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Abstract: NASA’s Soil Moisture Active Passive (SMAP) Level 2 soil moisture products are not meeting
mission goals in the U.S. Corn Belt according to our seasonal evaluation conducted at a SMAP Core
Validation Site in central Iowa. The single-channel algorithm (SCA) soil moisture products are too
dry in early spring and late fall before and after crops are present, and too noisy in late spring and
early summer when crops begin to grow. We investigated likely contributing factors. The climatology
of vegetation’s effect on soil moisture retrieval in the SCA can differ by more than 14 days from what
is retrieved by SMAP’s dual-channel algorithm (DCA). Soil and vegetation temperatures, assumed to
be equal by all retrieval algorithms, are not: vegetation is about 2 K colder at 6:00 a.m. and about
2 K warmer at 6:00 p.m.. The effective temperature in version 2 products is too warm as compared
to in situ soil temperatures. We propose a new effective temperature model that is consistent with
observations, decreases the unbiased root-mean-square-error (ubRMSE) overall, and increases the
coefficient of determination (R2) of the DCA in every month. However, some monthly dry biases
increase to more than 0.10 m3 m−3. The single-scattering albedo, ω, has a significant impact on soil
moisture retrieval. While the DCA has its lowest ubRMSE and highest R2 when ω is non-zero, the
SCA have their lowest ubRMSE and highest R2 when ω = 0, and the dry bias of all algorithms
increases as ω increases. Errors in soil texture are not significant, but soil surface roughness should
not be static and have a higher overall value. Our findings make it clear that a new retrieval algorithm
that can account for changing soil roughness and vegetation conditions is needed.
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1. Introduction

The Soil Moisture Active Passive (SMAP) mission, an L-band satellite launched by the National
Aeronautics and Space Administration (NASA) in 2015, is intended to produce global observations
of soil moisture and soil freeze-thaw state in order to improve modeling of surface water, energy,
and carbon fluxes and thus improve weather, climate, and agricultural monitoring [1]. These
observations apply to at least two of the six key categories identified by NASA, the National Oceanic
and Atmospheric Administration (NOAA), and the United States Geological Survey (USGS) as
priorities in the 2017 Decadal Survey: “Coupling of the Water and Energy Cycles” and “Extending and
Improving Weather and Air Quality Forecasts” [2]. SMAP is currently mapping surface soil moisture
and vegetation as retrieved from passive L-band ( f = 1.4 GHz) brightness temperature observations
at a spatial resolution of 33 km [3].
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In agricultural regions, SMAP-scale observations of soil moisture are useful as both input to
weather and hydrology models and as indicators of flood and drought states that impact agricultural
production and human populations. While soil moisture is driven by precipitation, rainfall itself is
linked to antecedent soil moisture as moist soils have more water available for evaporation into the
atmosphere [4]. Case studies of the historic 1988 drought and 1993 floods in the U. S. Corn Belt have
shown that ingesting soil moisture data during numerical weather prediction improves forecasts of
event location and intensity [5,6]. L-band observations are additionally being utilized as agricultural
products, with applications such as root-zone soil moisture [7] and preliminary monitoring of corn
development [8].

While remotely sensed observations of soil moisture and vegetation have potential as agronomic
tools, SMAP Level 2 Soil Moisture (L2SM) performs worse in validation pixels that are primarily
cultivated croplands as opposed to grasslands and shrublands [9]. A SMAP core validation site has
been established in the South Fork Iowa River watershed, located in the U. S. Corn Belt, to provide
in situ observations of soil moisture at a scale suitable for SMAP L2SM validation [10]. This site, which
is heavily agricultural with few other land types, is known to be problematic for SMAP calibration
and validation. SMAP L2SM retrievals have been reported as noisy and less correlated to in situ
observations in the South Fork, and to have a significant dry bias, especially when to compared to
other sites that perform relatively well [3]. These problems also exist when comparing L2SM retrieved
by Soil Moisture Ocean Salinity (SMOS [11]), which views the same frequency and has a similar
spatial-temporal resolution to SMAP, to in situ soil moisture in the South Fork [12].

The South Fork experiences two distinctly different land cover periods: the summer is
characterized by annual crops while rough bare soil is dominant between fall harvest and early-summer
emergence. While evaluation studies of satellite soil moisture have historically considered the data
record as a whole, it is not logical to use overall metrics in the South Fork without first checking if
SMAP L2SM retrieval performance is similar during the two land cover periods. We hypothesize that
evaluating SMAP L2SM over the entire data record, as is currently the practice, is masking seasonal
biases. We perform a monthly evaluation of SMAP L2SM in the South Fork over a four-year period
and examine croplands parameterizations that could potentially cause observed errors. This includes
an investigation into the changes introduced by the most recent data version that significantly reduced
dry biases in soil moisture retrievals [10].

2. Data and Metrics

Satellite retrievals of soil moisture are validated against in situ networks to assess the amount of
systematic error, noise, and correlation with observations. In the SMAP program, official validation is
performed for core validation sites (CVS), which must meet standards pertaining to both the number
and distribution of stations as well as calibration and quality assessments [9]. Each CVS reports a
weighted average soil moisture (WASM) that combines many point-observations into a satellite-scale
soil moisture. Weighting schemes are derived to be representative of soil moisture heterogeneity in the
region; this can be driven by precipitation patterns, topography, soil texture, or land cover [9].

2.1. Metrics

We will use three metrics to evaluate SMAP L2SM: bias, unbiased RMSE, and R2. The SMAP
mission accuracy goal is to retrieve soil moisture within ± 0.04 m3 m−3 of in situ observations for
surfaces with a water column density, Mw, of less than 5 kg m−2 [1]. While corn on its own can exceed
this threshold during a growing season, pixels characterized by mixed corn and soybean in Iowa
typically reach a maximum Mw of 4 kg m−2 [8].

The bias, given by Equation (1), measures if SMAP L2SM retrievals are on average wetter (bias > 0)
or drier (bias < 0) than in situ WASM:

bias = (L2SM−WASM). (1)
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The root-mean-square error (RMSE), given by Equation (2), is a measure of random error but
is inherently dependent on bias; systematic error increases RMSE. Therefore, the unbiased RMSE
(ubRMSE), defined by Equation (3), is used to assess random error and quantify the accuracy of
SMAP L2SM:

RMSE =

√
(L2SM−WASM)2, (2)

ubRMSE =

√
RMSE2 −

(
L2SM−WASM

)2. (3)

The Pearson correlation coefficient, R, measures the linear correlation between any two variables
X and Y as given by Equation (4). We use the coefficient of determination, R2, as a measure of how
much observed variation in SMAP L2SM is explainable by the in situ WASM:

R =
1

N − 1

N

∑
i=1

[(
Xi − X

σX

)(
Yi −Y

σY

)]
. (4)

2.2. SMAP Products

SMAP L2SM retrievals were extracted from the SMAP Level 2 Enhanced Soil Moisture product
(SPL2SMP_E, version 2 [13]; CRID: R16020/22). SMAP L2SM, which has a radiometric resolution of
33 km, is posted to the 9 km EASE Grid 2.0 (EASE09) global projection [3]. While EASE09 pixels are
not assigned unique identifiers, we have numbered them such that the global array cell [row:1, col:1]
is the furthest northwest pixel and cell [row:1624, col:3856] is the furthest southeast. Retrievals were
filtered using the associated quality control flags for each overpass to remove those of degraded or
uncertain quality.

