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Abstract: Natural disasters are projected to increase in number and severity, in part due to climate
change. At the same time a growing number of disaster risk reduction (DRR) and climate change
adaptation measures are being implemented by governmental and non-governmental organizations,
and substantial post-disaster donations are frequently pledged. At the same time there has been
increasing demand for transparency and accountability, and thus evidence of those measures having a
positive effect. We hypothesized that resilience-enhancing interventions should result in less damage
during a hazard event, or at least quicker recovery. In this study we assessed recovery over a 3 year
period of seven municipalities in the central Philippines devastated by Typhoon Haiyan in 2013. We
used very high resolution optical images (<1 m), and created detailed land cover and land use maps
for four epochs before and after the event, using a machine learning approach with extreme gradient
boosting. The spatially and temporally highly variable recovery maps were then statistically related
to detailed questionnaire data acquired by DEval in 2012 and 2016, whose principal aim was to assess
the impact of a 10 year land-planning intervention program by the German agency for technical
cooperation (GIZ). The survey data allowed very detailed insights into DRR-related perspectives,
motivations and drivers of the affected population. To some extent they also helped to overcome
the principal limitation of remote sensing, which can effectively describe but not explain the reasons
for differential recovery. However, while a number of causal links between intervention parameters
and reconstruction was found, the common notion that a resilient community should recover better
and more quickly could not be confirmed. The study also revealed a number of methodological
limitations, such as the high cost for commercial image data not matching the spatially extensive but
also detailed scale of field evaluations, the remote sensing analysis likely overestimating damage
and thus providing incorrect recovery metrics, and image data catalogues especially for more remote
communities often being incomplete. Nevertheless, the study provides a valuable proof of concept
for the synergies resulting from an integration of socio-economic survey data and remote sensing
imagery for recovery assessment.

Keywords: disaster; resilience; impact; evaluation; Philippines; Haiyan; machine learning; gradient
boosting; land use planning; German development cooperation

1. Introduction

The average annual global economic damage caused by disasters is difficult to determine, with
estimations ranging from about 300 billion US$ [1,2] to more than 520 billion US$ [3]. Predictions
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of future damages, in particular as part of wider expected losses resulting from climate change, are
even harder, with different warming scenarios by the Intergovernmental Panel on Climate Change
(IPCC) leading to a wide range of consequences [4], including variable changes in hydrometeorological
hazards [5]. Nevertheless, it is widely accepted that economic consequences will be both severe and
spatially highly variable [6,7]. Substantial uncertainty in those predictions is linked to the likely extent
and effect of climate change adaptation (CCA) and disaster risk reduction (DRR) measures. The
United Nations Environment Programme (UNEP) [8] recently estimated annual CCA costs of up to
500 billion US$. Vast sums have already been pledged for such measures by both governmental and
non-governmental players. The European Union announced plans in the 2009 Copenhagen Accord
to invest 100 billion US$ annually by 2020 in CCA measures in developing countries. In addition,
the work plan of virtually every official development assistance (ODA) agency includes a wide
array of interventions to reduce disaster risk and the effects of climate change, aiming at fostering
greater resilience.

A greater challenge than carrying out those interventions, be it engineering measures to protect
coastal communities, efforts to support the development of comprehensive land use plans, or to work
with local non-governmental organizations (NGO) to build up community-level risk awareness, is to
assess their effect. In particular with the increase in spending on development cooperation, politicians
are under pressure to demonstrate that the money is spent effectively. Therefore, evaluation has become
an important tool to demonstrate that tax-payer money is used wisely and that programs have a
positive impact [9]. For example, it stands to reason that communities that have received several years
of DRR interventions should suffer less damage during a hazard event, or at least recover more quickly
than unassisted communities. However, assessing the effect of interventions is complicated. This is
because of the difficulty (i) to attribute a certain performance or behavior of people or governments to
specific interventions, especially when different organizations are active in the area, (ii) to estimate
the future effect and value of planning activities or what people learned in a community meeting,
and (iii) to collect the very detailed socio-economic data needed to support a quantitative impact
evaluation. CCA and DRR are only two domains where the need for impact assessment has been
increasing. There has generally been growing interest in transparency and accountability, with auditing
agencies but also donors giving post-disaster assistance increasingly requesting evidence of the effect
of funded interventions.

Impact evaluations, which can address relevance, effectiveness, efficiency, impact, or sustainability,
usually follow a common procedure: first, evaluators collect baseline data prior to the start of the
intervention. After the program has been completed and project impacts have crystalized endline
data are compiled. It is good practice to collect additional performance data during the program
implementation stage to carry out adjustments if needed. Data collection is performed in treatment
and non-treatment communities. Ideally treatment is assigned randomly (randomized control trial),
but if this is not possible, matching methods can be employed (quasi-experimental design) [9].

In the field of international development the focus is primarily on people. As such, surveys are
the most frequently used tool for data collection. Often survey data are amended with socio-economic
and demographic characteristics of the region to contextualize findings. These additional data are
usually obtained from census records made available by Integrated Public Use Microdata Series
(IPUMS)-International [10], or via specialized population surveys such as the demographic and health
surveys [11]. Based on the nature of the data, the evaluation design, and the outcome of interest,
different statistical models can be employed to connect treatment with impacts causally. The statistical
tests range from simple t-tests to more complex multi-level regression models [12]. However, most
traditional evaluations in the field of international development cooperation do not consider space.
With advances in spatial technology, evaluators have now started to employ geographic data in
evaluations [13,14]. Geographic parameters can be employed either as control or outcome variables, or
in the evaluation design stage such as for spatial sampling. When the program impact is measured
geographically it is possible to employ a geospatial impact evaluation (GIE) approach [15].
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Traditional impact evaluation methods face a number of limitations: (i) collecting survey data
is a time consuming and expensive task [9]. Particularly if a program is implemented widely across
a country or region, costs can rise drastically and limit either coverage or detail; (ii) traditional
survey methods require a long planning horizon and are difficult to implement ad-hoc. This makes it
challenging to collect baseline data for programs that respond to sudden onset disasters such as storms,
flooding, or earthquakes [14]; (iii), traditional survey methods are restricted by access considerations.
For example, it is difficult to evaluate programs that take place in very remote locations without proper
road access. Similarly, the political situation in a country (e.g., military conflict) may prevent evaluators
from collecting survey information [16].

The advantages of remote sensing (RS) in terms of synoptic coverage, cost effectiveness, and
flexibility in sampling frequency or sensor choice are well recognized in the field of disaster risk
management [17]. However, most image analysis methods developed in this domain focus on the
detection or characterization of physical features. Only more recent research has also looked at
non-physical properties such as social vulnerability [18] or functional disaster damage. All make use
of physical proxy indicators (hereafter: proxies) constituting indirect measures that provide insights
into not directly observable features or processes [19].

