
remote sensing

Article

Static and Dynamic Algorithms for Terrain Classification
in UAV Aerial Imagery

J. P. Matos-Carvalho 1,2,3,* , Filipe Moutinho 2,3 , Ana Beatriz Salvado 2, Tiago Carrasqueira 2,
Rogerio Campos-Rebelo 2,3,4 , Dário Pedro 2,3,5, Luís Miguel Campos 5, José M. Fonseca 2,3

and André Mora 2,3

1 Beyond Vision, 3830-352 Ílhavo, Portugal
2 NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
3 Centre of Technology and Systems, UNINOVA, 2829-516 Caparica, Portugal
4 School of Technology and Management, Polytechnic Institute of Beja, 7800-295 Beja, Portugal
5 PDMFC, 1300-609 Lisboa, Portugal;
* Correspondence: joao.m.carvalho@beyond-vision.pt or jp.carvalho@uninova.pt

Received: 26 September 2019; Accepted: 23 October 2019; Published: 25 October 2019
����������
�������

Abstract: The ability to precisely classify different types of terrain is extremely important for
Unmanned Aerial Vehicles (UAVs). There are multiple situations in which terrain classification
is fundamental for achieving a UAV’s mission success, such as emergency landing, aerial mapping,
decision making, and cooperation between UAVs in autonomous navigation. Previous research
works describe different terrain classification approaches mainly using static features from RGB
images taken onboard UAVs. In these works, the terrain is classified from each image taken as a
whole, not divided into blocks; this approach has an obvious drawback when applied to images with
multiple terrain types. This paper proposes a robust computer vision system to classify terrain types
using three main algorithms, which extract features from UAV’s downwash effect: Static textures-
Gray-Level Co-Occurrence Matrix (GLCM), Gray-Level Run Length Matrix (GLRLM) and Dynamic
textures- Optical Flow method. This system has been fully implemented using the OpenCV library,
and the GLCM algorithm has also been partially specified in a Hardware Description Language
(VHDL) and implemented in a Field Programmable Gate Array (FPGA)-based platform. In addition
to these feature extraction algorithms, a neural network was designed with the aim of classifying
the terrain into one of four classes. Lastly, in order to store and access all the classified terrain
information, a dynamic map, with this information was generated. The system was validated using
videos acquired onboard a UAV with an RGB camera.

Keywords: image processing; texture; GLCM; GLRLM; optical flow; terrain classification; UAV;
downwash effect; FPGA

1. Introduction

Unmanned Aerial Vehicles (UAVs) are a topic of interest in several areas. Their use is expected
to have a great impact on society [1] in the near future. Computer vision is an example of one such
area, and which aims to perform the same complex cognitive processes and to perform the same tasks
(example, identify objects, processing the data, and then making a decision of how to respond) with at
least the same level of efficiency as humans. One very important application of Computer Vision and
UAVs is to help Unmanned Surface Vehicles (USV), giving them proper information about the terrain
types, allowing them to identify where they can navigate, making them autonomous robots. Thus,
the UAVs must be able to capture, process and analyze environment images in order to classify the
terrain type under its flight area.

Remote Sens. 2019, 11, 2501; doi:10.3390/rs11212501 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-9409-7736
https://orcid.org/0000-0002-0930-7418
https://orcid.org/0000-0001-7177-7966
https://orcid.org/0000-0001-7173-7374
https://orcid.org/0000-0003-1354-4739
http://dx.doi.org/10.3390/rs11212501
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/11/21/2501?type=check_update&version=2

Remote Sens. 2019, 11, 2501 2 of 24

Several methods for terrain classification have been proposed in different works. Texture
algorithms, such as those proposed in [2–5], have been widely recommended to emphasize the
high and low frequencies of the images, supporting image classification. Other algorithms use color
information to classify terrains, such as presented in [6], which is able to distinguish four different
terrain types within an image. During this process, each channel’s pixel is divided by the square root
of its own three channels intensity. The final result will emphasize the color that most represents the
terrain type (eg, blue for water). Additionally, frequency domain [7,8], segmentation [6,9,10], bayesian
network [11], and Hyperspectal Images [12] can also be used in terrain classification.

Other types of sensors such as LiDAR [13–16] can complement the classification decision.
Algorithms that use laser scanners proved to be qualified to accurately distinguish between water and
non-water terrains [13–16]. However, shallow water terrains increase the decision error due to laser
reflection, which leads to a misclassification as non-water terrain.

Although prior research work has proposed many good solutions for terrain classification, there
is still a gap regarding the study of dynamic terrain. The previously mentioned algorithms suffer
from a high sensitivity to changes in the environment, mainly due to changes in brightness, color and
texture. Recent works [17,18] proposed the use of downwash effect to overcome these limitations.

The downwash effect caused by UAV propellers, shown in Figure 1, might have a major impact
on terrain classification, because each terrain, when subject to this effect, present different behaviours.
Take the example of water-type terrains, where there is no color variation, i.e, no motion presented,
these are wrongly classified by algorithms prepared to evaluate static textures, as shown in [2–5].
This happens because in water it is not possible to observe any texture under these conditions. Using
the downwash effect, it adds motion in the environment, and circular textures can be observed,
something that normally occurs on water-like terrain.

(a) (b)

Figure 1. Downwash Effect: (a) In water terrain; (b) The concept.

Until now, only two recent publications [17,18] were known to use the concept of downwash
effect for terrain classification. Ricardo Pombeiro [17] uses the optical flow concept to extract the
dynamic part of an image using the Lukas Kanade method [17], from an onboard RGB camera.
This work presents a method to determine if the terrain under study was water type or not. However,
the algorithm’s extremely long processing time is an issue, since it needs at least four seconds to
classify if the terrain under study is water type or not. That means that the UAV needs to stand still for
at least four seconds to know which type of terrain it is flying over.

The second most recent work also using the downwash effect to classify terrain types, beyond
the use of dynamic properties, also takes advantage of static properties of an image. Unlike in [17],

Remote Sens. 2019, 11, 2501 3 of 24

the work presented in [18] not only can identify water, but also sand and vegetation terrains and can
do so in near real-time (in less than 30 ms). To classify the terrain type, the system from [18] uses the
gabor concept in order to extract the static terrain texture; the optical flow concept, is used under the
Farneback algorithm, which obtains the dynamic terrain properties. However, the systems from [17]
and [18] only identify one type of terrain per frame, which clearly becomes a disadvantage when there
are several types of terrain in a single frame.

The execution of algorithms for terrain classification is computationally heavy and can lead to
lower performance than desired. Field Programmable Gate Array (FPGA) implementations have been
used to accelerate the execution of algorithms due to their maximization of parallel processing and
lower energy consumption [19]. This features allow FPGA implementations to achieve faster execution
times when compared to computer vision software libraries, such as OpenCV, or high performance
interactive software for numerical computation, such as MATLAB [20,21]. An FPGA-based real-time
tree crown detection approach for large-scale satellite images was proposed in [22] and the results
showed a speedup of 18.75 times for a satellite image with a size of 12,188 × 12,576 pixels when
compared to a 12-core CPU. An ortho-rectification technique based on an FPGA was presented in [23].
Compared to a PC-based platform, to process the same remotely sensed images, the FPGA-based
platform was 4.3 times faster. An onboard georeferencing method for remotely sensed imagery was
proposed in [24]. The experimental results showed that using FPGA is 8 times faster than using a PC.
An FPGA-based method for onboard detection and matching was presented in [25]. The proposed
implementation execution speed is 27 times higher when compared to a PC-based implementation.
A pattern recognition architecture based on content addressable memory was implemented in [26]
and the results show that the worst-case execution time to recognize a pattern is less than a few
microseconds. This is 37.12% less then the previous implemented system based on software pattern
recognition algorithms [26]. Hardware accelerators, containing content addressable memory and index
8-bit and 16-bit in parallel with each clock cycle, were implemented in [27]. This system consumes
as low as 6.76% and 3.28% of energy compared to CPU and GPU-based designs respectively. In the
literature, many other articles can be found, such as [28–30], describing the usage of FPGAs to support
image processing, in real time. The execution times and/or the energy consumption, may justify the
use of FPGAs to implement terrain classification and feature extraction algorithms.