There are three primary retrieval algorithms, or “options”, in SMAP L2SM [3,14]. The Single
Channel Algorithm (SCA), which utilizes brightness temperature observations, TBp , at either horizontal
(p = h) or vertical (p = v) polarizations (SCA-H: “option 1” and SCA-V: “option 2,” respectively) and
a vegetation climatology to retrieve soil moisture. The Dual Channel Algorithm (DCA: “option 3”)
utilizes both TBh and TBv to retrieve soil moisture while inferring vegetation. The SCA-V is the current
baseline algorithm for SMAP L2SM validation [3,9].

The SPL2SMP_E product reports dynamic ancillary data such as effective surface temperature
for each SMAP L2SM retrieval [14]. Static ancillary data such as soil texture and land cover class are
available in the Soil Moisture Active Passive (SMAP) L1-L3 Ancillary Static Data on the 3 km EASE
Grid 2.0 (EASE03) global projection [15].

2.3. South Fork Core Validation Site

The South Fork Iowa River watershed is approximately 85% annual croplands; the major crops
are corn (67%) and soybean (33%) [16]. The soil is primarily loam and silty clay loam and is poorly
drained [16,17]. The South Fork CVS, operated by the United States Department of Agriculture
Agricultural Research Service (USDA ARS), is a network of twenty permanent in situ stations that
observe soil moisture and temperature at depths of 5, 10, 20 and 50 cm [17]. The network was
established in April 2013—two years prior to the first SMAP L2SM retrievals.

Figure 1 depicts the locations of the 20 permanent stations along with the corresponding SMAP
EASE09 cell (row:264, col:928) and its 33 km radiometric resolution. The base map in Figure 1, the 2018
USDA National Agricultural Statistics Service (USDA NASS) Cropland Data Layer [18], illustrates the
relative homogeneity of croplands (primarily corn and soybean) as opposed to forests, open water,
and urban areas; the MODIS-IGBP [19] land cover classification used by SMAP is also provided.
Agriculture in the South Fork is rainfed (no irrigation); the network has observed a mean precipitation
of 880 mm year−1 since installation.
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Figure 1. South Fork in situ stations (•) and the 33 km radiometric resolution (�) of the nearest SMAP
EASE09 cell [row:264, col:928].

Spatial variation of precipitation is the largest factor in South Fork soil moisture heterogeneity
due to the relatively consistent soil texture and topography in the network [17]. Therefore, the network
soil moisture, hereafter referred to as “South Fork WASM,” is defined as the weighted average of
the 20 5-cm in situ soil moisture sensors. The Vornoi diagram (Thiessen polygon) used to produce
South Fork WASM allows for weighting of soil moisture patterns, caused by spatial variation in
rainfall events within the network that are observed by irregularly spaced stations. The installation of
20 stations provides some cushion for malfunctions; South Fork WASM does not differ significantly
after approximately ten stations are considered [12]. In the event of missing data (i.e., a non-reporting
station), the weights of missing stations are re-distributed across those remaining to dampen the
impact of highly-weighted stations on calculated WASM.

Network stations are situated on the edges of fields, rather than within the crops, to avoid conflicts
with farm management practices. In-field observations collected during summer 2014 to quantify the
difference between soil moisture observed by the permanent stations and that of the adjacent fields in
the South Fork found essentially no bias between the two; however, the RMSE was 0.023 m3 m−3 [12].
This indicates that some of the SMAP mission goals for random error (≤0.04 m3 m−3) currently have
to be budgeted towards the South Fork in situ network itself. Future scaling schemes derived from
the extensive in-field soil moisture sampling during the SMAPVEX16-IA campaign may reduce the
impact of edge-of-field stations on the network. In addition, contributing to random error (but not the
bias) are the differing sampling volumes between the South Fork in situ measurements at 5 cm and
SMAP, which observes the top 3 to 6 cm of soil depending on moisture conditions [20].

Radio frequency interference (RFI), which increases observed TB and causes dry-biased L2SM
retrievals, occurs when there is illegal broadcasting at L-band. Approximately 20% of SMAP overpasses
in the South Fork have been flagged for further review by the RFI detection and mitigation algorithms
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in SMAP Level 1B processing since launch. Quality flags in the L2SM product indicate that >96% of
the flagged TB subsequently pass mitigation, resulting in <1% of all SMAP overpasses in the South
Fork being discarded due to RFI contamination. We therefore consider RFI to be negligible in the
South Fork.

3. SMAP L2SM Performance in the South Fork

We evaluated SCA-H, SCA-V, and DCA SMAP L2SM retrievals (described in Section 2.2) monthly
against South Fork WASM for April 2015–November 2018. The winter months (DJF) are excluded
to avoid potentially including retrievals tainted by un-flagged snow or frozen soil. Tables 1 and 2
provide the bias and ubRMSE calculated monthly for both individual years and the entire period;
the March–November averages are additionally split into AM (descending) and PM (ascending)
overpasses. Over the entire April 2015–November 2018 period, SMAP L2SM is dry-biased when using
the SCA (bias: −0.035 m3 m−3 and −0.018 m3 m−3 for h- and v-pol, respectively) and wet-biased for the
DCA (bias: 0.013 m3 m−3). The ubRMSE over this period exceeds the mission accuracy goal (0.065,
0.051 and 0.059 m3 m−3, for SCA-H, SCA-V, and DCA, respectively). There are, on average, 27 to 30
successful retrievals per month during April–October; March (≈23) and November (≈25) have fewer
as some fail due to snow.

Table 1. Bias between SMAP Level 2 Soil Moisture (L2SM) and South Fork weighted average soil
moisture (WASM).

Single Channel Algorithm Applied to h-pol TB (SCA-H)
Bias, m3 m−3 Mar Apr May Jun Jul Aug Sep Oct Nov All a.m. p.m.

2015 −0.100 −0.038 0.016 −0.010 −0.028 0.003 0.001 −0.094 −0.030 −0.037 −0.025
2016 −0.098 −0.083 0.002 −0.037 −0.013 −0.017 −0.015 −0.015 −0.084 −0.039 −0.044 −0.034
2017 −0.078 −0.056 −0.013 0.006 −0.005 0.019 −0.009 −0.037 −0.126 −0.030 −0.038 −0.022
2018 −0.085 −0.121 −0.051 0.049 −0.021 −0.017 0.005 −0.037 −0.090 −0.040 −0.049 −0.030

All Years −0.087 −0.089 −0.025 0.007 −0.012 −0.010 −0.004 −0.022 −0.107 −0.035 −0.042 −0.028

Single Channel Algorithm Applied to v-pol TB (SCA-V)
Bias, m3 m−3 Mar Apr May Jun Jul Aug Sep Oct Nov All a.m. p.m.