The purpose of this study was to understand to what extent RS could support the traditionally
field-based evaluation work. Specifically, we focused on assessing the effect of interventions on
resilience, i.e., the ability to rebound from an adverse event. We considered post-disaster recovery to be
a proxy for resilience, and thus used RS to detect evidence of spatially variable recovery, which we then
statistically linked to interventions in different municipalities. Similar to [20] we assessed land cover
(LC) and land use (LU) with machine learning (ML) methods over a 3 year period following a disaster
event to detect the level of recovery across space, which was then related to intervention information
collected in the field. We developed the proof of concept for a number of barangays (municipalities)
in the Leyte region in the central Philippines, which was severely affected during Typhoon Haiyan
in 2013.

2. Literature Review and State of the Art

In a political climate of increasing calls for transparency and accountability, evaluations can provide
empirical evidence of intervention effectiveness, efficiency, and impact to justify spending. To be able
to estimate the causal effect or impact of a program, evaluations must estimate the counterfactual, i.e.,
what the outcome would have been in the absence of the program [9]. It is the goal to control for all
factors that may have produced the results, and thereby clearly connect intervention and outcome.

Impact evaluations employ different methods to estimate a valid counterfactual, including
randomized assignment [21], regression discontinuity [22], difference-in-difference [23], and
matching [24]. Given a sufficiently large sample, randomized assignment ensures that the treatment
and control groups are statistically identical in both observed and unobserved characteristics [25].
Regression discontinuity design is an option when a continuous scale (e.g., poverty index, and
farm size) is used to determine program eligibility, and a unique cutoff score determines who
receives the program [26]. It is then possible to calculate impacts as the difference in outcomes
comparing the units just below (e.g., treatment group) and above (e.g., control group) the eligibility
cutoff. The difference-in-difference method compares changes in the outcome (before and after the
intervention) of the treatment group with changes in the outcome of the comparison group [27].
Matching belongs to the category of quasi-experimental designs and uses statistical methods to find
for every treatment unit a non-treatment unit that has the most similar characteristics possible [28].
However, when experimental and quasi-experimental designs are unethical or not feasible, evaluators
frequently employ correlation methods (e.g., multivariate regressions) to account statistically for
differences between treatment and control units [29]. In this paper, we employed a correlation approach
to investigate the impact of a land-use planning intervention (see details below) on post-disaster
recovery, and thus on resilience.
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A prerequisite for employing rigorous evaluation methodologies is sufficient data availability.
Traditionally, evaluations have made use of survey methods to collect the necessary data before, during
and after an intervention. However, the collection of survey data is expensive and responses may be
subjective. In addition, survey data frequently lack the geographical detail if environmental changes
are to be evaluated [13]. The use of RS data to complement traditional evaluation designs offers some
major advantages [30], such as archives that often span decades, and thus the availability of image
data acquired long before the intervention started. Many satellite products are available free of charge,
which may help reduce the costs for data collection. Finally, geographic data can provide an objective
measure of high detail for changes in environmental conditions, which is difficult to obtain from survey
data alone.

Many methods have been developed to extract information from RS data to measure and
characterize different aspects of disaster risk management [17,31]. However, most existing studies
have focused on physical assessments using direct observations, be it for hazard or risk assessment, but
also to detect post-disaster damage or recovery. For example, researchers have assessed the number
of buildings collapsed/damaged [32,33] and reconstructed [34], or estimated their vulnerability [35].
However, the non-physical aspects of DRM, e.g., social and economic properties, are also crucial and
should be assessed [36]. However, this requires indirect observations and the use of proxies [19],
as demonstrated in recent studies on vulnerability [37,38], resilience [39], damage [40,41], and
recovery [42]. In addition, recent studies showed that most of the developed proxies for damage and
recovery assessments can be extracted through LC and LU monitoring [43,44], increasingly through the
use of ML techniques [20]. The growing sophistication of image-based extraction of both physical and
non-physical indicators of recovery, and thus resilience, suggests a possible role in impact evaluation,
which we tested in this work.

3. Data and Methods

3.1. Overall Approach

Figure 1 illustrates the overall methodological approach followed in this study. Using a variety of
image-derived proxies that cover the built-up, social, and economic dimensions we first quantified
the damage caused by typhoon Haiyan, followed by a quantification of the recovery for different
post-event years. The spatially variable recovery performance was considered to reflect the underlying
resilience. In a statistical analysis we then identified which intervention-related variables, such as
donor support, but also factors such as prior disaster experience, correlated with the observed recovery
at a municipal level.

In the following we first provide details about the study area and the satellite data used, as
well as the field surveys carried out by the German Institute for Development Evaluation (DEval).
Subsequently we explained the developed proxies, and how they were used in the damage and
recovery assessment. Finally the correlation analysis to link the RS results and the impact evaluation
data was described.

3.2. Study Location and Image Data Used

Typhoon Haiyan passed over the Central Visayas region of the Philippines, crossing the islands of
Samar and Leyte on 8 November 2013. With sustained wind speeds exceeding 310 km/h at landfall, it
was one of the strongest tropical storms on record worldwide. The center of the storm passed close to
Leyte’s largest city and administrative center, Tacloban (Figure 2).
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Reported fatality figures vary widely, though are unofficially estimated to be in excess of 13,000 [45]
attributable to strong winds and a storm surge of up to 5 m in height along the Basey and Tacloban
coastal area [46]. Other sources reported heights of up to 7 m in Leyte [47], and even 12 m in Samar [48].
Structural damage was extensive, with more than 1 million buildings getting partially or completely
destroyed in nearly 600 affected municipalities. Leyte alone accounted for a reported 86% of all
casualties, and a quarter of the economic losses relate to destroyed rice and corn crops [49].

Very high-resolution satellite images were used to implement the developed LCLU classification
approach and to extract relevant proxies. Table 1 shows the specifications and acquisition times of the
images used.

Table 1. Satellite images used in this study.