This paper proposes a computer vision system that uses static and dynamic features to classify
different types of terrain. It uses the downwash effect created by UAV propellers (visible at low
altitudes, as shown in Figure 1) to improve the pattern recognition process. The developed system
improves the terrain classification accuracy while at the same time, supporting the identification of
multiple terrains (water, vegetation, asphalt and sand) in each image. The developed system prototype
uses the OpenCV library and it was implemented in a general-purpose computer. It was also partially
specified in a Hardware Description Language and implemented in an FPGA based platform.

This paper is organized in seven sections. Section 2 presents the information regarding the UAV
used in this paper, whereas Section 2.2 identifies the terrain under study as well as their location.
In Section 2.3 we describe the proposed system model of this paper. Sections 2.4.1 and 2.4.2 contain
information about the static texture features, whereas Section 2.5 explains the dynamic extraction to
improve the system accuracy to sort terrain. The implementation is described in Section 3. Section 4
shows how the results will be provided using a dynamic map. Section 5 describes and discusses the
experimental results, including a comparison with other published results. Conclusions and future
work to improve our system are discussed in Sections 6 and 7, respectively.

2. Experimental Setup

2.1. UAV Platform Design

The aerial vehicle used in this work was the Bebop2 [31], a four-rotor UAV from Parrot, shown in
Figure 2, with the following characteristics:

Remote Sens. 2019, 11, 2501 4 of 24

• A hardware device to control the low and high level operations. This hardware contains the
Global Positioning System (GPS) and the Inertial Measurement Unit (IMU) to detect the UAV
position and orientation, respectively. An Wi-Fi receiver is connected to this hardware controller,
in order to control UAV motors;

• An RGB camera with a gimbal to stabilize imaging capture. Since the camera technical
specifications are known, it is possible to obtain the Field of View (FoV) and therefore, to know
the distance (in meters) per pixel. The selected resolution of each frame was 640 × 480 with a rate
of 30 Hz;

• A mini controller to stabilize the UAV when it is in flight mode. The sensor used for this purpose
was a mini camera pointed to the ground where an optical flow algorithm runs to determine how
much the UAV has traveled and to determine the unwanted motion of the UAV and thus reverse
the process;

• For autonomous UAV landing, it features a sonar sensor pointed at the ground, in order to detect
any obstacle within a six-meter range allowing it to land in an unobstructed zone.

Figure 2. Unmanned Aerial Vehicle - Parrot Bebop2.

2.2. Data Gathering

In this paper, four different terrain types (water, vegetation, asphalt and sand) were analyzed,
as shown in Figure 3.

These terrain types were studied at four locations in Portugal as shown in Figure 4:

• Orange circle: Costa da Caparica;
• Blue circle: Faculty of Sciences and Technology of NOVA University of Lisbon;
• Red circle: Parque da Paz at Almada;
• Green circle: Portuguese Navy’s Naval Base at Alfeite;

At these locations, it was collected several data in different conditions. Data was collected at an
altitude between one and two meters, between 8 a.m. to 6 p.m. Regarding environmental conditions,
the authors collected data during both clear and cloudy skies. To avoid overfitting and make the
proposed algorithms more robust, older data (with and without the downwash effect) from other
locations (e.g., agriculture field at Spain) and from other UAVs (from PDMFC) was also used. Besides,
for improving generalization, a technique called “Early Stopping” was used that uses two different
data sets: the training set, to update the weights and biases, and the validation set, to stop training
when the network begins to overfit the data.

Remote Sens. 2019, 11, 2501 5 of 24

(a) (b) (c)

(d) (e)

Figure 3. Examples of terrain types: water (a,b); vegetation (c); asphalt (d) and sand (e).

Figure 4. Data collection localization in Portugal. The circles show the areas where the data set
was obtained.

Regarding the cross-validation, this paper used the “k-fold” technique where the data was divided
into k randomly chosen subsets of roughly equal size (in this paper k = 5 was chosen).

The complete data set collected is composed by 513.840 images where 161.525 are of water,
95.403 are of vegetation, 31.093 are of asphalt and 225.819 are of sand.

2.3. Proposed System Model

The model of the proposed system, for terrain classification, is presented in Figure 5. As
previously mentioned, two main measurements were used in this proposal: Dynamic and Static
Textures. Since these two techniques are independent from each other, it is possible to operate it in
parallel mode, in order to decrease the time required to process images.

Remote Sens. 2019, 11, 2501 6 of 24

Start

Raw Image

Rectified image

Static Texture Dynamic Texture

Classification

Frames > n

Output (Terrain)

Stop

no

yes

Figure 5. Proposed system model.

As shown in Figure 5, five main processes were identified in the architecture, namely:

• Rectified Image: It is necessary to calibrate the camera before any process to make the proposed
algorithms universal. Only then is possible to work with all RGB cameras regardless of
their resolution;

• Static Texture: To extract the terrain’s static textures, Gray-Level Co-Occurrence Matrix (GLCM)
and Gray-Level Run Length Matrix (GLRLM) were used to calculate features capable of providing
information to classify terrain types;

• Dynamic Texture: To identify the movement of each terrain type, an extraction of dynamic
textures was performed using the Optical flow concept;

• Classification: The outputs generated by the static and dynamic extraction phases are turned
into inputs for a Neural Network (NN) [32] tasked with classifying the terrain the UAV is
flying over. Machine learning techniques have already been proven to be efficient for terrain
classification [33–35]. In this work, an NN was used, namely a Multilayer Perceptron (MLP)
architecture. The Neural Network inputs are the output values from static and dynamic feature
extraction algorithms. The Neural Network model consists of three layers: the hidden layer
contains 10 neurons, whereas the third layer corresponds to the system output and has four
neurons, e.g., four possible outputs (water, vegetation, asphalt and sand). Each neuron uses a
sigmoidal function to calculate its output. They are connected as a Fully Connected Feed Forward
Neural Network. During the training stage, 70% of the total data was used for training, 15% for
testing and 15% for validation;

• Frames > n: “n” is the total number of frames required to increase the algorithm’s accuracy.
This threshold value was chosen empirically by the authors.

2.4. Static Textures

Knowing how to take advantage of textures in order to classify any type of terrain is very
important for a variety of areas, as already mentioned in Section 1. In this section, we will discuss two
types of static texture algorithms: Gray-Level Co-Occurrence Matrix (GLCM); Gray-Level Run Length
Matrix (GLRLM).

Remote Sens. 2019, 11, 2501 7 of 24

2.4.1. Gray-Level Co-Occurrence Matrix

In this section, it is presented the first static texture algorithm- Gray-Level Co-Occurrence Matrix,
known as GLCM [36,37]. This algorithm extracts statistical texture features, that represents textures
based on the relation and the distribution between pixels of a given frame. The algorithms that
evaluate the texture of a frame can be classified as first, second or higher statistical texture orders.
While the first order only calculates properties for individual pixels (such as mean and variance from
the original image) neglecting the spatial relationship between pixels, the second and higher texture
orders calculate properties of an image using a spatial relationship between two or more pixels, such
as GLCM [38,39].

Before building the GLCM of this paper, it is necessary to understand these three parameters:

1. The distance d between i and j pixels;
2. The angular orientation θ chosen;
3. The Symmetric matrix decision.

After understanding the parameters described above, it is possible to create our matrix for the
terrain texture classification.