2015 −0.062 −0.021 0.018 −0.029 −0.021 0.002 0.029 −0.040 −0.014 −0.013 −0.016
2016 −0.050 −0.033 0.024 −0.036 −0.031 −0.017 −0.022 0.015 −0.030 −0.020 −0.020 −0.020
2017 −0.036 −0.017 0.004 −0.006 −0.009 0.022 0.017 −0.015 −0.047 −0.009 −0.009 −0.009
2018 −0.035 −0.078 −0.020 0.044 −0.029 −0.026 −0.020 −0.021 −0.088 −0.027 −0.030 −0.025

All Years −0.041 −0.047 −0.003 0.004 −0.024 −0.011 −0.005 0.003 −0.049 −0.018 −0.018 −0.017

Dual Channel Algorithm (DCA)

Bias, m3 m−3 Mar Apr May Jun Jul Aug Sep Oct Nov All a.m. p.m.

2015 0.003 0.004 −0.022 −0.043 −0.008 0.006 0.081 0.070 0.011 0.015 0.006
2016 0.040 0.050 0.051 −0.037 −0.044 −0.017 −0.026 0.065 0.080 0.017 0.025 0.010
2017 0.033 0.048 0.030 −0.027 −0.011 0.027 0.047 0.020 0.048 0.024 0.033 0.015
2018 0.061 −0.014 0.024 0.041 −0.033 −0.030 −0.039 0.005 −0.021 −0.002 0.002 −0.007

All Years 0.043 0.023 0.028 −0.012 −0.032 −0.007 −0.002 0.044 0.048 0.013 0.019 0.006

While the bias for the entire April 2015–November 2018 period is small (0.013 m3 m−3 (DCA);
−0.035 m3 m−3 (SCA-H); −0.018 m3 m−3 (SCA-V)), there is both seasonal and inter-annual variation
in the bias with individual monthly biases of ± 0.10 m3 m−3. The SCA-H and SCA-V exhibit similar
seasonal dynamics, with large dry biases (−0.04 to −0.10 m3 m−3) in early-spring and late-fall that
improve to −0.02 m3 m−3 or better during the summer months when crops are present. The magnitude
of the bias is typically larger for SCA-H than SCA-V. While the DCA is similar to the SCA during the
summer months, it exhibits a moderate wet bias (0.02 to 0.04 m3 m−3) in the spring/fall when little to
no vegetation is present.

The ubRMSE for both SCA, and to a lesser extent the DCA, peak in May/June (0.06 to 0.08 m3 m−3)
when corn and soybean planting and emergence occur. There is also the most difference in ubRMSE
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between years at this time. These two months increase the overall ubRMSE; the remainder are near
the SMAP mission accuracy goal of 0.04 m3 m−3. The SCA and DCA also have similar patterns when
splitting ascending and descending overpasses; PM retrievals have a smaller bias magnitude, and to a
lesser extent a lower ubRMSE, than AM retrievals.

Table 2. Unbiased root-mean-square error (ubRMSE) between SMAP L2SM and South Fork WASM.

Single Channel Algorithm Applied to h-pol TB (SCA-H)
ubRMSE, m3 m−3 Mar Apr May Jun Jul Aug Sep Oct Nov All a.m. p.m.

2015 0.024 0.046 0.067 0.026 0.026 0.041 0.051 0.041 0.058 0.056 0.058
2016 0.037 0.040 0.108 0.052 0.056 0.045 0.041 0.034 0.031 0.064 0.070 0.058
2017 0.037 0.027 0.078 0.103 0.058 0.037 0.037 0.032 0.027 0.065 0.063 0.067
2018 0.063 0.029 0.041 0.066 0.032 0.034 0.057 0.048 0.061 0.072 0.071 0.071

All Years 0.047 0.039 0.077 0.081 0.046 0.040 0.045 0.045 0.043 0.065 0.065 0.064

Single Channel Algorithm Applied to v–pol TB (SCA–V)

ubRMSE, m3 m−3 Mar Apr May Jun Jul Aug Sep Oct Nov All a.m. p.m.

2015 0.025 0.040 0.075 0.020 0.027 0.034 0.039 0.035 0.039 0.054 0.044
2016 0.035 0.038 0.090 0.047 0.051 0.048 0.031 0.024 0.030 0.053 0.058 0.047
2017 0.037 0.026 0.070 0.065 0.053 0.025 0.022 0.021 0.020 0.047 0.049 0.044
2018 0.060 0.021 0.042 0.051 0.032 0.027 0.035 0.039 0.059 0.054 0.057 0.051

All Years 0.045 0.037 0.067 0.067 0.043 0.038 0.035 0.038 0.042 0.051 0.055 0.047

Dual Channel Algorithm (DCA)

ubRMSE, m3 m−3 Mar Apr May Jun Jul Aug Sep Oct Nov All a.m. p.m.

2015 0.032 0.045 0.048 0.024 0.041 0.043 0.042 0.034 0.056 0.055 0.057
2016 0.039 0.042 0.076 0.046 0.055 0.057 0.034 0.027 0.041 0.067 0.068 0.065
2017 0.050 0.034 0.070 0.038 0.053 0.042 0.031 0.023 0.028 0.050 0.052 0.045
2018 0.067 0.030 0.050 0.055 0.040 0.040 0.041 0.039 0.074 0.059 0.058 0.060

All Years 0.054 0.044 0.064 0.056 0.047 0.050 0.051 0.046 0.058 0.059 0.060 0.058

The differences between SCA and DCA bias and the large inter-annual variability in the transition
between spring/fall and summer indicate that vegetation parameterization plays a major role in L2SM
errors. In order to retrieve soil moisture, the TB measured by SMAP must be corrected for the effect
of vegetation. This correction is made using a parameter called the vegetation optical depth (VOD)
which characterizes attenuation of microwave radiation by vegetation. The times of largest ubRMSE
correspond with the period when the climatological vegetation used by both SCA is potentially
out-of-sync actual crop growth. SMOS Level 2 VOD (L2VOD), to which we assume SMAP L2VOD
is similar, is proportional to corn and soybean development in the Corn Belt and therefore deviates
from the climatological VOD due to annual variations in weather and farm management decisions [8].
Figure 2 presents a sample timeseries of the climatological VOD used by the SCA to correct for the
effect of vegetation and the L2VOD retrieved by the DCA during soil moisture retrieval. During 2015,
the sample year used for Figure 2, increases in climatological VOD preceded the corresponding L2VOD
by more than two weeks during June and July. Section 5.1 addresses potential concerns for both the
L2VOD and the climatological VOD as applied to the Corn Belt in more detail.
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Figure 2. Timeseries of climatological vegetation optical depth (VOD) and retrieved L2VOD during
2015 for the South Fork EASE09 cell. The dashed line is the seven-day median value of L2VOD centered
on each date.