Area Satellite Acquisition Date Time (T0, T1, T2, T3) 1 Spatial Resolution
2 (MS; Pan)

Tacloban WorldView2 2013-03-17 T0 2 m; 0.5 m
Tacloban WorldView2 2017-03-18 T3 2 m; 0.5 m
Tacloban GeoEye1 2013-11-10 T1 2 m; 0.5 m
Tacloban GeoEye1 2013-11-12 T1 2 m; 0.5 m
Tacloban GeoEye1 2013-11-13 T1 2 m; 0.5 m
Tacloban GeoEye1 2016-04-24 T2 2 m; 0.5 m

South Leyte WorldView2 2013-03-25 T0 2 m; 0.5 m
South Leyte WorldView2 2013-04-02 T0 2 m; 0.5 m
South Leyte WorldView2 2014-01-07 T1 2 m; 0.5 m
South Leyte WorldView2 2014-07-16 T2 2 m; 0.5 m
South Leyte WorldView2 2014-09-11 T2 2 m; 0.5 m
South Leyte WorldView2 2014-10-21 T2 2 m; 0.5 m
South Leyte WorldView2 2014-12-01 T2 2 m; 0.5 m
South Leyte WorldView2 2016-01-24 T3 2 m; 0.5 m
South Leyte WorldView2 2016-06-24 T3 2 m; 0.5 m

Basey WorldView2 2013-05-18 T0 2 m; 0.5 m
Basey WorldView2 2013-05-18 T0 2 m; 0.5 m
Basey WorldView2 2013-09-01 T0 2 m; 0.5 m
Basey WorldView2 2013-11-19 T1 2 m; 0.5 m
Basey WorldView2 2013-11-21 T1 2 m; 0.5 m
Basey WorldView3 2014-12-09 T2 1.3 m; 0.31 m
Basey WorldView3 2015-01-10 T2 1.3 m; 0.31 m
Basey WorldView2 2016-06-04 T3 2 m; 0.5 m
Basey WorldView2 2016-06-04 T3 2 m; 0.5 m

Lawaan WorldView2 2013-05-18 T0 2 m; 0.5 m
Lawaan WorldView2 2013-05-18 T0 2 m; 0.5 m
Lawaan WorldView2 2014-01-07 T1 2 m; 0.5 m
Lawaan WorldView2 2014-01-07 T1 2 m; 0.5 m
Lawaan WorldView3 2014-10-07 T2 1.3 m; 0.31 m
Lawaan WorldView2 2015-11-24 T3 2 m; 0.5 m

1 T0—pre-disaster, T1—shortly after Haiyan, T2 and T3—approx. 2 years and 3 years after the disaster, respectively.
2 MS—multispectral, Pan—panchromatic.

3.3. Survey Data

To test the integration of survey information with RS data we selected seven municipalities that
were part of a larger evaluation completed by DEval [14]. The evaluation included 100 municipalities,
of which 44 formed the intervention group, and 56 the control group. Control municipalities were
selected from all available municipalities in the two study regions (Eastern Visayas and Western
Visayas) using a propensity-score matching technique [50]. Base- and endline survey data were
collected by DEval for 10 households in three randomly selected barangays per municipality, resulting
in 3000 interviewed households.

The intervention evaluated by DEval was a comprehensive LU planning program known as
SIMPLE (Sustainable Integrated Management and Planning for Local Government Ecosystems) that
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received funding and administrative support from the German agency for technical cooperation (GIZ)
over a 10-year period (2006–2015). The SIMPLE intervention included training schemes, technical
assistance, and the development of participatory planning tools. The DEval evaluation found that the
SIMPLE intervention significantly improved land-use planning quality and comprehensiveness, and
led to an increased number of protected areas [14]. The DEval evaluation investigated the general
effectiveness of the SIMPLE intervention on land-use planning approaches in the Philippines but did
not evaluate post-disaster recovery, the focus of this article.

During the DEval impact evaluation extensive panel survey data were collected at the household,
barangay, and municipal levels. Base- and endline data were collected in 2012 and 2016, respectively.
Due to budget constraints we were unable to perform the remote sensing analysis for all surveyed
municipalities for the study reported in this paper. The seven municipalities were purposefully chosen
for two reasons: (i) we selected municipalities that were affected to different degrees by Haiyan, to
capture sufficient variation in damage and recovery; and (ii) we further ensured that both treated
(receipt of SIMPLE intervention) and untreated municipalities were represented in our sample. From
each of the seven municipalities three barangays (villages) were randomly selected, resulting in a
sample of N = 21 barangays. However, data limitations (e.g., cloud coverage in some of the RS data)
led to a reduction in the analytic sample to N between 13–18, depending on the geographic variable.
Figure 2 shows the seven municipalities that contained the barangays included in this study.

3.4. RS Data Analsyis

We developed a conceptual framework to assess recovery based on the extraction of image-based
proxies. The approach consisted of two main steps: (i) to generate the damage map, and (ii) to generate
recovery maps at the required times after the disaster. To do so, suitable proxies needed to be identified
and extracted for each of the required time steps (e.g., pre-disaster, event time, and post-disaster).
Proxies for separate dimensions, i.e., built-up, social, and economic [19] are needed to cover the entire
damage and recovery process comprehensively. The proxies listed for the pre-disaster (T0) and event
(T1) times support the damage assessment, and subsequently the damage map was compared with
the proxies listed for two post-disaster time epochs approximately 2 and 3 years after Haiyan (T2 and
T3, respectively) to assess recovery at each time. The changes in the state of each proxy between two
epochs demonstrate the damage to the indicators, and subsequently the degree of recovery.

Table 2 shows the selected proxies and their use to evaluate recovery in the selected study area.
To assess the full scope of damages we employed proxies that measure the structural damages to
buildings, bridges, and transportation facilities, but also textural proxies and evidence of blow-out
debris. To assess the recovery process we employ proxies that measure the reconstruction of buildings
and impervious surface. Once the proxy-based damage map has been produced, monitoring changes
through the built-up proxies indicates the degree of recovery at a given point in time following the
disaster. Among the economic proxies, LU information indicates the types of economic activity, while
the presence of vehicles and boats provides an indication of the extent and frequency of its use. Arable
land is a proxy for the potential for farming. In addition, roof color and material helps to differentiate
between types of buildings (e.g., industrial facilities vs. residential housing). We use the share of
population residing in informal settlements (i.e., slums) as a proxy for the socio-economic status of
the area.
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Table 2. The proxies used for the recovery assessment.