As a first step, it is necessary to create the GLCM N × N matrix. In this paper the matrix
dimensions are 256 × 256 because the input images are defined between 0 and 255 levels (256 gray
levels). Figure 6 is an example of a 4 × 4 GLCM matrix. To simplify and make the explanation more
intuitive, the following figures will be related to a 4 × 4 GLCM matrix with five gray intensity levels.

(a)

(b)

Figure 6. Design of the GLCM matrix from a 4 × 4 image with five gray intensity levels. (a) GLCM
matrix with d = 1 and θ = 0; (b) The GLCM normalized matrix.

Remote Sens. 2019, 11, 2501 8 of 24

As it can be seen in Figure 6a, the GLCM matrix was designed to have the distance d, between
pixels, equal to 1 with an angular orientation θ equal to 0 (the distance d and the θ values were chosen
only for the concept description). The GLCM matrix can also be normalized as shown in Figure 6b,
by dividing each element by the sum of all image pixels. Lastly, the GLCM can have up to eight
different angular orientations (0, 45, 135, 180, 225, 270 and 315 degrees).

After having the GLCM matrix defined, the next step is to determine its transpose in order to
become a GLCM symmetric matrix:

M = M + MT (1)

In this paper, a d = 100, θ = 0 and a symmetric matrix were chosen in order to have a trade-off
between noise and system speed. These values were obtained by trial and error.

With a GLCM matrix defined, 6 out of 14 textural features by Haralick [36] were extracted to
classify the terrain:

Contrast =
N−1

∑
i=0

N−1

∑
j=0
|i− j|2 · p(i, j) (2)

Correlation =
N−1

∑
i=0

N−1

∑
j=0

(i− µx)(j− µy) · p(i, j)
σx · σy

(3)

Energy =
N−1

∑
i=0

N−1

∑
j=0

p(i− j)2 (4)

Homogeneity =
N−1

∑
i=0

N−1

∑
j=0

p(i, j)
1 + |i− j| (5)

Entropy =
N−1

∑
i=0

N−1

∑
j=0

p(i, j) · log10(p(i, j)) (6)

Variance =
N−1

∑
i=0

N−1

∑
j=0

(i− µ)2 · p(i, j) (7)

where:
p(i, j) = (i, j)th entry in a GLCM normalized matrix as shown in Figure 6b.

µ =
N−1

∑
i=0

N−1

∑
j=0

p(i, j) (8)

µx =
N−1

∑
i=0

N−1

∑
j=0

i · p(i, j) (9)

µy =
N−1

∑
j=0

N−1

∑
i=0

j · p(i, j) (10)

σ2
x =

N−1

∑
i=0

(
N−1

∑
j=0

p(i, j)− µx)
2 (11)

σ2
y =

N−1

∑
j=0

(
N−1

∑
i=0

p(i, j)− µy)
2 (12)

Equations (2)–(7) were used in this paper and have different meanings:

Remote Sens. 2019, 11, 2501 9 of 24

• Contrast: Used to return the intensity contrast between a pixel and its neighbor throughout the
entire image;

• Correlation: This method is important to define how a pixel is correlated with its neighbor
throughout the entire image;

• Energy: Also known as angular second moment, the goal is to evaluate how constant is an image;
• Homogeneity: Know as Inverse Difference Moment, this equation returns 1 when the GLCM is

uniform (diagonal matrix);
• Entropy: This feature measures the randomness of intensity distribution. The greater

the information’s heterogeneity in an image, the greater the entropy value is. However,
when homogeneity increases, the entropy tends to 0;

• Variance: Represents the measure of the dispersion of the values around the mean.

Section 2.4.2 will explain the second static texture algorithm and how to send the feature results
to the NN.

2.4.2. Gray-Level Run Length Matrix

The Gray-Level Run Length Matrix, known as GLRLM, is the second static texture algorithm
proposed in this paper. The GLRLM was introduced in [40] to define various texture features.
Like the GLCM, GLRLM also evaluates the distribution of gray levels in an image or multiple images.
As explained in Section 2.4.1, whereas GLCM evaluates the gray levels within neighbour pixels (taking
into account the distance d and the angle θ), GLRLM evaluates run lengths. A run length is defined as
the length of a consecutive sequence of pixels with the same gray level intensity along direction t.

As with Section 2.4.1, a 4× 4 matrix (which represents an image of a terrain type) was also created
to demonstrate the algorithm. As shown in Figure 7a, the length (columns) of each gray level intensity
are calculated for each line. The GLRLM may also have up to eight different angular orientations, t, (0,
45, 135, 180, 225, 270 and 315 degrees).

(a)

(b)

Figure 7. Design of the GLRLM matrix from a 4 × 4 image with 5 gray levels. (a) GLRLM matrix being
t = 0; (b) The GLRLM normalized matrix.

Remote Sens. 2019, 11, 2501 10 of 24

In this work, a 256 × 256 GLRLM matrix with an angular orientation of t = 0 was used.
After the GLRLM matrix was created, the six features mentioned in Section 2.4.1 are extracted

and information is sent to the NN to classify the terrain.
Figure 8 shows an example of an NN response that received information from GLCM and GLRLM,

as mentioned in Section 2.4, where the blue area represents water and the green area represents
vegetation. For each NN output, a color was used for visualization and validation purposes:

• Blue Pixels: Represents water;
• Green Pixels: Represents vegetation;
• Gray Pixels: Represents asphalt;
• Red Pixels: Represents sand.

(a) (b)

Figure 8. Neural Network response using static features (GLCM and GLRLM). (a) Two terrains in one
frame (vegetation and water); (b) NN results (green is vegetation and blue is water).

2.5. Dynamic Textures

The ability to detect static textures for terrain classification is important, as described in
Sections 2.4.1 and 2.4.2. However, the ability to distinguish different terrains using motion analysis
increases the accuracy of the system. It is therefore necessary to study several features of different
terrains to support the terrain classification.

In this paper the downwash effect from the UAV propellers was studied to extract dynamic
textures from water (circular movements), which can be used to differentiate itself from any other type
of terrains (vegetation, asphalt and sand).

As mentioned in Section 2.2, different types of terrain create different behaviors when affected
by the UAV’s downwash effect. Whereas in water (in this paper lake and pool terrains) it makes a
circular pattern, vegetation terrain originates a linear movement and asphalt/sand are almost static.
This movement can be detected using a well known concept, namely, Optical Flow.

Optical flow is an image processing method capable of detecting terrain movement in a sequence
of frames. There are two well-known algorithms that use the concept of optical flow:

• Lukas Kanade algorithm [41];
• Farneback algorithm [42].

In this work, in order to detect the texture movement, the Farneback algorithm was used [42].
One of the advantages of using the Farneback algorithm is that it provides the flow displacement, Fd,
given by the difference in the features between two frames. The flow displacement Fd between features
in frame n and n− 1 can be obtained from Equation (13):

Fd = Sn − Sn−1 (13)

where Sn and Sn−1 are the sample pixels between two consecutive sequence of frames.

Remote Sens. 2019, 11, 2501 11 of 24

The obtained flows are shown in Figure 9 (red arrows). To determine their density, all linear
equations (Figure 10a) were calculated for each flow. In this paper, all line equations are divided
by a factor of 20 (this value was obtained by a set of iterations) to make the density of the flows
more compact.

Figure 9. Example of a Optical Flow concept using Farneback algorithm in water (pool).

In Figure 10b,c it is possible to observe the difference between a flow density without dividing by
20 and when dividing by 20, respectively.

(a)

(b) (c)

Figure 10. (a) Linear equations after flow texture extraction; (b) Flow density without dividing by 20;
(c) Flow density dividing by 20.