4. SMAP L2SM Algorithm

SMAP L2SM retrievals, regardless of SCA or DCA, are obtained by minimizing the difference
between SMAP-observed TBp and that simulated by the zeroth-order radiative transfer model
commonly known as the τ − ω model [21]. In addition to modelling bare soil, the τ − ω model
characterizes canopy emission and attenuation (τ) as well as scattering by vegetation (ω). TBp is
simulated in Equation (5) as the summation of radiation emitted from the soil and attenuated by
the canopy (Equation 5a), radiation emitted upwards from the canopy (Equation 5b), and radiation
emitted downwards from the canopy that reflects off the soil surface and travels back through the
canopy (Equation 5c) [22–24]:

TBp = Tsoil

(
1− RGp

)
γ (5a)

+ Tveg(1−ω)(1− γ) (5b)

+ Tveg(1−ω)(1− γ)RGp γ. (5c)

The assumption is made that, at SMAP overpass times, the soil temperature, Tsoil, and canopy
temperature, Tveg, are approximately the same and can be represented by an effective surface
temperature, Teff [21]. TBp is modeled in Equations (6)–(10) as a function of: Teff; VOD, which is
sometimes referred to as nadir τ; incidence angle, θ (SMAP: θ = 40◦); soil reflectivity, RGp ; and the
single scattering albedo, ω. RGp is a modification of the Fresnel reflectivity, Rp, itself dependent on the
soil dielectric constant (relative permittivity), εr, to account for soil surface roughness and the angular
sensitivity of roughness effects via the dimensionless coefficients HR and NRp. It is εr that varies
according to soil moisture: wet soil has an increased εr, and consequently a higher Rp and smaller TBp ,
than a dry soil with the same physical characteristics:

TBp = Teff

[
γ
(

1− RGp

)
+ (1−ω)(1− γ)

(
1 + γRGp

)]
, (6)

γ = e−VOD/ cos θ , (7)

RGp = Rpe−HR (cos θ)NRp
, (8)
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Rh =

∣∣∣∣∣cos θ −
√

εr − sin2 θ

cos θ +
√

εr − sin2 θ

∣∣∣∣∣
2

, (9)

Rv =

∣∣∣∣∣ εr cos θ −
√

εr − sin2 θ

εr cos θ +
√

εr − sin2 θ

∣∣∣∣∣
2

. (10)

In order for us to assess the impacts of varying surface parameterizations in SMAP L2SM, we must
simulate L2SM. For each overpass, TBp is simulated via Equations (6)–(10) for soil moisture between
0.02 m3 m−3 and porosity (constraints given by [14]). L2SM is then retrieved as the soil moisture that
globally minimizes the cost functions given by Equation (11) or Equation (12) for the SCA or DCA,
respectively. If the optimized ∆TB exceeds 1.5 K, we consider the retrieval to be unsuccessful, and it is
discarded. We are able to replicate SMAP L2SM SCA retrievals in the South Fork: the simulated SCA-H
is 0.00018 ± 0.00009 m3 m−3 wetter than SMAP L2SM while the SCA-V is 0.00019 ± 0.00007m3 m−3

drier. Our DCA replications are not as good as the SCA in accuracy and precision; the simulated DCA
L2SM is 0.00065 ± 0.0002m3 m−3 wetter than SMAP L2SM. Imperfect replications are likely due to
differences in optimization (e.g., cost function, local vs global approach) between our simulations and
the operational product:

∆TBp =
∣∣∣sim TBp − obs TBp

∣∣∣ , (11)

∆TB =

√(
∆TBh

)2
+ (∆TBv)

2. (12)

5. SMAP L2SM Parameterizations

We found that the SMAP L2SM bias and ubRMSE vary seasonally in the South Fork CVS. The bias
exhibits distinct patterns dependent on the presence of vegetation while the ubRMSE peaks during
the transition period between bare rough soil and annual crop growth. We hypothesize that incorrect
treatment of parameters that vary seasonally in Equations (6)–(10) is the cause of observed errors.
We therefore assessed the current parameterizations of: surface temperature and VOD; ω and soil
surface roughness, which have the potential to change seasonally; and the static soil clay fraction.
The following subsections present a discussion of each of these parameterizations as currently utilized
for SMAP L2SM retrievals in croplands and their physical realism in the South Fork.

5.1. Vegetation Optical Depth (VOD)

SCA retrievals of SMAP L2SM are reliant on climatological vegetation optical depth (VOD).
However, VOD varies intra- and inter-annually in agricultural regions such as the South Fork due
to both farm management decisions that determine planting date (e.g., antecedent meteorological
conditions, tillage practices, and cultivar [25]) and on temperature during crop development. This is
due to corn and soybean development being governed by the accumulation of thermal time (e.g., [26]),
a measure of daily average temperatures within the range hospitable to crop growth. There may
additionally be long-term differences between VOD and the current climatology as multi-decadal
analyses of crop phenology in the Corn Belt indicate that planting is occurring earlier and growing
seasons are longer than they were thirty years ago [25,27].

As shown in Equations (5) and (7), TBp increases as VOD increases (assuming no other changes).
If climatological VOD is too low, as was the case during spring 2012 when significantly warmer than
normal temperatures accelerated planting and emergence [28], then Equations (6)–(10) would retrieve
a dry-biased soil moisture. Conversely, the use of a climatological VOD during a spring and early
summer with delayed crop development would result in a wet bias during that period. This time
corresponds with when SMAP L2SM SCA retrievals are noisiest in the South Fork.

The DCA attempts to bypass issues associated with climatological VOD by simultaneously
retrieving L2SM and L2VOD. The sample timeseries of VOD previously given in Figure 2 illustrates
how the timing of SMAP DCA-retrieved L2VOD, which presumably represents the “actual” VOD,
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can differ from the SCA climatology during a single year. While retrieval of L2VOD by SMAP
is theoretically possible, if TBh and TBv are not fully independent, then there may not be enough
information available when only a single incidence angle is sampled [29]. Furthermore, variations in
soil surface roughness are interpreted by the DCA as L2VOD due to their producing the same changes
to observed TBp at L-band [30]. This is observed in the sample SMAP L2VOD timeseries in Figure 2,
where VOD increases during the spring and fall despite the lack of significant vegetation. Limitations
aside, L2VOD provides useful information about the status of crop progress. SMOS L2VOD, similar
to SMAP but retrieved using a large range of observed θ, peaks after having accumulated a thermal
time of approximately 1000 ◦C · day post-planting in the U. S. Corn Belt [8]. This occurs between the
second and third reproductive developmental stages of corn when Mw, defined as the mass of water
in vegetation tissue per ground area, of the mixed corn and soybean canopy is at a maximum [8].

5.2. Effective Surface Temperature

How realistic is the assumption that Tsoil ≈ Tveg at SMAP overpass times? This assumption is
made so that Teff, dependent only on soil temperature, can be used to approximate the temperature
of the entire surface viewed by SMAP. We compared flux tower observations of soil and vegetation
temperatures at a central location in the South Fork for both corn (2015, 2018) and soybean (2015).
Sampling was provided by Forrest Goodman (USDA, National Laboratory for Agriculture and the
Environment) in 2015 and by Richard Cirone (Iowa State University, Department of Agronomy) in
2018. Figure 3 illustrates relevant temperature observations. In addition to the more traditional
infrared skin temperature, Tskin, the air temperature within the canopy, Tveg, was observed. Vertical
temperature gradients in fully-grown corn are ≈1 K [31]; this is accounted for in Tveg sampling by
vertically centering the observation within the canopy. As such, observations of Tveg are limited to
closed canopy periods (June–September). Soil temperature, Tdepth, was sampled at 6 cm in 2015 and
9 cm in 2018.

Tskin

Tveg

5 cm

10 cm
Tdepth

Figure 3. Vegetation and soil temperatures observed by flux towers in the South Fork. Tdepth was
located at 6 cm in 2015 (�) and 9 cm in 2018 (•).

