of climate drivers and phenological factors affecting CUE, we analyzed the
correlation between three phenological parameters (i.e., SOS, EOS and LOS) and CUE. In addition,
Spearman partial correlation between CUE and two climate factors (i.e., precipitation and temperature)
was calculated. The correlation coefficient and partial correlation coefficient were computed as
follows [18]:

rBC =

∑n
i=1

(
Bi − B

)(
Ci −C

)
√∑n

i=1

(
Bi − B

)2
√∑n

i=1(Ci −C)2
(4)

B =
1
n

n∑
i=1

Bi , C =
1
n

n∑
i=1

Ci (5)

rBC,D =
rBC − rBDrCD√

1− r2
BD

√
1− r2

CD

(6)

where rBC represents the correlation coefficient between B and C, its threshold ranges from −1 to 1, and
rBC,D is the partial correlation coefficient between B and C when we controlled D values. If r < 0, B is
negatively correlated with C. If r > 0, there is a positive correlation between B and C. Furthermore, B, C
represent the average values of Bi and Ci, respectively. The significance of the results was examined
by t-test.

3. Results

This study explained spatial patterns of ecosystem CUE at different temporal scales in a semi-humid
and semi-arid transitional area. We identified that the variations of CUE in SNP were obvious at
both seasonal and monthly scales. The CUE of GRA in the southwest and DBF in the east showed an
upward trend. Monthly and seasonal CUE varied with ecosystem types. The earlier SOS, later EOS
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and longer LOS might encourage higher CUE. Spatially, CUE changes were positively correlated with
precipitation and temperature in most of the SNP.

3.1. Monthly Change of CUE

The CUE value of natural ecosystems in the SNP started from May and continued to November,
the CUE changed significantly within the year (Figure 3). The lowest CUE values occurred in May.
After July, CUE increased, and exceeded 0.8. The highest CUE (over 0.9) values were mainly observed
in October. The growing season started in May in SNP with low NPP and carbon sequestration capacity.
In contrast, the proportion of GPP increased in October after self-consumption through the growing
season. The CUE of the natural ecosystems was higher after July, along with the accumulation of more
NPP, which meant that the natural ecosystem protection capacity may be stronger.
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There were three abnormally low CUE values in the SNP during the past 15 years (Figure 3).
These were November 2002, May 2012 and October 2014. According to field-based meteorological
measurements, the average temperature in November 2002 was the lowest in 15 years, which might be
the reason that led to decrease in both GPP and NPP. In May 2012 and October 2014, the low CUE
values might be associated with lower GPP and NPP due to reduced rainfall in those months.

The monthly CUE varied among different ecosystems in the SNP (Figure 4). Except for May and
October, the CUE of DBF was generally lower than the regional monthly average, while the GRA
was the opposite. GRA started with a green-up in May and gradually entered a senescence period in
October. GRA might produce more net productivity in those two months. The CUE of MF was always
higher than the regional CUE average. WET CUE in May, June and August were greater than the CUE
mean value. WET CUE was the highest in August, indicating that the proportion of GPP kept by WET
ecosystems after self-consumption was the greatest.

The CUE of MF was the highest from May to November except for August. Compared to other
ecosystems, MF may have stronger ecological protection effects. Due to higher temperature in August,
CUE of GRA may be restricted, while the area covered by humid MF could produce a higher CUE.
From June to August, CUE of DBF was the lowest, because the accumulated NPP was relatively lower
than other types.
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3.2. Seasonal Changes in CUE

Considering the dormancy of vegetation in the SNP in the winter months from December to the
following February, we calculated CUE in spring (March to May), summer (June to August) and autumn
(September to November), respectively. Figure 5 shows the seasonal variation of ecosystem CUE.
The regional average CUE was 0.236, 0.835 and 0.854 in spring, summer and autumn, respectively. The
highest and lowest CUEs in spring were observed in the year of 2013 (0.299) and 2012 (0.075), respectively.
The lowest value of CUE in spring 2012 may be due to the drought of that year [26]. The maximum
summer CUE (0.916) was observed in 2004, whereas the minimum value (0.75) occurred in 2011. CUE
in autumn reached the peak (0.974) in 2011, while the lowest value was found in 2014 (0.686).
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In most years, average CUE was the lowest in spring. The average CUE values in summer of
2002, 2009, and 2014 were greater than those in autumn, which was related to successive drought from
summer to autumn. It was found that the degree of CUE decrease depends not only on the intensity of
the drought, but also the duration of the drought intensity and the time of occurrence [27].