Proxy Category Description
Building damage Built up Number of damaged/collapsed buildings

Texture Built up To extract damaged buildings, roads, and
urban areas

Building removal and reconstruction Built up To detect recovered buildings

Blow-out debris Built up To detect blocked roads and damaged
buildings

Reconstruction of bridges and public
transport facilities Built up Accessibility and transportation facility

assessments

Impervious surface Built up To extract built-up area and permeability of
the surface

Presence of vehicles Built up/Economic
For transportation condition/accessibility
analysis and functioning of roads, and to
extract the level of economic activities

Land use (large-scale industry) Economic Economic activity types/location and
economic focal spaces

Presence of boats Economic Fishery industry for livelihood recovery
Arable land Economic Agriculture industry for livelihood recovery
Roof color and material Economic Industry recovery
Proportion of built-up and vegetated area Social Settlement type/location in urban areas

Share of population in irregular clusters Social Irregular building clusters link to people
with low income/economy (slum area)

Machine learning methods such as support vector machines (SVM) and random forest (RF)
have been widely used in remote sensing data processing, particularly for satellite image processing,
due to their efficiency and accurate results. Several researchers also studied their applicability in
producing accurate LC and LU maps from remote sensing optical images [20,51–54]. Recent advances
in computer science motivated researchers to use deep learning and convolutional neural network
(CNN) approaches as superior classification methods [55]. However, CNN-based models must be
trained with a large number of samples to give appropriate results, which also require substantially
more computational power and complex models.

Other advanced ML methods have been developed to support challenging image classification tasks
at low computational costs, such as logistic model trees, and rotation forest ensembles. The gradient
boosting method (GBM) is a supervised classification technique and belongs to regression and
classification trees models [56,57]. Tree boosting is an ensemble learning algorithm that is very effective
in the classification of even weak trees [58], as has been shown in scene classification [59,60]. However,
traditional GBMs require the tuning of a number of parameters and are thus more susceptible to
overfitting than other ML algorithms, such as SVM. In 2008, Chen and Guestrin [61] developed the
extreme gradient boosting (XGBoost) method, which is the regularized version of GBM and overcomes
most of the limitations. Since then XGBoost has been successfully used for different classification
problems. Its superiority for LC and LU classification from very high resolution images was also
shown in recent studies [58,62].

Both urban and rural LU classes in most cases cannot be distinguished using only spectral
information (e.g., slum areas), and require the addition of spatial features (i.e., texture) [63]. Local Binary
Patterns (LBP) have been shown to be an effective textural information extraction method [20,64,65].
LBP are based on the gray level co-occurrence matrix, which contains simple textural computations
such as mean, variance, homogeneity and entropy. Therefore, in this study the LBP of each image,
using a 5 × 5 kernel, were computed and used as input in addition to the image bands in the XGBoost
classification. The implementation of the XGBoost classifier was based on the default parameter values,
and the calculation of the LBP and XGBoost was performed in Python.

The LC map contains the following classes: building, impervious surface, bare land, inland water,
trees/flattened trees, non-tree vegetation, and rubble for the event time images. In addition, the LU
maps include large-scale industry, informal settlement (slums), formal buildings, trees/flattened trees,
crop land, grass land, inland water, bare land, impervious surface, and rubble for event time images.
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In the first step of the classification the training areas were selected for each class, separately for the
LC and LU classifications. In addition, the accuracy of the results was computed based on standard
measurements, overall, user’s, and producer’s accuracy (OA, UA, and PA, respectively) for Barangay
69. Stratified random sampling was used to generate random reference points for the evaluation.
Considering the size of the test area, a minimum of 30 sample pixels per class for both the LC and LU
classification maps were selected to produce reference data.

Figure 3 shows the general framework of the implemented steps for the proxy extraction based on
LCLU maps. Before starting to select the training areas for the classification, three pre-processes were
implemented: (i) improving the geo-referencing of the images; since the final recovery map/proxy
extraction was conducted based on a pixel-by-pixel comparison of the maps for each time step, the
images required a good matching in terms of geo-referencing. Accordingly, one of the images was
selected as a base image, and the geo-referencing of the other images refined using image-to-image
registration/rectification, as is commonly done in pixel-based change detection techniques [66].
However, satellite inclination angles vary, and in particular the time-critical post-disaster response
phase tends to be dominated by images taken at large off-nadir angles. This leads to errors in the
change assessment, in particular for vertical features such as building façades; (ii) image mosaicking to
match and merge different satellite images to cover the entire area. The merging operation, and thus the
provided merged images, challenge the classification approach and lead to inaccuracies in the LCLU
maps, particularly for images collected in different seasons or with large gaps between acquisitions;
(iii) region of interest (ROI)/barangay image extraction, which was conducted using ArcGIS based on
the barangay boundaries by the United Nation’s Office for Humanitarian Affairs (OCHA) based on
information provided by the Philippine Statistical Authority (PSA) [67].
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The computed class characteristics were used for the proxy extraction and interpretations. The
LCLU classification was implemented on multi-spectral satellite images, while due to their small size
compared to other LCLU classes vehicles and boats were extracted using both panchromatic and
multispectral images. The boats inside the barangays (on inland water), as well as the boats close to
the selected barangays (on open water) were counted. The proxies were extracted based on the LCLU
class area sizes and their changes from T0–T3, except for the number of boats and vehicles that were
counted manually. For example, the building land cover change from the pre-disaster time (T0) to
just after the disaster (T1) shows the change in the overall size of the area covered by buildings in the
area and, consequently, the damaged buildings. Furthermore, roof color was calculated based on the
extraction of the brightness values of the pixels for the building class using MATLAB.

We implemented the developed approach on the images of the four epochs considered (T0–T3) to
extract the selected proxies.

3.5. Statistical Modelling of the Recovery Assessment

Outcome variables. In this study, we focused on building reconstruction and industry recovery as
our outcomes of interest. Results from the semi-automated classification of LCLU patterns at the three
post-disaster time points (T1–T3) allowed us to compute recovery rates (in %). Positive values indicate
an increase in the building stock, while negative values suggest that (possibly damaged) structures
were removed.

Survey variables. A selection of relevant variables from the DEval survey was employed in this
analysis to investigate the influence of development interventions and various socio-demographic
and structural characteristics on recovery rates. We grouped survey variables into donor support,
structural characteristics, DRM-related characteristics, and local governance. Donor support was
measured with focus on the Germany-funded SIMPLE intervention. A dichotomous variable indicates
whether SIMPLE was implemented (1 = yes, 0 = no) in a given barangay, and whether the intervention
started early (pre-2009) or late (2009–2012). In addition, we employed a variable measuring whether
the barangay had received support from other donors (1 = yes, 0 = no).

Structural characteristics included information on average annual municipal income classified as
high (income = 1: ≥500,000 US$) and low (income = 0: <500,000 US$), whether a barangay was located
in the city (urban area = 1) or the rural countryside (urban area = 0), and amount of IRA (Internal
Revenue Allotment) subsidies (in million $US) that a municipality received during the previous year.

DRM-related characteristics included perceived disaster preparedness, ranked by the barangay
captain on a scale from 1 (low) to 10 (high), and whether the barangay had experienced a disaster in
the preceding 5 years (1 = yes, 0 = no). In addition, a variable indicated the amount of reconstruction
support received by the municipality from government authorities (in million US$), as well as a rating
by the barangay captain regarding the number of ongoing DRM-related activities (0 = low, 10 = high).