Table 3 presents the difference between Tveg and Tdepth in corn and soybean for SMAP retrievals
in June–September. For both crop types, Tveg averages colder than Tdepth for morning overpasses
and warmer for evening. This is consistent with previous investigation of vertical temperature
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gradients in a corn field that found the canopy was, on average, 2.5 K colder than the 4.5 cm soil
temperature (shallower than Tdepth) at 6:00 a.m. solar time and 0.75 K warmer at 6:00 p.m. solar
time [31]. The 2015 comparison of Tveg and Tdepth shows a slightly smaller difference (less negative)
for morning overpasses and a larger (warmer) difference in the evening than observed in 2018; this
is due to the discontinuity in installation depth. The deeper you observe soil temperature, the more
diurnal variations are dampened from those of the soil surface [32]. The 2015 Tdepth, inserted at 6 cm,
is therefore cooler for morning overpasses and warmer in the evening as compared to the deeper 9 cm
sampling of 2018.

Table 3. Difference between vegetation canopy temperature, Tveg, and soil temperature, Tdepth, in corn
and soybean, where Tdepth is 6 cm in 2015 and 9 cm in 2018 as illustrated in Figure 3. Data is limited to
SMAP overpass times in June–September.

Tveg – Tdepth, K

Corn Soybean

a.m. p.m. a.m. p.m.

6 cm (2015) −2.1 2.3 −1.9 0.6
9 cm (2018) −2.5 1.7

While Tsoil 6≈ Tveg at SMAP overpass times in the South Fork, recall that Teff is meant to represent
the combined effect of the two temperatures on TBp . Teff is defined by Equation (13) via a modified
Choudhury model [33] as a function of the GEOS-5 0 to 10 cm and 10 to 30 cm layer temperatures (TSL1
and TSL2, respectively), a coefficient, C, that weights the relative contributions of TSL1 and TSL2, and a
bias correction factor, K [34]. Teff is reported for each SMAP overpass in the SPL2SMP_E product:

Teff , K [TSL2 + C (TSL1 − TSL2)] . (13)

In version 2 of the SPL2SMP_E (CRID: R16xxx), K = 1.02 for non-forest land classes, C = 0.246 for
morning overpasses, and C = 1 for evening overpasses [34]. At the beginning of the SMAP mission, K
was not a component of Equation (13) (equivalently K = 1) and C = 0.246 for all L2SM retrievals [21].
K = 1.02, which warms Teff, was prompted by an observed cold bias in the GEOS-5 soil temperature
at CVSs. It is also intended to address any potential mismatch between the GEOS-5 modeled soil
layers and the layer of soil contributing to the temperature of the surface that SMAP views. Again,
while calculated using modeled soil layer temperatures, Teff is not a physical soil temperature and is
intended to represent both the vegetation canopy and the soil layer observed by the SMAP radiometer.
The value of K = 1.02 for non-forest land classes was derived by minimizing the difference between
the baseline TBv and that simulated via the SCA-V (personal communication, Steven Chan, NASA Jet
Propulsion Laboratory).

The difference between SMAP Teff and “network Teff,” as well as the differences between SMAP
Teff and observed in situ depths, are presented in Table 4. Network Teff is calculated using Equation (13)
and South Fork in situ measurements, where TSL1 is the soil temperature at a depth of 5 cm, TSL2 is the
temperature at 20 cm, and both K and C are parameterized as given in Table 4. The correspondence
between GEOS-5 temperatures (and thus TSL1 and TSL2) and South Fork in situ soil temperatures is
shown in Figure 4. The period was limited to April 2015–November 2017 (excluding DJF) as 2017 is
the last full year of SPL2SMP_E version 1 retrievals.
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GEOS-5 SL1

GEOS-5 SL2

5 cm

10 cm

20 cm

50 cm

Figure 4. Soil depths observed by the permanent edge-of-field stations in the South Fork compared
with GEOS-5 soil layers used for TSL1 and TSL2 in the calculation of SMAP Teff.

Table 4. Difference between SMAP Teff and South Fork soil temperature for April 2015–November 2017
(excluding DJF).

SMAP Teff —South Fork In Situ Temperature, K

SPL2SMP_E, v1 SPL2SMP_E, v2 Proposed Teff

K = 1 K = 1.02 K = 1
C = 0.246 C = 0.246 C = 0.246 C = 1 C = 0.246 C = 1

a.m. p.m. a.m. p.m. a.m. p.m.

network Teff −1.1 −0.7 −1.2 0.6 −1.2 0.6
5 cm −0.7 −1.7 5.0 6.4 −0.7 0.6
10 cm −0.9 −1.3 4.8 6.9 −0.9 1.1
20 cm −1.3 −0.3 4.4 7.8 −1.3 2.0
50 cm −1.1 0.6 4.6 8.7 −1.1 2.9

In version 1 of the SPL2SMP_E (CRID: R14xxx–R15xxx), when K was not a part of Teff calculation,
the difference between SMAP Teff (computed using GEOS-5 temperatures) and network Teff in Table 4
is similar to the difference between SMAP Teff and the raw in situ measurements at 5, 10, 20, and 50 cm:
all are within ±2 K. In version 2 of the SPL2SMP_E (CRID: R16xxx), SMAP Teff (computed using
GEOS-5 temperatures) is much warmer than the raw in situ measurements at 5, 10, 20, and 50 cm (by 4
to 9 K). This could only be realistic for the combined soil-vegetation surface if Tveg was significantly
hotter (by at least 10 K) than Tsoil. This is contrary to our flux tower observations that show Tveg < Tsoil
for morning overpasses and Tveg only 1 to 2 K warmer than Tsoil for evening overpasses. Evening
overpasses were warmed more in version 2 as the use of C = 1 results in Teff being calculated entirely
based on TSL1 rather than weighting towards TSL2 as with C = 0.246.

We propose a modification to Teff that is more consistent with in situ network soil temperatures
and would better approximate the differences between Tveg and Tsoil at SMAP overpass times. This can
be done by reverting to K = 1 (i.e., reversing the SPL2SMP_E adoption of K = 1.02) but retaining
the SPL2SMP_E version 2 change to C = 1 for evening overpasses. The cold bias in Teff that would
return when K = 1 has a similar numerical effect of a colder morning canopy on surface temperature.
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While this would also make evening Teff colder, utilizing C = 1 in Equation (13) weights Teff towards
the warmer evening TSL1. The difference between our proposed Teff and both the network Teff and
observed in situ depths is shown in column three of Table 4. As desired, SMAP Teff (which should
account for the effect of both soil and vegetation temperatures) is about 1 K cooler than the network
Teff (computed using only soil temperatures) at the AM overpass, and about 1 K warmer at the PM
overpass. This method requires only the ancillary data already provided in the SPL2SMP_E. It is most
applicable to overpasses that occur during vegetated periods. A truly representative approach may
be to utilize separate Tveg and Tsoil during L2SM retrieval, where Tveg could be approximated by the
GEOS-5 Tsurf, which was a component of Teff calculation prior to launch [21], and Tsoil = Teff.