Spatially, spring CUE in the southwest of the SNP was higher than the east during the 15 years
(Figure 6). It ranged from 0 to 0.4, with an average value of 0.24 (Figure 6a). In summer, vegetation
grew vigorously, and the carbon sequestration capacity of vegetation increased (Figure 6b). Similar
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spatial distribution pattern was observed in summer with an average CUE of 0.83. With the arrival of
autumn, the CUE in most regions also increased and ranged from 0.8 to 1.0 with an average value of
0.88 (Figure 6c). In summer and autumn, the carbon sequestration capacity of natural ecosystems was
better, indicating the relatively stronger ecological protection function.
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In terms of spatial distribution, the pixels showing an upward trend in three seasons were mainly
found in grasslands in the southwest and deciduous broadleaf forest in the eastern fringe. According
to the slope analysis, about two-thirds of the study area showed an upward trend of CUE in spring
(Figure 7a). CUE in summer tended to increase in 53.7% of the study area (Figure 7b), while the CUE
showed increasing trend in the area of 56.7% in autumn (Figure 7c). This increasing trend suggested
that the carbon sequestration capacity of natural ecosystem in the SNP could be improving. More NPP
accumulated in natural ecosystem may make their ecological protection function stronger. The change
trends of CUE (over 90% pixels) passed the significance level test at p < 0.05.
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The seasonal changes of CUE for different ecosystems CUE were also obviously changing in the
SNP (Figure 8). In spring, all types of vegetation had low CUE values (Figure 8a). Relatively good
hydrothermal conditions in summer were more favorable to vegetation growth and the CUE of each
vegetation type was generally increasing (Figure 8b). In autumn, CUE of MF, DBF and GRA continued
to rise, whereas WET CUE declined slightly (Figure 8c). Among different ecosystems, CUE of MF had
been the highest (spring: 0.288; summer: 0.902; autumn: 0.928).
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3.3. The Mean Spatial Distribution of LSP

Spatial distributions of LSP parameters, i.e., SOS, LOS and EOS, in the SNP from 2001 to 2015
are illustrated in Figure 9. The SOS of the natural ecosystem mainly occurred at day of year (DOY)
between 100 and 150. The earliest SOS was found in the eastern parts of the SNP region, while the
southwestern region had the latest SOS (Figure 9a). The growing season of DBF and MF started from
mid-March, and GRA and WET had later start of the growing season (early April). SOS began in
March and April, the vegetation began to accumulate GPP, but the CUE value was in a very small
range, almost neglected, so we began to record CUE from May.

The distribution of EOS dates showed similar pattern to that of SOS, gradually increasing from
west to east, mainly in late October and November (290–330 DOY) (Figure 9b). The end dates of the
growing season of DBF and MF occurred in early November. GRA and WET ended their growing
seasons about ten days earlier than the forestland. During 2001–2015, the average LOS of natural
ecosystems in the SNP was about 192 days, showing similar spatial distribution to SOS and EOS
(Figure 9c). The average LOS of MF and GRA was 213 days and 176 days, respectively. LOS dates of
DBF were about 5 days shorter than those of MF, and the growing season of WET was about 4 days
longer than that of GRA.
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3.4. Response of CUE to LSP Variation