Finally, the quality of local governance was measured through the political experience level of the
barangay captain (1 = more than one completed term as captain, 0 = less than one term as captain), the
work experience level of the mayor (years in office), and how corrupt the barangay captain considered
the local system to be (0 = low corruption, 10 = high corruption). Table 3 provides summary statistics
for the relevant survey variables.
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Table 3. Summary statistics of the analytical sample.

Unit N Min Max Mean SD

Outcome
Building rec. (T1–T2) % 14 31.67 1898.9 372.57 505.15
Building rec. (T2–T3) % 16 −31.45 74.07 22.08 29.73
Industry rec. (T1–T2) % 13 −30.29 2205.94 397.94 652.92
Industry rec. (T2–T3) % 13 −45.6 123.83 25 38.9

Donor support
SIMPLE intervention 1|0 18 0 1 0.83 0.38

Late intervention start 1|0 15 0 1 0.4 0.51
Other donor support 1|0 18 0 1 0.83 0.38

Structural characteristics
High income 1|0 18 0 1 0.83 0.38
Urban area 1|0 18 0 1 0.17 0.38
IRA subsidies US$ (million) 18 0.22 8.86 2.22 3.09

Disaster risk management
Disaster preparedness scale 18 4 10 7.39 2.33
Disaster experience 1|0 17 0 1 0.76 0.44
Reconstruction support US$ (million) 13 0.01 1.52 0.33 0.47
DRM activities scale 18 0 10 5.77 3.1

Local governance
Experienced captain 1|0 18 0 1 0.56 0.51
Experience of mayor Years 18 1 6 3 2.3
Perceived corruption Scale 18 0 10 4.83 2.71

Notes: Building rec. = Building reconstruction; Industry rec. = Industry reconstruction; typhoon Haiyan hit the
Philippines 7–9 November 2013; T1 = just after disaster, T2 = approx. two years after disaster, T3 = approx. three
years after disaster; US$ expressed in current (August 2019) US$.

Statistical approach. Due to the very small sample size the statistical analysis had to be limited
to simple bivariate ordinary least squares (OLS) regression models. The primary goal of this
analysis was to demonstrate the use of combining RS data with survey data to answer substantively
meaningful questions regarding post-disaster recovery processes. Equation (1) formally describes the
employed models.

y = α+ β1x1 + ε. (1)

We modeled changes in recovery rates (y) at the barangay level, with α representing the intercept
or average recovery rate. The parameter β1 constitutes the effect of a given predictor variable x1 (e.g.,
experience of barangay captain), and ε constituting the normally distributed error term. To account for
the small N, significance tests use robust standard errors. Computations were performed using the R
statistical environment [68].

4. Results

4.1. Image-Based Recovery Assessment

The main analysis was conducted based on the proposed methodology for the selected barangays
from each municipality. Barangay 69 (0.38 km2 in size), located in the North of Tacloban (Figure 2) was
selected to visualize the analysis and explain the results in detail for each step. This barangay contains
most of the LCLU classes, in addition to some representative challenges/inaccuracies we encountered
during the classification and providing the final recovery assessment results.

Figures 4 and 5 show the LC and LU results and their corresponding area coverage ratios for the
entire Barangay 69, respectively. The original true color images as well as LCLU maps were provided
for each time step to visualize the recovery. However, the selection of the training areas was challenging
for some classes, particularly for LU, such as distinguishing the large-scale industry facilities from
formal buildings without using auxiliary data.
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Figure 4. A0, A1, A2, and A3: Original very high resolution WorldView2, GeoEye1, GeoEye1, and
WorldView2 satellite images, respectively, acquired over Barangay 69, Tacloban city from 8 months
before (T0), right after (T1), 2 years (T3), and 3 years after Typhoon Haiyan (T3), respectively; B0,
B1, B2, and B3: land cover (LC) classification result for the four time epochs; C0, C1, C2, and C3:
corresponding pie charts show distribution of the LC classes. The area denoted by the blue circles in
A1 and B1 shows shadowed area in the image.
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Figure 5. A0, A1, A2, and A3: Original very high resolution WorldView2, GeoEye1, GeoEye1, and
WorldView2 satellite images, respectively, acquired over Barangay 69, Tacloban city, 8 months before
(T0), right after (T1), 2 years (T3), and 3 years after Typhoon Haiyan (T3), respectively; B0, B1, B2, and
B3: land use (LU) classification result for the four time epochs; C0, C1, C2, and C3: corresponding pie
charts show distribution of the LU classes. The area denoted by the blue circles in A1 and B1 shows the
shadowed area in the image.
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The developed approach resulted in overall accuracy scores of 85.4%, 76.1%, 83.4%, and 86.0% for
the LC classification at T0, T1, T2, and T3 images, respectively, which demonstrated the robustness of
the method in classifying the land covers from satellite images (Table 4). However, the user’s accuracy
(UA) values of the impervious surface and water classes were 66.7% and 60.0%, respectively, which
shows the relatively high commission error for those classes. In addition, overall accuracies of the LU
maps produced by the developed method were 81.8%, 72.1%, 78.7%, and 78.8% for T0, T1, T2, and
T3 images, respectively (Table 5). More classes and their similarity in the LU classification, which
challenges the classification process, resulted in lower accuracy scores when compared to the LC
classification. However, the high producer’s accuracy (PA) values for most of the land use classes,
ranging from 70% to 100%, demonstrated the low level of omission errors for those classes in such a
challenging case. The developed method produced accurate results in classifying roads (impervious
surface) and built up areas, as well as the vegetation classes. However, some inaccuracies resulted in
particular from the presence of clouds and their corresponding shadows. For example, the T1 image
contained a shadowed area that was mainly covered with low-level vegetation and trees; however, in
the LCLU maps the area was classified as debris/rubble (Figures 4 and 5).

Table 4. The LC classification accuracies for T0, T1, T2, and T3 time epochs for Barangay 69. User’s and
producer’s accuracies and corresponding errors are computed across the study area from the confusion
matrices. PA—producer’s accuracy; UA—user’s accuracy; OA—overall accuracy; N.S—number of
samples used for the accuracy assessment.

