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Abstract: Precise point positioning (PPP) has been used for decades not only for general positioning
needs but also for geodetic and other scientific applications. The CNES-CLS Analysis Centre (AC) of
the International GNSS Service (IGS) is performing PPP with phase ambiguity resolution (PPP-AR)
using the zero-difference ambiguity fixing approach also known as “Integer PPP” (IPPP). In this
paper we examine the postprocessed kinematic PPP and PPP-AR using Galileo-only, GPS-only and
Multi-GNSS (GPS + Galileo) constellations. The interest is to examine the accuracy for each GNSS
system individually but also of their combination to measure the current benefits of using Galileo
within a Multi-GNSS PPP and PPP-AR. Results show that Galileo-only positioning is nearly at the same
level as GPS-only; around 2–4 mm horizontal and aound 10 mm vertical repeatability (example station
of BRUX). In addition, the use of Galileo system—even uncompleted—improves the performance of
the positioning when combined with GPS giving mm level repeatability (improvement of around 30%
in East, North and Up components). Repeatabilities observed for Multi-GNSS (GPS + GAL) PPP-AR,
taking into account the global network statistics, are a little larger, with 8 mm in horizontal and
17 mm in vertical directions. This result shows that including Galileo ameliorates the best positioning
accuracy achieved until today with GPS PPP-AR.

Keywords: GNSS; GPS; Galileo; precise point positioning (PPP); PPP with phase ambiguity resolution
(PPP-AR); integer PPP (IPPP); ambiguity resolution; zero-difference ambiguity fixing; multi-GNSS

1. Introduction

The precise point positioning method (PPP) [1] is a well-known and widely used method for
positioning using zero-difference observations. This method is used for calculating the coordinates
of a station without the need of a reference station nearby as a control station. It has been used in
numerous scientific applications; namely general static positioning [2] for local or global networks,
kinematic positioning [3], time transfer [4], etc. The PPP accuracy reaches the highest levels once the
carrier phase ambiguities are resolved—the so-called PPP-AR (PPP with ambiguity resolution) or
less frequently integer PPP (IPPP). The French Space Agency, Centre National d’Etudes Spatiales
(CNES) and the Collecte Localisation Satellites company (CLS Group) Analysis Centre (AC) of the
International GNSS Service (IGS) use an undifferenced ambiguity resolution solution for GPS [5] and
Galileo [6]. Such a method can be applied also for the determination of precise orbits and integer
recovery clocks (IRC). In order to apply this method for PPP and PPP-AR for GPS and Galileo, satellite
orbits and IRC products as well as satellite biases have to be consistent. In our study they are taken
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from the CNES-CLS AC. There are two conditions for this method: for PPP or PPP-AR, orbit and
clock products have to be consistent and of the best quality; for PPP-AR IRCs and associated methods,
biases need to be available for the products used. For the first condition, any precise orbit like the ones
made available by the International GNSS Service (IGS) or Analysis Centers (ACs) in the frame of the
Multi GNSS pilot project (MGEX) [7] can be used. For the second we can use the products delivered
routinely by the CNES-CLS AC for GPS [8] and Galileo [6].

So far there are already publications giving the possibilities of Galileo positioning [9] or studying
the performance the benefit of using multi-GNSS measurements in PPP [7,8]. In a previous study [6] we
presented the zero-differences approach used to compute IRC products for Galileo and GPS. Recently
we presented the positioning capabilities of Galileo-only solutions [10]. In this article we examine
the performance and precision of PPP and PPP-AR in a comparison of Galileo-only, GPS-only and
GPS + Galileo AR solutions.

This study is done using the GPS and the incomplete Galileo constellation. As of 2019, the Galileo
constellation comprises 26 satellites in total (4 In-Orbit Validation (IOV) and 22 Full Operational
Capability (FOC)). Two of the FOC satellites are in eccentric orbits, one IOV is not available and one
FOC is not usable. The total number of usable satellites is 22: 3 IOV and 21 FOC satellites [11]. The full
constellation is only 4 satellites away and it is scheduled for 2020 [12]. The following hypothesis is
examined and verified: if GPS and Galileo measurements are of the same quality, then the simultaneous
use of the two systems will give better accuracy than when using each system separately. If the two
systems are compatible, then the number of measurements is nearly double than in a single-system
solution, and the number of parameters (apart from biases for the different frequencies used) is
the same.