After the flow density calculation, the next step is to find the maximum value (e.g., the highest
pixel value), which is the downwash center. Knowing the center and going back to Figure 9, it is
necessary to check, for each flow (arrows in red), whether it is pointing in or out of the downwash
center. In this water terrain type example, it is expected that all the flows originated by the Farneback
algorithm point out from the center of the downwash (the circular movement goes from the center of
the downwash outwards). Thus, there are three possible outputs, when creating a result image:

Remote Sens. 2019, 11, 2501 12 of 24

• Blue Pixels: If the flow is pointing out of the calculated center (downwash center) from the
flow density;

• Green Pixels: If the flow is pointing into the calculated center (downwash center) from the
flow density;

• Gray Pixels: If the size of the flow is below a certain given treshold.

The result of this example is shown in Figure 11.

Figure 11. Result of the dynamic algorithm from the concept of optical flow.

Lastly, the output information in Figure 11 is sent to the NN to classify the terrain.

3. Implementation

3.1. Software

This section describes and explains (using pseudo-code) the software implementation (GLCM,
GLRLM and Optical Flow) using OpenCV’s libraries and ROS (Robot Operating System) framework:

• Open Source Computer Vision Library (OpenCV): Being an open source library, OpenCV
provides a variety of functions used for image processing;

• Robot Operating System (ROS): The Robot Operating System is a “robot application
development platform that provides various features such as message passing, distributed
computing, code reusing, [...]” [43], as well as an integrated software and hardware applied to
robotics applications. ROS also provides support for a wide range of programming languages;
the possibility of visualizing data (e.g., the content of topics, nodes, packages, coordinate systems
graphs and sensor data); and the possibility to write and execute code in a modular way,
increasing robustness and also contributing to the standardization of this framework.

The pseudo-code shown in Algorithm 1, describes how the terrain classification system
was implemented.

In Algorithm 1, it is possible to identify the main processes of the system represented by the
functions: DynamicTexture, StaticTexture, Features and NeuralNetwork. Regarding the gray scale
conversion, the system merges the three channels (red, green and blue) using CCIR 601 standard:

Grayscale = 0.299 Red + 0.587 Green + 0.114 Blue (14)

Using Equation (14), the dynamic textures (with Optical Flow) and static textures (GLCM and
GLRLM) are calculated. The dynamic textures return each pixel flow, as mentioned in Section 2.5.
Regarding the static textures, these will return the calculated features from GLCM and GLRLM
(i.e., contrast, correlation, energy, homogeneity, entropy and variance) as mentioned in Sections 2.4.1
and 2.4.2.

Remote Sens. 2019, 11, 2501 13 of 24

The last step is to input these values to the NN and obtain the selected terrain (water, vegetation,
asphalt or sand).

Algorithm 1: Pseudo-Code Software Implementation
1: while UAV’s Camera = Active do

2: if First Frame then

3: LastFrame← CameraImage
4: else

5: CurrentFrame← CameraImage
6: GrayLFrame← BGR2Gray(LastFrame)
7: GrayCFrame← BGR2Gray(CurrentFrame)
8: FLOW← DynamicTexture(GrayLFrame, GrayCFrame)
9: GLCM← StaticTexture(CurrentFrame)

10: GLRLM← StaticTexture(CurrentFrame)
11: FeaturesGLCM← Features(GLCM)

12: FeaturesGLRLM← Features(GLCM)

13: Output← NeuralNetwork(FLOW, FeaturesGLCM, FeaturesGLRLM)

14: LastFrame← CameraImage
15: end if
16: end while
17: end

3.2. Hardware

The GLCM algorithm was also partially specified in VHDL (VHSIC Hardware Description
Language) code and implemented in hardware, in an FPGA-based platform, which calculates the
GLCM matrix and some of image features. This hardware implementation can be integrated with
the software implementation as presented in Figure 12. It consists of a camera providing images
to an FPGA. The features (contrast, energy) can be determined by applying the GLCM algorithm.
The determined features are then sent to the computer, to be processed in software. The implementation
of image processing algorithms in hardware can result into smaller execution time, as described in
Section 1.

Figure 12. Hardware integration architecture.

To validate the implemented algorithm, a platform with the architecture presented in Figure 13
was used. It consists of an FPGA, a DDR2 RAM memory and a Computer. The FPGA is used to receive
and process the frames, whereas the DDR2 is used to store these frames and the calculated matrices.
After processing the images, the FPGA can sends the matrices and their features to the computer.
The Avnet Spartan-3A DSP 1800A Video Kit board, which includes a Xilinx Spartan-3A DSP 1800A
FPGA and a 128 MB (32 M × 32) DDR2 SDRAM, was used.

Remote Sens. 2019, 11, 2501 14 of 24

Figure 13. Validation platform architecture.

The block diagram, of the hardware prototype implemented in the FPGA, is presented in Figure 14.
This block diagram is composed by five main blocks, UART RX, the Memory Interface, the algorithm,
the Convert to Gray, and the UART TX. The presented multiplexers and demultiplexers are used to
control which addresses are accessed and which data is written or read from the DDR2 memory.

Figure 14. Simplified Block-diagram/Architecture.

The Memory Interface includes a custom interface that interacts with another interface that was
generated using the Core Generator tool available in the Xilinx ISE. It stores and reads the images
and their respective features, each in different addresses. The image features are represented by the
GLCM matrix, which has a 256 × 256 dimension. The generated DDR2 memory interface has 2 main
operations, write and read. The write operation writes data, whereas the read operation returns stored
data. These operations can access and give data to the DDR2 in bursts of 4 × 32 bits, which totals
128 bits, or 16 bytes.

The images are transferred from the computer to the FPGA, with the UART RX block being used
to accomplish this. It writes pixels with 24 bits each, in the DDR2. When the image is completely stored
in the DDR2, the GLCM algorithm can be applied. After the GLCM algorithm executes, the UART TX
block sends the GLCM matrices and associated features to the computer.

To execute the algorithm, the gray levels of the image must be calculated. The block that performs
these calculations is the Convert to gray block, as shown in Figure 15. It receives stored pixels from
the DDR2 and applies the grayscale algorithm. The output is the gray level of each pixel, represented
by 8 bits (256 different gray levels). The output is used by the algorithm block in order to implement
the GLCM algorithm. The implemented grayscale algorithm calculates a weighted average of the
Red, Green, and Blue components, using Equation (14). To calculate this, the Red is multiplied by

Remote Sens. 2019, 11, 2501 15 of 24

306 (0.299× 1024), the Green is multiplied by 601 (0.587× 1024), and the Blue is multiplied by 117
(0.114× 1024). Then, the number 512 is added to these three values, to ensure that the final value is
properly rounded. Lastly, to obtain the final value, the sum value is shifted to the right 10 bits (divided
by 1024 and truncated).

Figure 15. Convert to gray block diagram.

The Algorithm block diagram, which implements the GLCM algorithm, is displayed in Figure 16.
It creates the GLCM matrix, calculates a pair of features, and sends the matrix and the features to the
UART TX block. To fill the GLCM matrix with the gray levels, the algorithm block receives, from
the convert to gray block, sets of 4 pixels (8 bits per pixel) and saves them in the registers Pixel1 to
Pixel4. For each pair of pixels ((PixelN, PixelN + 1) : N ∈ {1, 2, 3}), one or two addresses to access
the matrix are built with the concatenation of one pixel (PixelN, the X in matrix) with the next pixel
from the same line (PixelN + 1, the Y in matrix). If X is different from Y a second address is built with
the concatenation of Y with X. When X is different from Y, for each of the two addresses, the matrix
position is read, the value is incremented, and the value is saved. However, if X is equal to Y, only the
first address is used, and the value is incremented twice. After processing these four pixels, Pixel4
is saved in Pixel0, and the next four pixels are received. If the next four pixels are not from the
beginning of a line, the pair (Pixel0, Pixel1) is also processed. It is important to note that the resulting
matrix stored in the DDR2 memory, is already the sum of the matrix with its transpose (Equation (1)),
the GLCM symmetric matrix.