Time/Class Buildings Impervious
Surface

Bare
Land Water Trees Non-Tree

Vegetation Rubble

N.S. 40 40 40 40 40 40 —
Pre-disaster PA% 72.0 89.2 82.9 95.0 97.1 81.8 —

(T0) UA% 90.0 82.5 72.5 95.0 82.5 90.0 —
OA% 85.4
N.S. 40 30 30 30 30 30 44

Just after disaster PA% 92.5 76.9 80.0 94.7 65.9 79.4 58.7
(T1) UA% 92.5 66.7 66.7 60.0 96.7 90.0 61.1

OA% 76.1
N.S. 30 30 30 30 30 37 —

Post-disaster PA% 69.2 100 82.8 96.2 72.2 91.7 —
(T2) UA% 90.0 70.0 80.0 83.3 86.7 89.2 —

OA% 83.4
N.S. 30 30 30 30 30 50 —

Post-disaster PA% 71.1 87.5 81.5 100 85.3 93.5 —
(T3) UA% 90.0 70.0 73.3 100 96.7 86.0 —

OA% 86.0

Table 5. The LU classification accuracies for T0, T1, T2, and T3 for Barangay 69. User’s and producer’s
accuracies and corresponding errors were computed across the study area from the confusion matrices.
BareL: bare land; FB: formal built-up area; ImS: impervious surface; LSI: large scale industry; IS: informal
settlement; PA—producer’s accuracy; UA—user’s accuracy; OA—overall accuracy; N.S.—number of
samples used for the accuracy assessment.

Time/Class BareL Crop FB Grass ImS Water LSI IS Trees Rubble
N.S. 30 30 35 30 30 30 30 30 40 —

Pre-disaster PA% 78.6 95.7 75.9 90.3 71.0 78.8 87.5 53.5 90.7 —
(T0) UA% 73.3 73.3 73.3 86.7 73.3 86.7 70.0 76.7 97.5 —

OA% 81.8
N.S. 30 30 30 30 30 30 36 30 30 47

Just after disaster PA% 74.2 100 78.3 60.5 72.4 100 71.1 — 55.8 61.4
(T1) UA% 76.7 53.3 60.0 76.7 70.0 50.0 88.9 — 96.7 67.5

OA% 72.1
N.S. 30 30 32 30 30 30 30 30 31 —

Post-disaster PA% 87.1 93.8 75.9 64.1 91.3 96.3 70.0 60.6 66.7 —
(T2) UA% 90.0 50.0 73.3 83.3 70.0 86.7 70.0 66.7 75.0 —

OA% 78.7
N.S. 30 30 30 30 30 30 30 30 30 —

Post-disaster PA% 90.9 100 67.7 80.0 80.0 90.3 61.1 63.6 70.7 —
(T3) UA% 66.7 53.3 70.0 93.3 66.7 93.3 73.3 70.0 72.5 —

OA% 78.8
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As can be seen from Figure 5 most of the buildings recovered, while half of the trees had not yet
recovered by T3. The latter was to be expected, given that an estimated 33 million coconut trees were
destroyed by Haiyan in the Visayas [69], which take 6–8 years to regrow to maturity. This also explains
an observed shift in cultivation of palm trees to other crop types, which leads to a decrease in the
number of trees in the area. In addition, young replanted trees are not yet detectable in satellite images,
which results in them being misclassified as grass or crop land.

Table 6 shows the final extracted proxies. Almost 80% of the buildings in Barangay 69 had been
reconstructed/had recovered by March 2017. However, the area covered by both industrial buildings
and informal settlements (slums) decreased. The latter were marked by clusters with highly irregular
patterns, and their share decreased, which illustrates a positive recovery aspect after the disaster.

Table 6. The extracted results for the selected proxies for Barangay 69, Tacloban. WV2: WorldView2;
GE1: GeoEye1.

# Measurement Proxies Pre-Disaster T0
(2013-03-17_WV2)

Event T1
(2013-11-10_GE1)

Post-Disaster T2
(2016-04-24_GE1)

Post-Disaster T3
(2017-03-18_WV2)

1 Building size (m2)
Structural/building damages,

and building removal and
reconstruction

29,878 3236 1 25,236 26,852

2 Impervious surface
area (m2)

Blow-out debris, and
reconstruction of bridges and

public transport facilities
15,792 3236 28,482 28,270

3 Counted vehicles Presence of vehicles 9 1 15 10

4 Large-Scale industry
(m2) Large-Scale industry 12,396 1036 2564 2840

5 Crop land (m2) Crop land 15,526 18,336 43,848 45,086
6 Tree (m2) Tree 68,102 —— 2 35,318 34,470
7 Count boats Presence of boats 13 2 32 22

8 Proportion of blue
colored roofs (%) Building rooftop materials 31 15 78 9

9 Proportion of red
colored roofs (%) Building rooftop materials 18 4 7 10

10 Proportion of white
colored roofs (%) Building rooftop materials 9 2 11 2

11 Proportion of other
colored roofs (%) Building rooftop materials 42 80 4 78

12 Proportion of built-up
area (%) Proportion of built-up area 24 2 28 29

13 Proportion of
vegetated area (%) Proportion of vegetated area 72 41 61 64

14 Informal settlement
size (m2) Proportion of irregular clusters 4284 0 3138 3484

15 Arable land (m2) Availability of land for farming 3744 16,740 13,998 6106
1 The extremely low post-event (T1) building size value suggests that more than 90% of all buildings in this barangay
were destroyed; however, it instead implies that some degree of damage were detected on nearly all buildings. 2

Most of the trees in Barangay 69 were coconut palm trees that were destroyed during Haiyan. However, some trees
were left standing, but those cannot be distinguished from flattened trees in the satellite imagery used, hence here
we assumed that in T1 all trees were destroyed.

4.2. Statistical Analysis Results

Combining results from the semi-automated LCLU classification with survey data we provide an
example of how RS data and survey information can be meaningfully combined in evaluation work.
Table 7 shows the results from the OLS regression model predicting short-term and long-term building
reconstruction and industry recovery.

Donor support. A primary question we were interested in was how the German-funded SIMPLE
intervention related to post-Haiyan recovery rates. Note that our analytical design (purposeful
sample selection) did not permit rigorous causal attribution (see Discussion). We found no significant
relationship between the SIMPLE intervention and the early recovery phase (T1–T2). However, the
relationship was significant (p < 0.001) and negative during the late recovery phase (T2–T3). For
example, the building recovery rate was about 45% lower in barangays that received the SIMPLE
intervention compared to those that did not. Figure 6 shows building recovery rates and the intervention
per barangay, which allows for a visual appraisal of the observed correlation. Similar to the SIMPLE
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intervention, the only significant effect of other donor support was negative and emerged for building
reconstruction in the early recovery phase (b = −1069.6, p < 0.05).

Table 7. Results from OLS regression models predicting building reconstruction and industry recovery.