Figures 5–7 present the effect of adopting the more realistic modified Teff in the South Fork as
quantified by the bias, ubRMSE, and R2, respectively. Decreasing Teff dries monthly biases for both SCA
and the DCA: mean SCA retrievals are at least 0.03 and as much as 0.12 m3 m−3 too low as compared
to in situ South Fork measurements, and DCA retrievals vary from about zero bias in the fall and early
spring to 0.10 m3 m−3 too low in the middle of the summer. This occurs because the retrieval algorithms
now calculate a higher εr for the same observed TB. While this is worse performance in terms of bias,
the monthly ubRMSE decreases, particularly for both SCA in May/June when they previously far
exceeded the SMAP mission accuracy goal. This is likely due to K = 1.02 amplifying any noisiness in
GEOS-5 temperatures by an additional 2%. The coefficient of determination significantly improves
for the DCA (its mean value is higher in every month) when the modified Teff is used; however, large
inter-annual variations remain for all three algorithms. R2 does decrease slightly for the SCA when
the modified Teff is used during retrieval; however, this is not surprising when you consider that the
K = 1.02 depth correction scheme was intended to optimize TBv .

Figure 5. Mean and standard error of monthly bias for SMAP L2SM version 2 and that reprocessed
using our proposed Teff in the South Fork during 2015–2018.

Figure 6. Mean and standard error of monthly ubRMSE for SMAP L2SM version 2 and that reprocessed
using our proposed Teff in the South Fork during 2015–2018.
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Figure 7. Mean and standard error of monthly coefficient of determination (R2) for SMAP L2SM
version 2 and that reprocessed using our proposed Teff in the South Fork during 2015–2018.

The significant difference between Teff and observed temperatures at all in situ depths leads to
the conclusion that K = 1.02 does not produce a physically realistic surface temperature. Flux tower
observations of soil temperature and Tveg indicate that using K = 1 to calculate Teff, in conjunction
with using C = 1 for evening overpasses and the slight cold bias of GEOS-5 soil temperature in the
South Fork, reproduces the effect of having a cooler canopy in the morning but a warmer canopy
in the evening. While retrieving L2SM with the modified Teff does degrade the bias in the South
Fork, the combination of improved ubRMSE for both SCA and DCA and the significantly increased
coefficient of determination for DCA can be interpreted as an overall improvement in retrieval quality
if we consider that the bias may be caused by some other ancillary factor.

An additional consideration of modifying Teff is how it affects retrieved L2VOD. The VOD
produced during our DCA retrievals using the proposed Teff will hereafter be referred to as
“reprocessed L2VOD.” Figure 8 presents a comparison of L2VOD in the South Fork during 2017 as
retrieved by both versions 1 and 2 of the SPL2SMP_E product, the reprocessed L2VOD, and VOD from
SMOS. When Teff was warmed dramatically in version 2 of the the SPL2SMP_E, the DCA-retrieved
L2VOD increased with it. This was problematic for those utilizing the vegetation product as the
operational L2VOD is now unrealistically large. L2VOD retrieved using our Teff decreases back to
values similar to those of the version 1 SPL2SMP_E and is in-line with the SMOS L2VOD in the
South Fork. The L2SM and L2VOD reprocessed with our modified Teff are publicly available for
EASE09 pixels in the state of Iowa as Supplementary Material.

5.3. Single Scattering Albedo

Scatter darkening, where TBp is reduced by radiation scattering within the canopy, occurs when
the size of plant components (e.g., stems, leaves, ears) is similar to the wavelength (SMAP: λ = 21 cm).
This effect must be considered in corn [35,36]. The components of soybean plants are much smaller
and as such there is relatively little scattering [36]. The τ−ω model, which assumes that the canopy is
a weakly scattering media, accounts for this via the ω parameter [37]. Non-zero values of ω inform
Equations (6)–(10) that Teff, and hence TBp , has been reduced by scattering.

The South Fork CVS is classified as entirely croplands by the MODIS-IGBP [3] and consequently
ω is parameterized as 0.05 [21]. While ω = 0.05 for SMAP, there have been several values of ω used
for L-band soil moisture retrieval in croplands. For example, while noting that certain crop types,
such as corn, can approach ω = 0.10, the SMOS L2 algorithm treats all “low vegetation” such as
croplands to be non-scattering (ω = 0) [38]. The SMOS-IC algorithm parameterizes stronger scattering
(ω = 0.12) [39]. The MT-DCA utilizes an ω retrieved from SMAP TBp timeseries; 0.04 ± 0.04 for
croplands pixels [40]. We simulated L2SM using ω = 0, 0.05 and 0.12 for the South Fork CVS to
determine the effect changing ω has on retrieval performance. Teff was calculated via our more
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physically realistic proposed method (Section 5.2). The resulting metrics are given in Table 5 for a crop
development subset of June–September, 2015–2018.

Figure 8. Comparison of raw and seven-day median L2VOD retrievals from the SPL2SMP_E product
(versions 1 and 2), L2VOD retrievals using our proposed Teff, and the SMOS L2VOD during 2017 for
the South Fork.

Table 5. L2SM metrics in the South Fork for ω =0, 0.05 and 0.12 during June–September, 2015–2018.

Bias, m3 m−3 ubRMSE, m3 m−3 R2

SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA

ω = 0 0.009 −0.004 −0.014 0.059 0.046 0.061 0.54 0.55 0.27
ω = 0.05 −0.044 −0.064 −0.077 0.053 0.055 0.051 0.54 0.50 0.48
ω = 0.12 −0.098 −0.119 −0.126 0.078 0.107 0.079 0.30 0.09 0.28

The June–September, 2015–2018 bias is smallest when ω = 0. The SCA-V additionally has the
least amount of noise and is more correlated when ω is small. The SMAP default for croplands,
ω = 0.05, results in drier soil moisture retrievals; however, this is more physically realistic than
parameterizing the annual crops as non-scattering. DCA performance in terms of ubRMSE and
R2 significantly improves with the increase to ω. Retrieving SMAP L2SM utilizing ω = 0.12 for
croplands, as is done in the SMOS-IC algorithm, worsens the dry bias and significantly degrades
ubRMSE and R2. In addition, using a larger value of ω reduces the number of soil moisture retrievals.
Only 42% (201 of 479 overpasses) of attempted SCA-V retrievals with ω = 0.12 are successful during
June–September, 2015–2018, while 91% (435 of 479) of attempted SCA-V retrievals are successful when
ω = 0. The SCA-H and DCA were both better able to optimize TB at ω = 0.12 with 83% (361 of 479)
of attempted retrievals being successful. Our attempted retrievals fail when the difference between
simulated and observed TB in the cost functions given by Equation (11) and Equation (12) is >1.5 K.

The difference between SCA-V and SCA-H behavior suggests that scattering effects in the
South Fork are lesser for v-pol than h-pol. While ω is often assumed to be unpolarized [41], several
tower-based experiments have found that ωh 6= ωv in agriculture. This would occur if scattering
plant structures appeared different when observed at h– and v–pol; for example, ωh > ωv for the
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REBEX-8x experiment in corn [35]. Table 5 indicates that lower values of ω result in the best soil
moisture retrievals as quantified by ubRMSE and R2.

5.4. Soil Texture

In soil, water molecules can either be mobile (free water) or tightly bound to the surface area of
particles (bound water) [42]. Bound water exhibits distinctly different dielectric properties than free
water at L-band [43]. The amount of bound water is determined by soil texture as characterized by
particle size distribution: the largest particles are sand (2 to 0.05 mm), the smallest are clay (<0.002 mm),
and those in between are silt. A predominantly clay soil has a much larger particle surface area,
and consequently more bound water, than a sandy soil. Inaccuracies in parameterized clay fraction
therefore result in errors in retrieved soil moisture as the bound water component is miscalculated.
Overestimation of clay theoretically results in wet-biased retrievals as the algorithms add more bound
water when calculating εr for high clay soils.