This publication is organized in the following sections. Firstly, the undifferenced ambiguity
resolution and PPP-AR processing is briefly presented. Section 3 is devoted to the experiments, the
processing and the results. Finally, in Section 4, some conclusions are given together with suggestions
for further work and perspectives.

2. Materials and Methods

The PPP with ambiguity resolution processing has the advantage that the processing can be done
directly at the user level without any reference station around. The requirement, however, is that
precise and consistent satellite products (derived from a global network of stations) must be available.
In this study products are taken from the CNES-CLS AC: satellite orbit file (.sp3), clock file (.clk) and
the Wide-Lane satellite biases (.wsb) (given either in the header of the clock files or taken from the
CNES/CLS portal. Files Wide_lane_GAL_satellite_biais.wsb and Wide_lane_GPS_satellite_biais.wsb
are available at ftp://ftpsedr.cls.fr/pub/igsac/).

The used zero-difference ambiguity fixing method [8,13] equation model bellow is given for the
pseudorange (code) and carrier phase measurements for two frequencies:
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where:

• Ps
r,i, Ps

r, j are the code measurement at receiver r from satellite s on frequency i or j (m)

• Ls
r,i, Ls

r, j are the phase measurement at receiver r from satellite s on frequency i or j (m)

• ρs
r is the geometric distance between receiver and satellite (m)

• ∆t (∆t = δtr − δts) is the clock correction related to the satellite (δts) and the receiver (δtr) with
respect to the synchronization to the GPS time (s)

• Ts
r is the troposphere delay (m)

• Is
r is the ionosphere delay (m)

• Es
r,i, Es

r, j are the code measurement errors at receiver r from satellite s on frequency i or j (m)
including all sources of code errors: multipath and noise.

• fi, f j are the carrier frequency i or j (Hz)
• c is the speed of light in vacuum (m/s)
• λi, λ j are the nominal wavelength of the carrier frequency i or j (m)
• ϕs

r,i, ϕ
s
r, j are the carrier phase measurement at receiver r from satellite s on frequency i or j (cycles)

• Ns
r,i, Ns

r, j are the integer carrier phase ambiguity at receiver r from satellite s on frequency i or j

• Ws
r is the carrier phase wind up effect (cycles)

• bs, br are the code phase biases of satellite and receiver (m)
• βs, βr are the carrier phase biases of satellite and receiver (m)
• εs

r,i, ε
s
r, j are the carrier phase measurement error at receiver r from satellite s on frequency i or j (m)

including all sources of phase errors, remaining uncorrected phase center offset and phase center
variation, multipath and noise.

In this study the frequencies used for the GPS system are in the band of L1 and L2 ( fL1 = 154× f0
and fL2 = 120 × f0). For the Galileo system are in the band of E1 and E5a ( fE1 = 154 × f0 and
fE5a = 115× f0), where f0 = 10.23 MHz.

From all these four equations it is possible to form a Melbourne–Wübbena linear combination
that has the identity to reduce measurement noise and to cancel out any geometric, ionospheric and
clock terms [14,15]:

MWs
r = λwlϕ

s
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(
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fi− f j
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f j
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where:

• MWs
r is the Melbourne-Wübbena linear combination at receiver r from satellite s (m)

• λwl (λwl = c/
(

fi − f j
)
= λiλ j/(λ j − λi)) is the wide-lane (WL) wavelength (m)

• Ns
wl,r (Ns

wl,r = Ns
r,i − Ns

r, j) is the WL ambiguity at receiver r from satellite s

• µs is the delay coming from the satellite (also known in the bibliography as WL satellite bias (WSB))
• µr(t) is the delay coming from the receiver (also known in the bibliography as WL receiver

bias (WRB))

It has been observed that for the GPS system the µs are stable over long periods of time and can
be considered as constant during at least one day [16]. For the Galileo system they are stable for longer
periods; up to months [10]. The µr(t) delay is considered to vary over time because it depends on the
behavior of each receiver.

As it is seen from the Equation (5), the terms Ns
wl,r, µ

s and µr(t) are totally correlated. Normally,
the µs is known; i.e., it is calculated and provided from the CNES/CLS AC to the users [6,8]. The µr

(one per epoch of measurements) and the Ns
wl,r (one per satellite pass) can be separated and solved
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using all available equations (Equation (5) corrected by the µs) from all satellites in view, using a Least
Squares Estimation (LSE) processing associated with a bootstrap method [17,18]. The result after this
step are the Ns

wl,r and µr(t).
Once the Ns

wl,r is determined, the following step is to form an ionosphere-free linear combination
that has the property to cancel out the first order of ionospheric effects. These combinations use the
equations in the two frequencies where they apply to them a coefficient: αi to the frequency i and α j to
the frequency j respectively [19].