Building Rec.
(T1–T2)

Building Rec.
(T2–T3)

Industry Rec.
(T1–T2)

Industry Rec.
(T2–T3)

b sig b sig b sig b sig

Donor support
SIMPLE intervention −50.51 −44.52 *** 264.84 −107.06 ***
Late intervention start 491.63 −0.23 737.15 + −19.47
Other donor support −1069.6 * 19.05 + −386.39 −6.5

Structural characteristics
High income 332.69 + −17.63 464.79 + 12.68
Urban area 936.72 * −16.47 397.47 6.27
IRA subsidies 112.85 * −2.86 * 54.26 0.42

Disaster risk management
Disaster preparedness 22.22 −2.69 −93.43 6.93
Disaster experience −665.88 −29.28 −357.7 −75.39 *
Reconstruction support −57.11 −50.02 *** −58.45 −14.52
DRM activities −34.87 0.5 −73.36 −6.32

Local governance
Experienced captain −38.14 −8.7 −439.61 15.56
Experience of mayor −87.29 + −3.41 −125.83 + −0.63
Perceived corruption −86.55 * 6.21 * −70.67 2.17

Notes: + p < 0.10; * p < 0.05; ** p < 0.01; *** p < 0.001; typhoon Haiyan hit the Philippines 7–9 November 2013; T1 =
just after disaster, T2 = approx. two years after disaster, T3 = approx. three years after the disaster; T1–T2 = early
recovery phase; T2–T3 = late recovery phase; separate OLS regression models were estimated for each predictor;
significance tests based on robust standard errors.
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Structural characteristics. For structural characteristics, significant relationships emerged mainly 
for building reconstruction, while industry recovery was comparatively unaffected. We observed 
higher growth rates in urban vs. rural areas (b = 936.72, p < 0.05). Barangays that received IRA 
subsidies showed higher reconstruction rates (b = 112.85, p < 0.05) during the early phase, but negative 
reconstruction rates (b = –2.86, p < 0.05) during the late phase.  

Disaster risk management. Those barangays that had previously experienced a natural disaster 
showed slower industry recovery rates (b = –75.39, p < 0.05) than those without such experiences. 
Moreover, our analysis revealed that reconstruction support was significantly related to a lower 
building reconstruction rate in the later phase (b = –50.02, p < 0.001).  

Local governance. Good governance may facilitate the recovery process through administrative 
support, procurement of financial resources, and implementation of guidelines and standards. Yet, 

Figure 6. Building recovery during the early (a) and late recovery phase (b), as well as the Sustainable
Integrated Management and Planning for Local Government Ecosystems (SIMPLE) intervention per
barangay (c). Notes: T1–T2 = early recovery phase; T2–T3 = late recovery phase; we were unable to
compute late building recovery rates (T2–T3) for Betaog (large center barangay in Lawaan) due to
extensive cloud coverage at T3; Panel C: the inset shows from left to right the large barangay Betaog,
and the considerably smaller barangays Poblacion 1, and Poblacion 4 within the Lawaan municipality.
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Structural characteristics. For structural characteristics, significant relationships emerged mainly
for building reconstruction, while industry recovery was comparatively unaffected. We observed
higher growth rates in urban vs. rural areas (b = 936.72, p < 0.05). Barangays that received IRA
subsidies showed higher reconstruction rates (b = 112.85, p < 0.05) during the early phase, but negative
reconstruction rates (b = −2.86, p < 0.05) during the late phase.

Disaster risk management. Those barangays that had previously experienced a natural disaster
showed slower industry recovery rates (b = −75.39, p < 0.05) than those without such experiences.
Moreover, our analysis revealed that reconstruction support was significantly related to a lower
building reconstruction rate in the later phase (b = −50.02, p < 0.001).

Local governance. Good governance may facilitate the recovery process through administrative
support, procurement of financial resources, and implementation of guidelines and standards. Yet,
in our analysis we found little relationship of the level of experience of the local leaders (e.g., mayor,
barangay captain) with recovery speed. However, the perceived level of corruption influenced the
speed of building reconstruction. Barangays with high levels of corruption experienced significantly
slower (b = −86.55, p < 0.05) building reconstruction rates in the early phase, but slightly higher rates
(b = 6.21, p < 0.05) in the later phase.

5. Discussion

The underlying assumption in this work was that communities that received DRR-related
interventions such as assistance with comprehensive land-use planning would perform better in
the aftermath of a major disaster than those without, and we considered post-disaster recovery to
be a proxy of resilience. The analysis of high spatial resolution satellite images for 18 barangays
provided a detailed picture of LCLU changes caused by typhoon Haiyan and the recovery efforts
during the subsequent 3 years. The developed conceptual framework based on a range of proxy
indicators primarily extracted through ML allowed the quantification of reconstruction in both formal
and informal settlements, as well as of industrial facilities, but also changes in agricultural LU. As such
we demonstrated the utility of RS to detect and characterize recovery, similar to [20], who did this
for the city of Tacloban only. Nevertheless, the inherently descriptive nature and resulting limitation
of RS data became apparent, in that the reasons for the spatially and temporally highly variable
recovery performance observed could not be determined. We made use of survey information derived
from 3000 household interviews conducted by DEval. Those are suitable to generate very detailed
insights into DRR-related perspectives, motivations, and drivers of the affected population. However,
their acquisition required a considerable effort and planning horizon. In addition, socio-economic
data are frequently limited when it comes to assessing physical characteristics such as infrastructural
changes. While the survey data are able to reveal changes in DRR-related perceptions and motivations
of humans, they are not suitable to estimate actual recovery processes such as building reconstruction
or industry recovery. Combining the RS-based measures of post-disaster recovery with detailed survey
information allows embedding the physical recovery process within the socioeconomic context.

However, while the image analysis does provide detailed information about LC and LU changes
directly linked to recovery, the observed recovery performance could not always be unambiguously
explained by the socioeconomic data. For example, contrary to expectation we observed slower
recovery rates in barangays that had received the SIMPLE intervention or other donor support, but
also for those communities with prior disaster experience. This may be the consequence of more
rigorous planning efforts and stricter building policies. As such slower recovery may signal higher
quality of the newly established building stock and could indicate higher resilience, including to future
events. Nevertheless, this does not agree with the generally accepted notion of resilient communities
showing faster recovery [19,20]. The image analysis did show an overall rapid and positive recovery,
with building stock getting reconstructed quickly (although more rapidly in urban than in rural
communities), with the proportion of informal settlements declining, and some adaptation in the
agricultural sector, such as vulnerable coconut palms getting replaced by other crops. The statistical
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analysis also showed that some of the poorer barangays rebuilt quickly, as they received additional
IRA funding, though the effect was ephemeral and may thus signal the lack of more comprehensive
recovery planning, and sustained means to fund its implementation.