After analyzing the correlation between CUE and LSP in the growing seasons, it was found that
CUE was negatively correlated with SOS in about 70% of the study area (Figures 10a and 11). This
indicated that earlier SOS would encourage higher CUE. In 72% of areas covered by GRA, CUE was
negatively correlated with SOS. In 67% of the SNP, the later EOS would result in higher CUE. In 80% of
areas covered by DBF, late EOS dates might have the positive effect on the increase of CUE (Figure 10b).
CUE was positively correlated with LOS in more than 70% of areas covered by DBF, GRA and WET.
The average CUE of MF with the longest growing season was highest (0.529). GRA with the second
longest growing season (0.482). Although the LOS of GRA was the shortest, its average CUE (0.482)
was greater than that of DBF (0.477). This would be because GRA in cold and dry regions consumed
less energy to maintain growth. The area proportions of correlation coefficients after significant test for
all the pixels were obtained (Figure 11).
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3.5. Direct Effects of Local Climate Factors on CUE Change

This study revealed that a partial correlation existed between mean temperature and total
precipitation and CUE in the growing season. CUE was negatively correlated with precipitation
accounting for about 46.8% of the total pixels (Figure 12a). Among those, 0.98% had significant negative
correlation, mainly distributed in the eastern and southwestern fringe areas of SNP. The area showing
positive correlation between CUE of DBF and precipitation occupied 61.8% of the total area. About 60%
of CUE values of GRA and WET were positively related to precipitation. CUE was positively affected by
temperature in more than 90% of the region, of which 14.85% showed a significant positive correlation.
Only in the northern and southern margins, CUE decreased with increasing temperature (Figure 12b).Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 20 
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At monthly scale, the responses of ecosystem CUE to climate drivers were also significantly
different. Figures 13 and 14 showed the spatial pattern of correlation coefficients between monthly CUE,
precipitation and temperature from 2001 to 2015. Overall, the pixels with a positive correlation coefficient



Remote Sens. 2019, 11, 2513 13 of 19

took up higher area proportions of the study area. Except for November, increased precipitation could
contribute to higher CUE for the corresponding months in more than 60% of naturally vegetated area in
the SNP (Figure 13 and Table 2). From June to August, CUE in more than 50% of pixels in the natural
ecosystem had a positive correlation with temperature. On the other hand, as temperature increased,
plant ecosystem might suffer higher ecosystem respiration cost and lower net productivity. In May and
September, the pixels showing negative correlation coefficient between temperature and CUE occupied
most of the SNP (Figure 14 and Table 3).
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Table 2. The number of pixels and their proportions of correlation coefficients between monthly
precipitation and CUE.

Month Positive Pixels (%) Negative Pixels (%)

May 67,293 (91.60%) 6170 (8.40%)
June 58,717 (79.93%) 14,746 (20.07%)
July 49,180 (66.95%) 24,283 (33.05%)

August 61,691 (83.98%) 11,772 (16.02%)
September 69,366 (94.42%) 4097 (5.58%)

October 44,115 (60.05%) 29,348 (39.95%)
November 20,398 (27.77%) 53,065 (72.23%)

Table 3. The number of pixels and their proportions of the correlation coefficients between monthly
temperature and CUE.

Month Positive Pixels (%) Negative Pixels (%)

May 25,181 (34.28%) 48,282 (65.72%)
June 48,525 (66.05%) 24,938 (33.95%)
July 43,585 (59.33%) 29,878 (40.67%)

August 39,588 (53.89%) 33,875 (46.11%)
September 7667 (10.44%) 65,796 (89.56%)

October 38,603 (52.55%) 34,860 (47.45%)
November 72,078 (98.11%) 1385 (1.89%)

4. Discussion

Previous studies on CUE using remote sensing methods mainly focus on changes at annual scale.
In this paper, CUE at the seasonal and monthly scales were investigated. Thus, the change trends
of CUE and the climate factors affecting CUE in different growth stages could be explained. CUE
was considered to be a constant value regardless of ecosystem types or species [28,29]. However, this
assumption at a global scale might be controversial, because it ignores the influence of environmental
factors [30,31]. Tang et al. [3] estimated global average CUE using site data, which varied widely
between 0.201 and 0.822. In this study, the estimated monthly CUE from satellite observations ranged
from 0.021 to 0.999 in the SNP. The results suggested that CUE among ecosystems could not be a
constant. The assumption of a constant CUE of 0.5 might lead to biased estimates for carbon cycling
modelling across temporal-spatial scales.