Figure 16. Algorithm block diagram.

Remote Sens. 2019, 11, 2501 16 of 24

The next step in the algorithm is the calculation of the contrast and energy, which are calculated
in parallel. For each position of the matrix:

• the difference between X and Y is multiplied by itself and by the value in the position (X, Y) of
the matrix, and the result is accumulated in the contrast register;

• the value in the position (X, Y) of the matrix is multiplied by itself, and the result is accumulated
in the energy register.

An FPGA was used to implement the GLCM algorithm in hardware. This device is based on
configurable logic blocks, and can be programmed using hardware description languages, such as
VHDL (VHSIC Hardware Description Language). The selected FPGA was the Spartan-3A DSP
XC3SD1800A, and to program it, the Xilinx ISE 14.7 was used. The VHDL code was synthesized and
the circuit implemented. The correspondent device use summary is displayed in Table 1. Only the
number of bounded IOBs (pins), DCMs (digital clock managers), and DSP48As (multipliers) surpass
10% of the available resources.

Table 1. Device use summary.

Logic Utilization Used Available

Number of Slice Flip Flops 1527 [4%] 33,280
Number of 4 input LUTs 2251 [6%] 33,280

Number of occupied Slices 1754 [10%] 16,640
Total number of 4 input LUTs 2513 [7%] 33,280

Number of bounded IOBs 147 [28%] 519
Number of BUFGMUXs 2 [8%] 24

Number of DCMs 1 [12%] 8
Number of DSP48As 22 [26%] 84

4. Experimental Design

Aerial Mapping

An aerial vehicle’s autonomy is possible when its route planning and decision making abilities are
accurate enough to enable a safe and self-controlled navigation. Furthermore, aerial mapping of the
classified terrains using UAVs can be very useful and implemented for many different application kinds
such as autonomous navigation, precision agriculture, emergency landings and rescue missions [44].

The fusion between both the techniques applied for terrain classification: static textures (GLCM
and GLRLM) and dynamic textures; through MLP, result into several images where each pixel
represents one of the four studied terrain types (water, vegetation, asphalt and sand).

This system’s mapping procedure is similar to the Aerial Semantic Mapping algorithm described
for a Precision Agriculture experiment [10]. The framework’s pipeline uses a dynamic ROS grid map
composed by four layers (one for each type of terrain, see Figure 17). These layers are converted
into the OccupancyGrid ROS message type which saves a georeferenced map with all the collected
and classified images. The layered grid map cells have value 0 (white) when the pixel presents the
corresponding layer’s terrain type, otherwise the cell is 1 (black).

Georeferencing data requires information about GPS coordinates (latitude, longitude and altitude),
high precision positioning [45,46], IMU attitude (yaw), camera lense’s FOV, image’s resolution and
aspect ratio—Figure 18.

Imagewidth = 2× tan(FOV/2)×UAValtitude

Imageheight = Imagewidth ×
1

AspectRatio
(15)

Equation (15) computes the real dimensions of the captured area, where FOV is measured in
degrees (◦) and the AspectRatio is the image’s height:width proportion factor.

Remote Sens. 2019, 11, 2501 17 of 24

x (Easting)

z (Up)

y (Northing)

Vegetation

Sand
Asphalt

Water

Figure 17. Layered mapping of the classified terrain types.

Image Plane

Camera
Altitude

FOV

1/2 FOV

1/2 Image Wi d t h

Image Wi d t h

Im
age H

e i g
h t

Figure 18. Schematic of how to determine the real image plane dimension.

The Parrot Bebop2 (Base_link) uses a counter-clockwise IMU sensor, which is in line with ROS
REP:103 conventions [47] followed by the World and Map frames. On the other hand, OpenCV uses
a clockwise system, which means that when x-axis points to right, then y-axis is pointing down,
Figure 19.

 θ

y

x

World
(UTM system)

Map
(E_o ; N_o)

(0 ; 0)

y

x

(UTM_E ; UTM_N)

N_T

E_T
Base_link

y x

x (Easting)

y (Northing)

OpenCV

x (Northing)

y (Easting)

Clockwise system:

 θ

x (Easting)

y (Northing)

 θ

Counter-clockwise system:

Figure 19. Interfaces’ coordinate systems: Base_link, world and map (black counter-clockwise
coordinate systems), OpenCV (blue clockwise coordinate systems).

The precision implied by computer vision systems and ROS image mapping also requires caution
when it comes to implement the proper rotation and translation transformations. As illustrated in the
schematic of Figure 19, it is considered the standard 90◦ counter-clockwise rotation to deal with the
world→map transformation in Equation (16).

Remote Sens. 2019, 11, 2501 18 of 24

StandardRotation :

M(θ) =

[
cos(θ) −sen(θ)
sen(θ) cos(θ)

]

90oRotated :

M(θ) =

[
cos(θ) −sen(θ)
sen(θ) cos(θ)

]
·
[

0 −1
1 0

]

=

[
−sen(θ) −cos(θ)
cos(θ) −sen(θ)

]
(16)

The following equation determines pixels rotation motion according to a rotation matrix M by θ

(Equation (17)). [
px′

py′

]
= M(θ) ·

[
px
py

]
(17)

Then, according to Figure 19, the first captured image center is positioned at (Eo, No).
The subsequent images will be mapped in line with a pivot rotation, as explained in the following
steps, where P(px, py) is the position of each image pixel:

1. P(px, py) point translation to map origin (Eo, No);
2. P(px, py) point rotation around the map origin (Eo, No);
3. P(px, py) point back translation to the Base_link origin (UTM_E, UTM_N);

P(px; py) =

px
py
1

 T(ET ; NT) =

1 0 ET
0 1 NT
0 0 1

M(θ) =

−sen(θ) −cos(θ) 0
cos(θ) −sen(θ) 0

0 0 1

P′(px′; py′) = T(ET ; NT) ·M(θ) · T(−ET ;−NT) · P(px; py)

(18)

Equation (18), as explained in [10], describes the pivot rotation applied in mapping
procedures, where:

• P′(px′; py′) is the new P(px; py) point pivot rotation result;
• M(θ) is the counter-clockwise 90◦ rotation matrix (Equation (16));
• T(ET ; NT) is the Map-to-Base_link translation matrix, where ET and NT are respectively the

easting and northing translation from Figure 19;
• θ is the counter-clockwise Base_link IMU rotation angle (rad).

Based on the previous pivot rotation formula, it was possible to successfully compute a dynamic
mapping algorithm (Equation (19)) that accurately builds an aerial view over the UAV’s flown area.

[
px′

py′

]
=

[
−(px− ET) · sen(θ)− (py− NT) · cos(θ) + ET
(px− ET) · cos(θ)− (py− NT) · sen(θ) + NT

]
(19)

The classified terrain information obtained during this experiment, was all georeferenced and
accurately mapped using the ROS grid map layers, as illustrated in Figure 20 and can be visualized
using the RViz tool (3D visualization tool for ROS).

Remote Sens. 2019, 11, 2501 19 of 24

Figure 20. ROS map result of the four distinct classified terrain types into layers (1st layer- water;
2nd layer- vegetation; 3rd layer- asphalt; 4th layer- sand; 5th layer- images by RGB camera).
Georeferenced map visualization using RViz tool.

5. Experimental Results

5.1. Results

The results provided by Sections 2.4.1, 2.4.2 and 2.5, serve as input to the classification algorithm
that converts the selected features into output labels. As previously mentioned in Section 2.2,
a Multilayer Perceptron (MLP), was used in our experiments. The MLP receives the output values
from the static and dynamic algorithms and returns one of four possible terrains (water, vegetation,
asphalt or sand).

As mentioned before, the images used in our experiments were taken at an altitude between
one to two meters. At lower altitudes the images had poor quality; whereas, above two meters,
the downwash effect of the used UAV, which is not a powerful UAV, was almost nonexistent.