Dielectric mixing models simulate εr, the component of Equations (6)–(10) that allows for soil
moisture retrieval, as a function of soil moisture, texture, and temperature. SMAP L2SM is currently
retrieved using the Mironov model [44], although functionality exists for both the Dobson [45] and
Wang and Schmugge [46] models to be implemented if desired [34]. Utilizing the Mironov model,
which requires ancillary soil temperature and clay fraction, results in wetter global soil moisture
retrievals than the Dobson model [47]. The Dobson and Wang and Schmugge models additionally
require sand fraction and bulk density.

Figure 9 presents the sensitivity of L2SM retrieval to errors in the SMAP ancillary clay fraction for
a bare soil scenario (VOD = 0) with clay fractions within± 0.10 of the SMAP L1-L3 Ancillary Static Data
value of 0.31 in the South Fork. Moderately moist to saturated soils (tested: 0.25 and 0.40 m3 m−3) have
similar sensitivities while dry soils (tested: 0.10 m3 m−3) are less sensitive. This is due to there being
two distinct regions in εr sensitivity to soil moisture that are separated by a “transition soil moisture”
related to the wilting point [46]. The Dobson and Wang and Schmugge models are included in Figure 9
to illustrate how changing the dielectric model used during L2SM retrieval would affect the sensitivity
to clay for a soil whose sand fraction and bulk density are similar to that of the South Fork. While
both the Mironov and Wang and Schmugge models both behave as expected, with overestimation
of clay content resulting in wet-biased retrievals as theorized, the Dobson model exhibits an inverse
relationship. This was previously noted for South Fork soil textures and is likely due to the empirical
nature of dielectric mixing models [12]. We tested soil temperatures of 280, 290 and 300 K (Figure 9 was
produced for 300 K); temperature was not found to have a significant impact on the L2SM sensitivity
to clay fraction within this range.

The SMAP ancillary clay fraction is derived from STATSGO, the State Soil Geographic dataset [48],
over CONUS and posted to the EASE03 [49]. Figure 10 provides a subset of this map for the South Fork.
The 33 km radiometric domain for EASE09 cell [row:264, col:928] and the in situ stations presented
in Figure 1 are overlaid for reference. While SMAP L2SM is posted to the EASE09 grid, the clay
fraction utilized during retrieval is that of the radiometric domain (personal communication, Narendra
Das, NASA JPL). The SMAP clay fraction for the 33 km domain over the South Fork is 0.31. The Soil
Survey Geographic Database (SSURGO), which has a finer scale than STATSGO (100 to 500 m vs
2.5 km), indicates a clay fraction of 0.27 for the South Fork (personal communication, Alex White, USDA
ARS Hydrology and Remote Sensing Laboratory). The SSURGO value of 0.27 has been used in previous
modeling of the South Fork CVS [17]. If the “true” clay fraction in the South Fork is similar to the
SSURGO value, then Figure 9 suggests that SMAP L2SM retrievals for bare soil may currently be
0.004 to 0.007 m3 m−3 wetter than they should be. The impact would be lesser for vegetated periods.
Interestingly, while the SMOS mission utilizes the same ancillary dataset as SMAP, albeit posted
to different grid with ≈4 km resolution [50], the clay fraction of its map is 0.25 for the South Fork
domain [12], which is closer to that derived from SSURGO.
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Figure 9. Sensitivity of L2SM retrieval to over- and under-estimation of clay fraction (+ and − errors,
respectively) for bare soil utilizing the Mironov, Dobson, and Wang and Schmugge dielectric mixing
models to simulate εr. Both dry (0.10 m3 m−3) and moist (0.25 m3 m−3) soils with a temperature of
300 K are included.

Figure 10. STATSGO-derived clay fraction as used by SMAP in the South Fork. The outlined region
corresponds with the 33 km radiometric domain and in situ stations presented in Figure 1.
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5.5. Soil Surface Roughness

Soil surface roughness, defined as mm-scale variations in soil surface height, is rarely smooth
in agricultural fields and is dependent on field management activities such as tillage [51]. This is
particularly important when modelling TBp as a rough soil is less reflective, and thus has a higher
emissivity, than a smooth soil with the same characteristics [52,53]. Roughness additionally effects
the L-band sampling depth as smooth soils have a shallower sampling depth than equivalent rough
soils during dry conditions [54]. SMAP L2SM retrievals account for roughness in Equation (8) as an
exponential decay of the specular reflectivity, Rp, characterized by non-dimensional coefficients HR
and NRp; for croplands, HR = 0.108 [21] and NRp = 2 for both h- and v-pol [34].

Tillage, prevalent in the South Fork [55], increases soil surface roughness as residue (dead plant
material) from the prior crop is churned into the upper layer of soil. If the South Fork soils are,
on average, rougher than the relatively smooth soil parameterized, then SMAP L2SM would be
biased dry, particularly during periods of bare soil. This correlates with observed dry biases for both
the SCA-H and SCA-V; however, the DCA does not exhibit a dry bias during the bare soil period
(March–May and October–November). That said, the DCA-retrieved SMAP L2VOD is likely masking
the effect of a too-smooth soil parameterization. Changes in soil surface roughness appear the same
at L-band as changes in L2VOD [30]. Therefore, when HR is assumed to be static, as is the case in
SMAP L2SM retrieval, any increase to surface roughness is interpreted by the DCA as increasing
vegetation. This is visible in the sample L2VOD timeseries, previously given in Figures 2 and 8, where
L2VOD is unrealistically large during the non-vegetative spring and late-fall months and subsequently
wets L2SM retrievals similar to how assuming a rougher soil would.

L-band retrievals of soil moisture are especially sensitive to parameterization of roughness [41].
There are several methods to convert physical observations (e.g., standard deviation of soil surface
height) to the non-dimensional HR [41,52,56]. Attempts to retrieve HR directly, either from tower-based
or satellite observations of TBp , have produced variable results with HR ranging from near 0 to <2 for
bare soil and cultivated croplands ([56–59] and others). SMAP documentation does not recommend a
particular method for calculating HR.

6. Summary

Seasonal analysis of SMAP L2SM performance in the South Fork reveals that patterns in the
bias, for both SCA and DCA, follow distinct periods of bare soil (spring and fall) and annual crop
development (summer). The ubRMSE is worst during May/June when crops emerge and rapidly
begin to obscure the soil surface. We evaluated the parameterizations of Teff, VOD, ω, clay fraction,
and soil surface roughness to determine if they are physically realistic for the South Fork. The main
results are as follows:

• The Teff used in version 2 of the SPL2SMP_E is 4 to 9 K warmer than any observed soil depth in
the South Fork. Using K = 1 to calculate Teff is more physically realistic.

• The assumption that Tsoil and Tveg is equivalent at SMAP overpass times is not valid in corn and
soybean canopies; however, the overall impact on TB can be mitigated during Teff calculation.

• Climatological VOD cannot reliably describe vegetation growth in the Corn Belt.
• Increasing ω to account for scattering in corn dries L2SM retrievals, worsening observed dry

biases in SMAP L2SM during the summer months.
• The current clay fraction may be slightly over-estimated, but its impact on SMAP L2SM retrieval

is minimal.
• Observed SMAP L2SM biases support the idea that the current HR is too smooth for the

South Fork, consistent with the tillage practices of the region.