The DEval evaluation gave a detailed picture of the impacts of a comprehensive land-use planning
intervention. It clearly showed the relevance of the intervention, but evidence of effectiveness, impact,
and sustainability was mixed [14]. For example, SIMPLE municipalities showed better LU planning
quality and comprehensiveness. At the same time, there was little evidence for stronger and wider
stakeholder participation, or of the enhanced LU planning the intervention aimed at, especially at
household level. Interventions had a positive effect on disaster awareness and proactive management
strategies, but the assessment also showed considerable mistrust in local government. In our analysis
in particular perceived corruption correlated negatively with recovery speed.

The RS analysis is subject to additional limitations. The quantification of recovery hinges on an
accurate initial damage assessment. However, RS-based damage detection continues to pose challenges,
even if very high resolution images are used [17,70], and in particular when volunteers carry out the
immediate post-disaster damage mapping [71,72]. In particular in the main affected coastal areas of
Tacloban and Basey the blanket coverage with washed-up or wind-blown rubble and debris led to
strong damage overestimation in published maps [73]. In particular the structural rubble of buildings
that were partly or several damaged effectively blended in with the surrounding debris (Figure 7),
severely challenging both visual and automated damage detection.
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OpenAerialMap, and (b) L. Ruiz/Wikipedia, CC BY-SA 4.0.

An analysis of the damage map created during a Humanitarian OpenStreetMap campaign showed
an overestimation of destroyed buildings in Tacloban by some 92% [74], and also the damage and
resulting recovery maps in [20,75] show this overestimation to some extent. It is likely that some of
the barangays that in this study show building reconstruction rates of >1000% within about 3 years
also suffered less actual building damage. In addition some of the proxies used in the analysis, in
particular LU classes such as crop or tree types, but also related to building and settlement type,
suffer from uncertainties. Using high-resolution unmanned aerial vehicle (UAV)/drone images (e.g.,
Figure 7a) instead of satellite data can reduce the debris problem and lead to more accurate damage
detection results. However, the aim of this work was to test the suitability of multi-temporal satellite
images that potentially allows a synoptic recovery assessment at any desired time interval, while both
the availability and spatial coverage of UAV data are typically limited. In addition, recent work on
structural damage mapping with UAV has also demonstrated the limits of those data [76], even when
advanced deep learning methods are used [77].
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While it would also have been ideal to process images covering all 100 DEval municipalities,
this would have been prohibitive in terms of image and processing costs. The narrow coastal strip
from Tacloban to Dulag alone covers an area of approximately 400 km2. A single high resolution
multispectral Pléiades images for this area would cost in excess of 5000 US$, while an 8-band
WorldView-3 image would cost about 7500 US$, and a simple recovery assessment requires three time
steps as a minimum (T0, T1, and T2). For the image analysis part of this work we made use of image
data costing approximately 45,000 US$, part of which was donated by the Digital Globe Foundation.
In particular immediate post-event images are also often acquired at large off-nadir angles, resulting in
additional challenges for detailed recovery assessment [75]. The recent recovery study that focused
on Tacloban [20] showed that a detailed LU classification that is needed for comprehensive urban
recovery assessment requires very high spatial resolution imagery. However, it also showed that
lower resolution data suffice for a LC assessment in urban areas, and are also suitable to support the
quantification of recovery in rural areas, where the size of relevant objects tends to be larger. This
means that a more optimized use of images can be achieved, i.e., very high spatial resolution imagery
is not always needed.

6. Conclusions

The purpose of this study was to evaluate the usefulness of combining RS with field-based survey
data in the assessment of resilience-centered interventions. We initially hypothesized that image data
could add critical additional information to the questionnaire-based evaluation, and might allow an
extrapolation to areas with fewer or no interviews. However, it became clear quickly that matching a
RS analysis to the spatial extent of the DEval study (100 municipalities spread over two regions) was
prohibitive. In addition to cost, many of the more outlying communities are not adequately covered in
high resolution data catalogues. Conversely, the statistical analysis in this study showed that it was
actually the survey information that added value to the interpretation of the LCLU classification results.
Similar to other recent work e.g., [e.g., 20] the limitations of RS to explain spatially and temporally
variable recovery also became clear here, and the field-based information proved valuable.

Regarding the utility of RS data to support intervention evaluations, current limitations are clear.
Vast amounts of detailed image data are necessary, resulting also in high processing cost. However, the
efficiency and sophistication of damage- and recovery-focused processing has also been increasing,
in particular through advances in deep learning/CNN [75,78], where a trend towards automatically
handling large datasets as training samples is evident. However, even when sophisticated image
processing methods were used in our study also showed that remote sensing-based recovery assessment,
which requires LCLU-based change analysis over multi-temporal data, significantly depended on the
accuracy of the image classification results. For example, the overestimation of the building class in the
pre-disaster image might lead to the extraction of negative recovery for buildings, which might not
be correct.

One of the critical aspects related to resilience is climate change adaptation. This can include
physical measures such as dikes or dams, but increasingly nature-based solutions are sought [79,80],
and remote sensing has shown its utility in monitoring many relevant indicators [81]. In coastal
communities such as the ones studied in this work, which are subject to rising sea levels, salt
water intrusion, and regular tropical storms, image data have tremendous potential in detecting and
quantifying adaptive measures, such as vulnerable crops (e.g., coconut palms) getting replaced by more
resilient solutions, or protective mangrove corridors getting reinstated. Evidence of such actions can
be a valuable addition to household surveys. For rural areas and crop monitoring it may be possible to
work with freely available data, such as 3–5 m resolution images from Planet. However, more work is
needed in this area.

Due to the high costs for image data and high demand on human resources (coding and manual
data processing), we were unable to compute LC and LU for the full sample of municipalities (N =

100) for which socioeconomic survey data were available via the DEval impact evaluation. Since we
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purposefully selected seven municipalities (13–18 barangays), our analysis did not permit a rigorous
attribution of causal impacts and the results of the statistical analysis should be interpreted with
caution given the small sample size. Nevertheless, the purpose of this work was to provide a proof of
concept of meaningfully integrating socio-economic survey data with RS data to combine the strength
of both in an attempt to harness synergies. Building on this work, future research may employ a
geospatial impact evaluation designs (GIE) [15], and use matching techniques to obtain a sufficiently
large sample of control and intervention barangays. Following the computation of RS-based recovery
measures for all units, statistical methods such as the difference-in-difference approach (see Section 2)
would then permit to connect program effects with recovery processes causally. With a sufficiently
large sample the full potential of combining survey information with RS data could then be realized
beyond what was possible here.
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