The presented results were obtained with a three-layer MLP, with ten neurons on the hidden layer
and four neurons for the output layer. Multiple tests were performed with NNs using up to four layers
and 100 neurons; however, the differences in the results were insignificant. It is important to mention
that this work’s main goal was to identify the best features that can improve the automatic terrain
classification system.

In Table 2 it is possible to observe the confusion matrix table, from the classification results
using static (GLCM and GLRLM) and dynamic (Optical flow) algorithms. The left column represents
the labeled terrain, whereas the for each line, each cell represents the percentage of times the NN
identified a certain type of terrain. For example, for the first line, when the terrain is water, the NN
succeeds 94.60% in identifying the terrain as water, and fails 5.40% out of the 161.525 considered
images. The 5.40% of times it failed, classifies the terrain as follows: 1.88% as vegetation, 1.70% as
asphalt and 1.82% as sand.

Table 2. Results based on GLCM, GLRLM and Optical flow algorithms.

Water Vegetation Asphalt Sand

Water 94.60% 1.88% 1.70% 1.82%
Vegetation 2.45% 95.30% 1.01% 1.24%

Asphalt 1.50% 0.60% 94.60% 3.30%
Sand 4.20% 0.68% 1.87% 93.25%

Accuracy 95.14%

Remote Sens. 2019, 11, 2501 20 of 24

This paper proposals are outlined in Section 5.2, with a comparison between the present work
and other approaches. The four terrain types’ classification results are analyzed below.

5.2. Comparison and Discussion of Results

This subsection compares the results obtained by our proposed system, with results obtained
by five related works. The comparison is shown in Table 3. For each work we show the respective
successful rates for each terrain type as well an overall system average (in the column on the right).
The average does not consider always these four terrain types, but each work’s terrain types, since in
some of the related works the proposed algorithms do not use all four terrain types. As illustrated in
Table 3, the developed system presents the best accuracy in all four terrain types classification: water,
vegetation, asphalt, and sand.

Table 3. Comparison between existing Terrain Classification Systems—Sorted by success rate.

Reference Terrain Classification

Water (%) Vegetation (%) Asphalt (%) Sand (%) Average (%)

[16] - 66.73 82.79 - 77.55
[10] 89.13 82.93 89.59 80.54 80.00
[12] - 79.84 79.05 - 81.17
[8] 88.23 95.00 93.00 90.00 93.00

[18] 93.20 95.10 - 92.97 93.8
Current work 94.60 95.30 94.60 93.25 94.14

One of the main advantages of this work, when compared to [10,12,16], is the ability to obtain a
better classification because the UAV is only 1 to 2 meters away from the ground. In [10,12,16], there are
images taken by satellites or at a distance above 60 meters from the ground, which increases the error
in the classification of the studied terrain types. In [8,18], the UAV was also used at a short distance
from the ground, as in this article, also providing images in high resolution. However, ref. [8,18] only
classify one terrain which clearly becomes a disadvantage when there may be several terrain types to
be captured by the on-board camera. This work’s developed system has the ability to classify different
terrain types in the same image.

Another major advantage studied in the current work, when it comes to terrain classification,
is the terrain’s dynamic part usage. This action clearly shows an improved system accuracy, since each
terrain behaves differently when affected by the UAV’s downwash effect. According to the works cited
in Table 3, only [18] used the dynamic terrain feature, observing that the proposed system’s accuracy
is greater than in [8,10,12,16] articles and enhancing the terrains dynamism when it comes to terrain
classification. Compared to [18], this work implements different static and dynamic algorithms, as well
as classifies different terrain types with increased accuracy.

In summary, the system presented in this paper allows a more accurate terrain classification than
with the other works mentioned in Table 3. This is due to the usage of both dynamic (from the Optical
Flow concept) and static (from the GLCM and GLRLM) parts of the terrain, as previously mentioned,
at 1 to 2 meters height from the ground, in order to have images with higher resolution. The current
work, as well as [10], have datasets from the same Portuguese region. When compared to [8,18],
the current work uses an extended and more heterogeneous dataset. To allow a direct comparison
with these two works (those that use images taken at the same height from the ground), the system
developed in this work was also tested with the datasets used in [8,18]. The results are presented in
Table 4. Compared to the results presented in Table 3, the system had higher success rates, as expected,
due to the smaller and more homogeneous datasets.

Remote Sens. 2019, 11, 2501 21 of 24

Table 4. Comparison between existing Terrain Classification Systems—Sorted by success rate.

Reference Terrain Classification - Current Work

Water (%) Vegetation (%) Asphalt (%) Sand (%)

Current work with [8] data 96.70 98.10 95.30 91.10
Current work with [18] data 94.80 98.80 - 93.6

6. Conclusions

This paper presents a complete solution for terrain classification, using the downwash effect by
the UAV’s rotors. The system implements two static algorithms: Gray-Level Co-Occurrence Matrix;
Gray-Level Run Length Matrix; and one dynamic texture algorithm: Optical Flow. Regarding the
terrain classification experimental results, the proposed solution achieves a 95.14% average success
rate in differentiating among four terrain types (water, vegetation, asphalt and sand).

The developed FPGA-based prototype validates the use of hardware to implement parts of the
proposed system. The integration of this hardware prototype into the system substantially reduces the
software processing time and accelerate terrain classification. The developed hardware prototype will
be extended in the near future to provide additional image features.

The obtained classification accuracy, the ability to classify more than one terrain in the same
image, and a dynamic map generation (with the classification results), provide a set of advantages
in the area of cooperative autonomous robots with fully autonomous navigation (e.g., an Unmanned
Surface Vehicle (USV) needs to know where the water is to be able to navigate and an Unmanned
Ground Vehicle (UGV) needs to avoid it).

The developed system had to overcome a major obstacle between software and hardware with
UAVs, due to the limited existing work done in this area. A main goal of this paper work was the
development of an open source system that merges ROS, OpenCV, and FPGAs, for UAVs. This system
will be the basis for further research into cooperative autonomous robots.

7. Future Work

Despite the good results obtained so far, there are several areas in which improvements are
foreseen. We plan to further investigate in the near future the following areas:

• Perform a deeper study on changing of the environment colors, to improve the robustness of
the algorithm. Environment color variation, regarding to the different time of the day, could
influence the results and therefore false positives/negatives. Although the dynamic texture does
not suffer much from these changes, due to the fact that the terrain movement is similar, the static
texture could be highly affected;

• Since the algorithm was designed for a UAV flying at an altitude between one and two meters,
it is likely that at this altitude the UAV may collide with objects in the environment. The authors
of this article developed an algorithm [48] to avoid obstacles, from images taken from a depth
camera. However, currently it is only working with static objects. An improved version of this
algorithm could be used to support the autonomous navigation of the proposed system;

• It is also important to make a deeper study regarding different camera resolutions in order to
improve the robustness of the proposed system, however, the system speed may be affected with
higher resolutions.

Remote Sens. 2019, 11, 2501 22 of 24

Author Contributions: Conceptualization, J.P.M.-C. and A.M.; Funding acquisition, L.M.C.; Investigation,
J.P.M.-C., F.M., A.B.S., T.C., R.C.-R., D.P., J.M.F. and A.M.; Resources, L.M.C.; Software, J.P.M.-C., F.M., A.B.S.,
T.C., R.C.-R. and D.P.; Supervision, L.M.C., J.M.F. and A.M.; Validation, J.P.M.-C., F.M., A.B.S., T.C., R.C.-R.;
Writing—original draft, J.P.M.-C., F.M., A.B.S., T.C. and D.P.; Writing—review & editing, R.C.-R., L.M.C., J.M.F.
and A.M.