αi =
f 2
i

f 2
i − f 2

j

(6)

α j =
− f 2

i

f 2
i − f 2

j

(7)

Using the above coefficients and Equations (6) and (7), the ionosphere-free linear combinations
for code and carrier phase become:
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where:

• Ps
r,IF is the ionosphere-free code measurement at receiver r from satellite s (m)

• Es
r,IF is the ionosphere-free code measurement error at receiver r from satellite s (m)

• Ls
r,IF is the ionosphere-free carrier measurement at receiver r from satellite s (m)

• εs
r,IF is the ionosphere-free carrier measurement error at receiver r from satellite s (m)

• λnl (λnl = c/
(

fi + f j
)
= λiλ j/

(
λi + λ j

)
) is the narrow-lane (NL) wavelength (m)

The following Table 1 gives the wide-lane and the narrow-lane wavelengths for GPS and Galileo
frequencies used in this article.

Table 1. Values for wide-lane and narrow-lane wavelength.

GNSS Frequency λwl(m) λnl(m)

GPS (L1, L2) 0.862 0.107
Galileo (E1, E5a) 0.751 0.109

The term Ws
r is calculated by using the models proposed by Kouba [20]. All equations are then

gathered to form another LSE processing. The system of equations for the ionosphere-free code and
phase measurements are modelled according to the models given in Table 2 and used to estimate all
the parameters: stations position, tropospheric parameters, receiver clocks and inter system bias in
case of multi-GNSS measurements. For the PPP case the Ns

r,i are solved with the other parameters as
real values. For the PPP-AR case they are fixed to integer numbers within a bootstrap processing [8,13].
Once the integer Ns

r,i is determined, the final PPP-AR solution is performed.
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Table 2. Parameters, models and strategy of experiments.

Processing Strategy

Software GINS, DYNAMO, EXE_PPP [21]

Strategy PPP, PPP-AR zero-difference

Estimation Static with Kalman, 300 s sampling

Orbit, Clocks and Satellites Biaises

Orbits and clocks CNES-CLS orbits (‘grg’) [8]

Satellite biases CNES-CLS wide-lane satellite biases [22]

GNSS relative weighting Equal weighting for GPS and Galileo

GNSS measurement sigmas
(at 0◦ of elevation) Code: 60 cm; Phase: 3.5 mm

Elevation cut-off 8 deg

Elevation weighting function,
where ϑ is the elevation angle σ(ϑ) = 0.0035

0.15+0.85 sinϑ

Models for Processing

Antenna phase center corrections ANTEX14 PCO/PCV [23]

Troposphere model

VMF1 [24] + GPT2 [25] (A priori local meteorological parameters
(pressure, temperature, and wet mapping function coefficients) of

GPT2 model are used to compute hydrostatic delays and for the wet
mapping function VMF1. We then adjust 1 zenithal tropospheric

delay per two hours in factor of the wet mapping function).

Ionosphere model Ionosphere-free combination and second ordercorrections [26]

Reference frame ITRF 2014 [27]

Attitude model Kouba [28] for GPS and GSA [23] for Galileo

Ocean loading effects FES2012 [29]

Earth orientation modelling IERS Conventions 2010 [30]

Earth orientation parameters EOP C04 [31]

Phase windup Models used by Kouba [28]

Estimated Parameters

Troposphere 1 ZTD/2 h, 1 pair of gradients (E, N)/day (1 couple of gradients in
north and east direction are also adjusted per day following [31,32]

Observation sampling 300 s

Inter-system biases (phase obs.) 1 per station (zero mean condition)

Station coordinates estimates X, Y, Z transformed to East, North, Up

Figure 1 is giving a graphic overview of the PPP and PPP-AR method used. In the beginning,
the satellite µs are needed together with the station RINEX file. The pre-processing phase uses the
MWs

r observations formed from the individual RINEX observations and the GPS and Galileo biases
µs to solve the Ns

wl,r for integers. Then the Ns
wl,r and satellite orbit and clock products are used as

inputs to form the ionosphere-free combination measurements (code and carrier phase) for the first
processing. The system of equations is solved for the PPP solution. In the case of PPP-AR processing
the proceedure continues further after having fixed the Ns

r,i to integers; in this second processing to
give the PPP-AR solution mostly ionosphere-free ambiguity-free carrier phase measurements are used
for GPS and/or Galileo.
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Figure 1. Steps of the procedure to perform precise point positioning (PPP) and PPP with phase
ambiguity resolution (PPP-AR) of a combined Multi-GNSS solution (GPS + Galileo).