We compared the CUE calculated by the same model of different ecosystems at the annual scale
from other reported studies (Table 4). The order of annual CUE of different ecosystems in SNP was as
follows: GRA (0.567) > WET (0.542) > MF (0.480) > DBF (0.479) [19]. Tang et al. [3] found the largest
CUE for WET on a global scale. Khalifa et al. [32] estimated the CUE of different vegetation in sub
Saharan area and found that the annual average CUE deceased in the following sequence: WET > GRA
> MF > DBF. However, in our study, the order of average CUE of the growing season in the SNP was:
MF > WET > GRA > DBF. This difference may be due to the different time scales and regions with of
the studies.

Previous studies indicated that plant CUE might demonstrate a significant seasonal variation.
In the short term, such as over one year, the dynamic patterns of carbohydrate storage and plant carbon
allocation may lead to great changes in CUE [33]. Campioli et al. [7], using biometric methods and
vortex correlation techniques, evaluated temporal and spatial variation of CUE in Fagus sylvatica
forest and found that CUE in spring was the highest. Artificially grown apples have higher CUE in
summer, which may be consistent with the higher accumulation of biomass and the lower respiratory
consumption [34]. In contrast, as SNP is at mid-high latitudes, vegetation in the SNP may reduce the
consumption of respiration and increase the carbon sequestration capacity in autumn, leading to the
highest CUE.
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Table 4. Comparison of estimated CUE at different time scales in different researches.

Ecosystem Time Scale CUE Scale Type of Data Data Source

WET

Annual 0.607 ± 0.133 Global Site data Tang [3]
Annual 0.550–0.60 Sudan and Ethiopia Remote sensing data Khalifa [32]
Annual 0.542 SNP Remote sensing data Li [19]

Growing season 0.488 SNP Remote sensing data Our article

GRA

Annual 0.457 ± 0.109 Global Site data Tang
Annual 0.220–0.560 Sudan and Ethiopia Remote sensing data Khalifa
Annual 0.567 SNP Remote sensing data Li

Growing season 0.482 SNP Remote sensing data Our article

MF

Annual 0.464 ± 0.127 Global Site data Tang
Annual 0.350–0.480 Sudan and Ethiopia Remote sensing data Khalifa
Annual 0.480 SNP Remote sensing data Li

Growing season 0.530 SNP Remote sensing data Our article

DBF

Annual 0.464 ± 0.127 Global Site data Tang
Annual 0.340–0.420 Sudan and Ethiopia Remote sensing data Khalifa
Annual 0.479 SNP Remote sensing data Li

Growing season 0.477 SNP Remote sensing data Our article

CUE is regarded as a dynamic parameter, and differs among species of the same biome [35]. In this
study, we found that the CUE of MF ecosystems in the SNP had great potential for carbon sequestration
in different seasons. GPP and NPP of GRA were very small in spring, resulting in the lowest CUE.
In summer and autumn, the CUE of GRA gradually increased. This study found that CUE of GRA
in summer was higher than that of DBF, possibly because GRA had less investment in plant tissue
respiration than that of broad-leaved forest, as reported by Law et al. [36]. Forest types showed high
CUE in autumn, because trees with higher carbon storage might be more beneficial to the growth in the
next year. After analyzing the abnormal values of different vegetation in different years (Figure 8), this
study found that in the spring of 2012, CUE of all types of vegetation decreased to the lowest level,
which would be related to different degrees of spring drought occurring in the western part of the SNP
region [26]. With lower average temperature in the autumn of 2002, CUE decreased in the SNP as
the temperature decreased, along with the CUE value. In the autumn of 2014, the CUE of vegetation
decreased significantly, which was associated with moderate drought in the south-central Northeast
China [37].