Funding: This work is supported by the European Regional Development Fund (FEDER), through the Regional
Operational Programme of Lisbon (POR LISBOA 2020) and the Competitiveness and Internationalization
Operational Programme (COMPETE 2020) of the Portugal 2020 framework [Project 5G with Nr. 024539
(POCI-01-0247-FEDER-024539)]. This project has also received funding from the ECSEL Joint Undertaking
(JU) under grant agreement No 783221. The JU receives support from the European Union’s Horizon 2020 research
and innovation programme and Austria, Belgium, Czech Republic, Finland, Germany, Greece, Italy, Latvia,
Norway, Poland, Portugal, Spain, Sweden.

Acknowledgments: This work was not possible without the support and commitment of PDMFC Research group.
This work was also supported by Portuguese Agency “Fundação para a Ciência e a Tecnologia“ (FCT), in the
framework of projects PEST (UID/EEA/00066/2019) and IPSTERS (DSAIPA/AI/0100/2018).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bestaoui Sebbane, Y. Intelligent Autonomy of UAVs: Advanced Missions and Future Use; CRC Press: Boca Raton,
FL, USA, 2018.

2. Linderhed, A. Image Empirical Mode Decomposition: A New Tool For Image Processing. Adv. Adapt. Data
Anal. 2009, 1, 265–294. [CrossRef]

3. Feng, Q.; Liu, J.; Gong, J. UAV Remote sensing for urban vegetation mapping using random forest and
texture analysis. Remote Sens. 2015, 7, 1074–1094. [CrossRef]

4. Khan, Y. N.; Komma, P.; Bohlmann, K.; Zell, A. Grid-based visual terrain classification for outdoor
robots using local features. In Proceedings of the IEEE SSCI 2011: Symposium Series on Computational
Intelligence—CIVTS 2011: 2011 IEEE Symposium on Computational Intelligence in Vehicles and
Transportation, Paris, France, 11–15 April 2011.

5. Pietikäinen, M.; Hadid, A.; Zhao, G.; Ahonen, T. Computer Vision Using Local Binary Patterns; Computational
Imaging and Vision; Springer: London, UK, 2011; Volume 40.

6. Ebadi, F.; Norouzi, M. Road Terrain detection and Classification algorithm based on the Color Feature
extraction. In Proceedings of the 2017 IEEE Artificial Intelligence and Robotics (IRANOPEN), Qazvin, Iran,
9 April 2017; pp. 139–146.

7. Lin, C.; Ding, Q.; Tu, W.; Huang, J.; Liu, J. Fourier Dense Network to Conduct Plant Classification Using
UAV-Based Optical Images. IEEE Access 2019, 7, 17736–17749. [CrossRef]

8. Matos-Carvalho, J.P.; Mora, A.; Rato, R.T.; Mendonça, R.; Fonseca, J.M. UAV Downwash-Based Terrain
Classification Using Wiener-Khinchin and EMD Filters. In Technological Innovation for Industry and Service
Systems. DoCEIS 2019. IFIP Advances in Information and Communication Technology; Camarinha-Matos, L.,
Almeida, R., Oliveira, J., Eds.; Springer: Cham, Switzerland, 2019; Volume 553.

9. Khan, P.W.; Xu, G.; Latif, M.A.; Abbas, K.; Yasin, A. UAV’s Agricultural Image Segmentation Predicated by
Clifford Geometric Algebra. IEEE Access 2019, 7, 38442–38450. [CrossRef]

10. Salvado, A.B. Aerial Semantic Mapping for Precision Agriculture Using Multispectral Imagery. 2018.
Available online: http://hdl.handle.net/10362/59924 (accessed on 1 December 2018).

11. He, C.; Liu, X.; Feng, D.; Shi, B.; Luo, B.; Liao, M. Hierarchical terrain classification based on multilayer
bayesian network and conditional random field. Remote Sens. 2017, 9, 96. [CrossRef]

12. Li, W.; Peng, J.; Sun. W. Spatial–Spectral Squeeze-and-Excitation Residual Network for Hyperspectral Image
Classification. Remote Sens. 2019, 11, 884.

13. Yan, W.Y.; Shaker, A.; El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review.
Remote Sens. Environ. 2015, 158, 295–310. [CrossRef]

14. Wallace, L.; Lucieer, A.; Malenovsky, Z.; Turner, D.; Vopěnka, P. Assessment of forest structure using two
UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds.
Forests 2016, 7, 62. [CrossRef]

http://dx.doi.org/10.1142/S1793536909000138
http://dx.doi.org/10.3390/rs70101074
http://dx.doi.org/10.1109/ACCESS.2019.2895243
http://dx.doi.org/10.1109/ACCESS.2019.2906033
http://hdl.handle.net/10362/59924
http://dx.doi.org/10.3390/rs9010096
http://dx.doi.org/10.1016/j.rse.2014.11.001
http://dx.doi.org/10.3390/f7030062

Remote Sens. 2019, 11, 2501 23 of 24

15. GruszczynSki, W.; Matwij, W.; Cwiakała, P. Comparison of low-altitude UAV photogrammetry with
terrestrial laser scanning as data-source methods for terrain covered in low vegetation. ISPRS J. Photogramm.
Remote Sens. 2017, 126, 168–179. [CrossRef]

16. Sofman, B.; Andrew Bagnell, J.; Stentz, A.; Vandapel, N. Terrain Classification from Aerial Data to Support
Ground Vehicle Navigation; Tech. Report, CMU-RI-TR-05-39; Robotics Institute, Carnegie Mellon University:
Pittsburgh, PA, USA, 2006.

17. Pombeiro, R.; Mendonca, R.; Rodrigues, P.; Marques, F.; Lourenco, A.; Pinto, E.; Barata, J. Water detection
from downwash-induced optical flow for a multirotor UAV. In Proceedings of the IEEE OCEANS 2015
MTS/IEEE, Washington, DC, USA, 19–22 October 2015; pp. 1–6.

18. Matos-Carvalho, J.P.; Fonseca, J.M.; Mora, A.D. UAV downwash dynamic texture features for terrain
classification on autonomous navigation. In Proceedings of the 2018 IEEE Federated Conference on Computer
Science and Information Systems, Annals of Computer Science and Information Systems, Poznan, Poland,
9–12 September 2018; pp. 1079–1083. [CrossRef]

19. Shawahna, A.; Sait, S.M.; El-Maleh, A. FPGA-Based Accelerators of Deep Learning Networks for Learning
and Classification: A Review. IEEE Access 2019, 7, 7823–7859. [CrossRef]

20. Kiran, M.; War, K.M.; Kuan, L.M.; Meng, L.K.; Kin, L.W. Implementing image processing algorithms using
‘Hardware in the loop’ approach for Xilinx FPGA. In Proceedings of the 2008 International Conference on
Electronic Design, Penang, Malaysia, 1–3 December 2008; pp. 1–6. [CrossRef]

21. Tiemerding, T.; Diederichs, C.; Stehno, C.; Fatikow, S. Comparison of different design methodologies of
hardware-based image processing for automation in microrobotics. In Proceedings of the 2013 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, Wollongong, Australia, 9–12 July 2013;
pp. 565–570. [CrossRef]

22. Li, W.; He, C.; Fu, H.; Zheng, J.; Dong, R.; Xia, M.; Yu, L.; Luk, W. A Real-Time Tree Crown Detection
Approach for Large-Scale Remote Sensing Images on FPGAs. Remote Sens. 2019, 11, 1025. [CrossRef]

23. Zhou, G.; Zhang, R.; Liu, N.; Huang, J.; Zhou, X. On-Board Ortho-Rectification for Images Based on an
FPGA. Remote Sens. 2017, 9, 874. [CrossRef]

24. Liu, D.; Zhou, G.; Huang, J.; Zhang, R.; Shu, L.; Zhou, X.; Xin, C.S. On-Board Georeferencing Using
FPGA-Based Optimized Second-Order Polynomial Equation. Remote Sens. 2019, 11, 124. [CrossRef]