For the experimentation, one week of data (11–17 February 2019, Day of Year (DOY): 42–49/2019)
is chosen. During that period, 31 GPS satellites and 24 Galileo satellites (including the ecliptic E14
and E18) were processed. All models and processing parameters and given in Table 2.

The IGS compiles a consistent set of absolute Antenna Phase Centre (APC) (i.e., Phase Center
Offset (PCO) and Phase Center Variation (PCV)) corrections for both ground stations and satellites
antennas, which are provided in so-called the Antenna Exchange Format (ANTEX) files [20]. These
are very important for the calculation of the geometrical distance between satellite and receiver. For
the APC corrections, it was decided to use the ANTEX14 file from the IGS. During the processing of
the present article, ANTEX14 file included the APC values of the receivers for GPS L1/L2 frequencies,
but not of Galileo E1/E5a frequencies. Delivery of the respective receiver APC values for the Galileo
E1/E5a frequencies was underway from the IGS Antenna WG [33].

For the ambiguity fixing step biases, we do not use any additional bias for Galileo ambiguity
fixing since a previous study [6] showed that the Galileo µs biases were compatible with all kind of
receivers and modulations (such as L1C, L1W, L1X, etc.).

3. Results

The following section shows some examples of PPP and PPP-AR positioning in detail as well as
global network summary graphs in East (E), North (N) and Up (U) components.

3.1. Some Station Examples

The station BRUX from the IGS network has been chosen to show in detail the temporal series for
the entire week, as examples of good PPP and PPP-AR repeatability. Figure 2 gives examples for PPP
and PPP-AR solutions for Galileo-only, GPS-only and their combinations. For each temporal series the
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mean value is calculated and subtracted to center the series to zero. In addition, Table 3 shows the
percentages of ambiguity resolution for the PPP-AR mode.Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 13 
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Figure 2. PPP and PPP-AR solutions for BRUX station for Galileo-only, GPS-only and Multi-GNSS
for the period 11–19 February 2019, DOY: 42–49/2019. For Galileo-only and GPS + Galileo, additional
biases of +0.05 m and −0.05 m have been added respectively for better representation in the graph.

Table 3. Ambiguity resolution percentages for Galileo and GPS system for BRUX station.

BRUX AR (%) 042 043 044 045 046 047 048

Galileo 95.24 100 100 97.67 100 100 95.45

GPS 98.63 91.67 91.30 98.44 100 98.48 94.03

From Figure 2, it is observed that certain irregularities of the repeatability patterns in the PPP
solutions do almost disappear in a PPP-AR solution. There is a little jump at the end of DOY 043 for
north and east directions coming from the contribution of the GPS system (also seen in GPS-only PPP
of around 2 cm in East and 1 cm in North) to the Multi-GNSS solution. Nevertheless, it is seen that in
Multi-GNSS PPP-AR this jump is reduced to less than 0.5 cm.

The importance of AR in precise positioning is also seen when comparing the PPP solution to the
PPP-AR solution. It is seen that some jumps in the PPP solution no longer appear when performing
PPP-AR processing. The PPP-AR mode is shown to be smoother and more linear than the PPP mode
(in particular for the east direction). Another example is the one seen for Galileo-only around DOY 046.
There is a downward jump of around 2 cm for east and north directions that is eliminated for the
PPP-AR mode.

The 1-σ values of the above temporal series for BRUX and another two examples of stations
(CAS1 and NYA) for PPP and PPP-AR are gathered in the following Tables 4–6.
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Table 4. 1-σ values PPP and PPP-AR for BRUX station.

BRUX Mode East (mm) North (mm) Up (mm)

Galileo
PPP 4.7 4.6 11.7

PPP-AR 2.6 2.9 10.3

GPS
PPP 4.7 4.1 9.2

PPP-AR 2.4 3.4 8.5

GPS + Galileo
PPP 3.4 2.7 9.1

PPP-AR 2.1 2.4 7.3

Table 5. 1-σ values PPP and PPP-AR for CAS1 station.