Table 6 summarizes our current understanding of SMAP soil moisture retrieval issues in the Corn
Belt, and suggests the next steps.
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Table 6. Current understanding of SMAP soil moisture retrieval issues in the U.S. Corn Belt.

Issue Understanding Next Steps and Importance

radio-frequency
interference (RFI)

RFI is minimal in most, if not all, of the
Corn Belt (this work and [12]).

Continue to use RFI mitigation
techniques (minor impact).

in situ soil moisture
network representativeness
(upscaling)

The 20 South Fork CVS stations are
adequate for pixel characterization
since as few as 5 indicate a SMAP dry
bias [12].

Continue to improve station
weighting function (moderate impact).

effective temperature Teff
in retrieval algorithm

Teff in L2SM version 2 is 5-9 K too high
as compared to in situ soil
temperature (this work).

Use version 1 Teff (major impact).

soil–vegetation canopy
temperature gradient

Tsoil 6= Tveg at 6 a.m. and 6 p.m. (this
work and [31]).

Consider separate Tsoil and Tveg in
retrieval algorithm or a modified Teff
(moderate impact).

sampling depth mismatch Soil layer SMAP “sees” is different
than what is observed by in situ
sensors, which increases ubRMSE but
not bias [20].

Take into account when assessing
validation statistics (minor impact).

clay fraction Different values used for South Fork
CVS: STATSGO = 0.31; SSURGO =
0.27; SMOS = 0.25 (this work).

Resolve differences (minor impact).

soil dielectric model Mironov [44] and Wang &
Schmugge [46] models result in dry
biased retrievals if clay is
underestimated. Dobson model [45]
exhibits the opposite behavior (this
work and [12]).

Resolve differences (minor impact).

soil surface roughness Soil roughness is not static: rainfall,
tillage, and other soil management
activities modify soil roughness
throughout the year [30,51].
Roughness effect depends on soil
moisture [56].

Use the DCA and allow roughness
parameter HR to vary during
bare-soil periods (major impact).

single-scattering albedo of
vegetation canopy

Vegetation canopy volume scattering
is significant [35]; non-zero values of
ω increase dry bias, lower values of ω
result in lower ubRMSE and higher R2

(this work).

Determine a satellite-scale ω,
consider how it may change with
crop phenology (major impact).

vegetation optical depth VOD varies from year-to-year due to
weather and farm management
activities [8].

Use the DCA and allow VOD to vary
when crops are present
(major impact).

vegetation transmissivity Sensitivity to soil moisture is likely
higher than predicted by current
retrieval model [31]; allowing multiple
scattering in vegetation canopy would
reduce dry bias (this work and [60]).

Use a new radiometric forward
model in the retrieval algorithm
(major impact).

7. Conclusions

We hypothesized that a seasonal analysis of SMAP L2SM retrievals, rather than the annual
analysis performed by prior investigations, is more appropriate for the South Fork Core Validation
Site in the U.S. Corn Belt as there are two distinct land cover periods: annual crops in the summer
and bare soil in the spring and fall. The overall annual bias, as compared to the South Fork in situ
soil moisture network, is −0.018 m3 m−3 (retrievals are too dry) for the current baseline algorithm
(SCA-V SMAP-L2SM version 2). However, individual monthly biases for the three retrieval algorithms
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approach or exceed ± 0.10 m3 m−3, and there is a clear seasonal pattern in the validation metrics.
The two single-channel retrieval algorithms (SCA-V and SCA-H) are exceptionally dry during the
spring and fall months, become less biased near emergence and harvest, and are dry again during
the summer when vegetation is present. The dual-channel algorithm (DCA), which utilizes both
polarizations of observed brightness temperature, performs similarly during the summer but produces
retrievals slightly wetter than the in situ network during bare soil periods. The seasonal behavior of
DCA performance is similar to that of SMOS L2SM in the South Fork [12]. These two distinct behaviors
between the SCA and DCA are at least partly due to differences between climatological VOD used in
the SCA and L2VOD retrieved by the DCA. The unbiased root-mean-square-error (ubRMSE) of soil
moisture retrievals are near the SMAP mission accuracy guidelines of ± 0.04 m3 m−3 for both SCA,
except during May and June when it is 0.06 to 0.08 m3 m−3, precisely when the transition from bare
soil to annual crops occurs.

We found several parameterizations that can be improved for the South Fork. The effective
radiating temperature Teff in the SMAP L2SM version 2 retrieval algorithm produces unrealistically
warm temperatures when compared to both in situ network soil temperatures and temporary flux
tower samples of vegetation and soil temperature. Reverting to the version 1 effective temperature
(using K = 1 instead of K = 1.02) brings temperatures back in line, and slightly adjusting a parameter
(C = 0.246 for morning overpasses and C = 1 for evening overpasses) numerically mimics the
observed differences between canopy temperatures and that of the soil. While L2SM retrievals utilizing
this modified Teff worsen the observed dry bias in the South Fork, ubRMSE improves for all algorithms
and the coefficient of determination indicates a stronger relationship between observed and retrieved
values of soil moisture. When using our proposed Teff for 2015–2018, the baseline SCA-V, which has a
dry bias of 0.07 ± 0.01m3 m−3 during March, April, and November, improves to 0.05 ± 0.01m3 m−3

during the transition months of May/June and September/October, and then worsens to 0.10 ±
0.01m3 m−3 too dry during July and August. It has an ubRMSE of 0.04 ± 0.01m3 m−3. The DCA has
essentially no bias in March, October, and November, a small dry bias of 0.02 ± 0.01m3 m−3 in April
and May, and a large dry bias of 0.06 to 0.10 m3 m−3 during the summer months. The DCA exceeds the
0.04 m3 m−3 ubRMSE goal in March, May, June, and November.

Seasonal patterns in SMAP L2SM bias (i.e., the extreme SCA dry bias in periods of bare soil)
correspond well with the theoretical effect of parameterizing a too-smooth soil surface. Additionally,
while SMAP algorithms employ a static soil roughness parameter (HR), L-band roughness is known
to change both inter- and intra-annually in response to rainfall, farm management activities, and soil
moisture. We therefore believe that the “next step” in improving L2SM in the South Fork is to utilize
a dynamic soil surface roughness during bare soil periods. This may also reduce the peak ubRMSE
observed during May/June when the South Fork is transitioning from a period when soil surface
roughness effects are dominant to one characterized by the development of corn and soybean. The clay
fraction and single scattering albedo may also need adjustment; however, the effect of such a small
change in clay is essentially negligible, and there is little consensus on appropriate satellite-scale values
for ω in a mixed corn and soybean pixel. The cause of the dry bias during the heavily vegetated
months, observed in all three retrieval algorithms, remains unknown; however, an under–estimation
of VOD would produce the same effect. Our findings make it clear that a new retrieval algorithm that
can account for changing soil roughness and vegetation conditions is needed.

Supplementary Materials: SMAP L2SM and L2VOD reprocessed from the version 2 of the SPL2SMP_E with our
modified Teff are available for all EASE09 pixels in the state of Iowa at https://iastate.box.com/v/SMAP-L2E-
REPR-Teff-IowaUSA.
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