25. Huang, J.; Zhou, G. On-Board Detection and Matching of Feature Points. Remote Sens. 2017, 9, 601.
[CrossRef]

26. Mujahid, O.; Ullah, Z.; Mahmood, H.; Hafeez, A. Fast Pattern Recognition Through an LBP Driven CAM on
FPGA. IEEE Access 2018, 6, 39525–39531. [CrossRef]

27. Nguyen, X.; Hoang, T.; Nguyen, H.; Inoue, K.; Pham, C. An FPGA-Based Hardware Accelerator for
Energy-Efficient Bitmap Index Creation. IEEE Access 2018, 6, 16046–16059. [CrossRef]

28. Chaple, G.; Daruwala, R.D. Design of Sobel operator based image edge detection algorithm on
FPGA. In Proceedings of the 2014 International Conference on Communication and Signal Processing,
Melmaruvathur, India, 3–5 April 2014; pp. 788–792. [CrossRef]

29. Singh, S.; Saini, K.; Saini, R.; Mandal, A.S.; Shekhar, C.; Vohra, A. A novel real-time resource efficient
implementation of Sobel operator-based edge detection on FPGA. Int. J. Electron. 2014, 101, 1705–1715.
[CrossRef]

30. Harinarayan, R.; Pannerselvam, R.; Ali, M.M.; Tripathi, D.K. Feature extraction of Digital Aerial Images
by FPGA based implementation of edge detection algorithms. In Proceedings of the 2011 International
Conference on Emerging Trends in Electrical and Computer Technology, Nagercoil, India, 23–24 March 2011;
pp. 631–635. [CrossRef]

31. Sphinx Guide Book. 2019. Available online: https://developer.parrot.com/docs/sphinx/index.html
(accessed on 30 January 2019).

32. Specht, D.F. A General Regression Neural Network. IEEE Trans. Neural Netw. 1991. [CrossRef]
33. Mora, A.; Santos, T.M.A.; Łukasik, S.; Silva, J.M.N.; Falcão, A.J.; Fonseca, J.M.; Ribeiro, R.A. Land Cover

Classification from Multispectral Data Using Computational Intelligence Tools: A Comparative Study.
Information 2017, 8, 147. [CrossRef]

34. Heung, B.; Ho, H.C.; Zhang, J.; Knudby, A.; Bulmer, C.E.; Schmidt, M.G. An Overview and Comparison
of Machine-Learning Techniques for Classification Purposes in Digital Soil Mapping. Geoderma 2016, 265,
62–77. [CrossRef]

http://dx.doi.org/10.1016/j.isprsjprs.2017.02.015
http://dx.doi.org/10.15439/2018F185
http://dx.doi.org/10.1109/ACCESS.2018.2890150
http://dx.doi.org/10.1109/ICED.2008.4786653
http://dx.doi.org/10.1109/AIM.2013.6584152
http://dx.doi.org/10.3390/rs11091025
http://dx.doi.org/10.3390/rs9090874
http://dx.doi.org/10.3390/rs11020124
http://dx.doi.org/10.3390/rs9060601
http://dx.doi.org/10.1109/ACCESS.2018.2854306
http://dx.doi.org/10.1109/ACCESS.2018.2816039
http://dx.doi.org/10.1109/ICCSP.2014.6949951
http://dx.doi.org/10.1080/00207217.2014.888782
http://dx.doi.org/10.1109/ICETECT.2011.5760194
https://developer.parrot.com/docs/sphinx/index.html
http://dx.doi.org/10.1109/72.97934
http://dx.doi.org/10.3390/info8040147
http://dx.doi.org/10.1016/j.geoderma.2015.11.014

Remote Sens. 2019, 11, 2501 24 of 24

35. Giusti, A.; Guzzi, J.; Ciresan, D.C.; He, F.; Rodriguez, J.P.; Fontana, F.; Faessler, M.; Forster, C.; Schmidhuber, J.;
Di Caro, G.; et al. A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots.
IEEE Robot. Autom. Lett. 2016, 1, 661–667. [CrossRef]

36. Haralick, R.M.; Shanmugam, K.; Denstien, I. Textural features for image classification. IEEE Trans. Syst. Man
Cybern. 1973, 3, 610–621. [CrossRef]

37. Kim, I.; Matos-Carvalho, J.P.; Viksnin, I.; Campos, L.M.; Fonseca, J.M.; Mora, A.; Chuprov, S. Use of Particle
Swarm Optimization in Terrain Classification based on UAV Downwash. In Proceedings of the 2019 IEEE
Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 604–610.
[CrossRef]

38. Ojala, T.; Pietikaine, M. Texture Classification. Master’s Thesis, Machine Vision and Media Processing Unit,
University of Oulu, Oulu, Finland, 2010.

39. Materka, A.; Strzelecki, M. Texture Analysis Methods—A Review; Technical Report; Institute of Electronics,
Technical University of Lodz: Lodz, Poland, 1998.

40. Galloway, M.M. Texture analysis using gray level run lengths. Comput. Graph. Image Process. 1975, 4, 172–179.
[CrossRef]

41. Bruce, D.L.; Kanade, T. An iterative image registration technique with an application to stereo vision.
In Proceedings of the 7th International Joint Conference on Artificial Intelligence (IJCAI ’81), Vancouver, BC,
Canada, 24–28 August 1981.

42. Farneback, G. Two-Frame Motion Estimation Based on Polynomial Expansion. Lect. Notes Comput. Sci. 2003,
2749, 363–370. [CrossRef]

43. Joseph. L. Mastering ROS for Robotics Programming; Packt Publishing Ltd.: Birmingham, UK, 2015.
44. Office of the Secretary of Transportation, Federal Aviation Administration, Department of Transportation.

Unmanned Aircraft Systems. Available online: https://www.faa.gov/data_research/aviation/aerospace_
forecasts/ (accessed on 12 March 2019).

45. Pedro, D.; Tomic, S.; Bernardo, L.; Beko, M.; Oliveira, R.; Dinis, R.; Pinto, P. Localization of static remote
devices using smartphones. IEEE Veh. Technol. Conf. 2018. [CrossRef]

46. Pedro, D.; Tomic, S.; Bernardo, L.; Beko, M. Algorithms for estimating the location of remote nodes using
smartphones. IEEE Access 2019. [CrossRef]

47. REP 103—Standard Units of Measure and Coordinate Conventions (ROS.org). Available online: http:
//www.ros.org/reps/rep-0103.html (accessed on 7 April 2019).

48. Matos-Carvalho, J.P.; Pedro, D.; Campos, L.M.; Fonseca, J.M.; Mora, A. Terrain Classification Using W-K Filter
and 3D Navigation with Static Collision Avoidance; Intelligent Systems and Applications; Springer: London,
UK, 2019; p. 18.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LRA.2015.2509024
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1109/CEC.2019.8790031
http://dx.doi.org/10.1016/S0146-664X(75)80008-6
http://dx.doi.org/10.1007/3-540-45103-X_50
https://www.faa.gov/data_research/aviation/aerospace_forecasts/
https://www.faa.gov/data_research/aviation/aerospace_forecasts/
http://dx.doi.org/10.1109/VTCSpring.2018.8417726
http://dx.doi.org/10.1109/ACCESS.2019.2904241
http://www.ros.org/reps/rep-0103.html
http://www.ros.org/reps/rep-0103.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Experimental Setup
	UAV Platform Design
	Data Gathering
	Proposed System Model
	Static Textures
	Gray-Level Co-Occurrence Matrix
	Gray-Level Run Length Matrix

	Dynamic Textures

	Implementation
	Software
	Hardware

	Experimental Design
	Experimental Results
	Results
	Comparison and Discussion of Results

	Conclusions
	Future Work
	References