Phenological records can not only directly reveal the changes of natural seasons, but also illustrate
the response and adaptation of ecosystem process and results to global environmental changes. Few
previous studies have discussed the relationship between phenology and CUE. The phenological metrics
that we extracted were similar to the study of Huang et al. [2]. Most of the existing literatures have
focused on the relationship between NPP, GPP and phenology. Earlier SOS may extend the growing
season longer and lead to an increase in GPP [38]. Similarly, the delay in EOS may also prolong the
growth season, causing increases in GPP and NPP [18]; therefore, the CUE value of the vegetation will
increase. Vegetation requires relatively less energy to maintain living tissues in lower temperature
conditions, resulting in less respiration costs and higher CUE [39]. On the other hand, vegetation
growth is generally constrained by the short growing season. Rising temperature could extend the
growing season length and significantly increase GPP [12]. The sensitivity of CUE to temperature under
lower-temperature conditions is lower because the temperature sensitivities of GPP and autotrophic
respiration are of comparable size. In warm regions, especially in the tropics where the growing season
is long, by contrast, the respiration consumption of vegetation are higher, leading to a lower CUE [1].

CUE is sensitive to environmental conditions and climate change [40]. Previous studies found that
net productivity would increase linearly with higher average annual precipitation and temperature in
cold and dry ecosystem [1]. As a function of GPP, NPP and respiration, CUE of vegetation (for instance,
forest) may be affected by temperature and precipitation [41]. One reported study suggested that
CUE exhibited a decreasing trend with the increase of precipitation when precipitation was less than
2300 mm year–1. CUE showed an increasing trend along temperature when it was between −10 ◦C
and 20 ◦C, as well as an increasing trend with rising temperature [1]. In this study, CUE showed an
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increasing trend from May to July and from August to October, respectively, possibly because the
hydrothermal condition was more suitable during those two time periods. Increased precipitation may
lead to a higher NPP/GPP ratio [6]. The variations of temperature affect both the photosynthesis and
Ra rates, resulting in the changes of vegetation CUE [42]. The ratio of NPP to GPP might increase as
the annual temperature increased between −10 and 20 ◦C [1], which was partially explained by the
findings of this study.

In addition, in recent decades, to improve the local ecological environment and enhance the
ecological protection barrier function, the Chinese government and local citizens have taken multiple
measures and implemented actions for ecological and environmental protection [2]. Ecological and
environmental restoration projects such as the “Three-North Shelterbelt Project” and the “Grain for
Green Project” have achieved some positive effects [43,44]. We used the same method to calculate the
CUE of farmland. By comparison, we found that the average CUE of the natural ecosystem in SNP
showed a similar variation as that of the internal farmland from 2001 to 2015 (Figure 15). The CUE of
farmland and natural ecosystem increased simultaneously. The respiration consumption of vegetation
decreased. This also showed that the ecological protection function of natural ecosystem may have
been strengthened during the past 15 years.
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5. Conclusions

Quantifying the variations of interannual CUE among ecosystems has proved to be a useful tool
when calculating interannual carbon budgets. However, the intraannual change of CUE may present
different characteristics. The assessment of temporal and spatial variations of CUE at shorter time
scales and the impact on them of phenological and climatic factors are still poorly understood. This
study attempted to reveal spatial patterns of CUE of natural ecosystems at different temporal scales
in the SNP, China. The differences of CUE between months and seasons were significant. Monthly
average CUE showed the highest in October and lowest in May. Average CUE was the highest in
autumn, followed by summer. The variability of NPP accumulation in different seasons was significant.
The highest CUE values were observed in MF in the growing season, indicating better ecological
protection effects. The spatial variations of CUE were different. The pixels with rising CUE were
mainly concentrated in southwest GRA and eastern DBF. The SOS was generally observed in March
and April, while EOS dates were found in October and November. The earlier SOS and later EOS
exerted a positive influence on CUE in the SNP, especially in 80% of the areas covered by broad-leaved
forest. Longer LOS might cause the increase in CUE. In addition, CUE was positively correlated with
precipitation and temperature in most areas of the SNP. Increasing trend of CUE in the SNP suggested
a protective barrier function of natural ecosystems in the protected farmland region.
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