CAS1 Mode East (mm) North (mm) Up (mm)

Galileo
PPP 7.1 6.8 16.6

PPP-AR 4.2 5.2 15.6

GPS
PPP 6.4 6.8 15.2

PPP-AR 3.8 5.2 14.3

GPS + Galileo
PPP 4.6 4.5 11.3

PPP-AR 3.1 3.7 10.3

Table 6. 1-σ values PPP and PPP-AR for NYA2 station.

NYA2 Mode East (mm) North (mm) Up (mm)

Galileo
PPP 4.9 5.0 13.9

PPP-AR 2.8 2.9 15.5

GPS
PPP 4.2 4.1 16.0

PPP-AR 2.4 2.2 11.7

GPS + Galileo
PPP 3.3 3.1 10.3

PPP-AR 2.5 2.1 9.8

From these examples it is clear that level of accuracy achieved varies for each individual
station. This could be because of several parameters such as multipath, station ANTEX parameters
(i.e., for Galileo station, antenna ANTEX files are not yet provided so therefore the GPS station antenna
ANTEX files were used), etc. Notwithstanding, it is seen that the level of accuracy from Galileo-only
solutions is nearly comparable to the one of GPS-only solutions. For the Galileo-only solutions there
were less measurements used than for the GPS-only solution due to the fact that the Galileo constellation
has less satellites than GPS. It is expected that once the Galileo constellation is complete, the accuracy
of PPP and PPP-AR respectively will improve. Ambiguity resolution improves the solution about
1–2 mm in East and North directions (around 10–45% improvement) (Here and elsewhere in the text,
improvements in % are computed according to the formula: 100%·(v2 − v1)/v1, where v1 and v2 are
the values of before (hence reference) and after the change.) and about 1–2 mm in up direction (around
5–20% improvement). It is observed that the up component is improving less than east and north
components when comparing the PPP and the PPP-AR cases using a single GNSS system. This is
explained due to the fact that highly correlated parameters: i.e., up component, the tropospheric
parameters (i.e., Zenith Tropospheric Delay (ZTD)) and station clocks are better de-correlated in the
Multi-GNSS solutions. This happens mainly because more satellite measurements are participating in
the LSE solutions.

It is interesting to observe that even though the Galileo-only solution is not better than the
GPS-only solution (but it is of the same order), when using both systems the combined solution is
improved with respect to the GPS only one. This means that adding Galileo ameliorates the overall
performance of positioning both in PPP as well as in PPP-AR mode.



Remote Sens. 2019, 11, 2477 9 of 13

3.2. Global Network of Stations

The previous graphs from the example stations give some indications:

• The PPP-AR mode gives better repeatability for the timeseries than the PPP mode.
• Galileo only solution gives similar level of 1-σ values repeatability than the GPS only solution.
• The use of Galileo can improve the current precise positioning situation of GPS when used in a

Multi-GNSS combination in a PPP-AR mode.

Nevertheless, the graphs shown in detail referred to a very small specimen of stations. It was
considered important to process a network of 50 the IGS stations used in MGEX. In this way it can
be investigated whether these assumptions are valid globally and whether there are any potential
geographical dependencies that affect the positioning accuracy.

Figures 3 and 4 show the overall network performance of the 1-σ values (as computed for Figure 2)
as well and the global RMS values (the RMS of all the values plotted) for GPS PPP-AR and GPS+Galileo
PPP-AR scenarios for east, north and up components.
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The following Table 7 is giving the RMS of all AR percentages for the entire network and the RMS
for the whole week of processing. It is observed that in general the Galileo percentages are a little
higher than the GPS ones.

Table 7. Ambiguity resolution percentages for Galileo and GPS system for BRUX station.

Network AR (%) 042 043 044 045 046 047 048 RMS

Galileo 90.71 95.38 95.39 95.56 96.16 95.67 89.39 94.07

GPS 93.55 92.25 89.85 93.90 94.09 94.54 89.62 92.56

The global positioning RMS values are gathered in Table 8 for the three directions from the global
maps. As it is seen, adding Galileo to the constellation can improve the positioning globally both for
PPP and PPP-AR modes. Even the PPP mode of Multi-GNSS gives better accuracy than the GPS PPP-AR
(which is considered as the best positioning that can be achieved until now). Ambiguity resolution
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improves the solution about 1–3 mm in East and North directions (around 10–20% improvement) and
about 0–2 mm in Up direction (around 2–8% improvement). Combining Galileo with GPS can improve
the timeseries by around 3–4 mm in East and North directions and by 9 mm in Up direction. Comparing
the current best positioning performance (i.e., GPS-only PPP-AR) with the one when adding Galileo
(i.e., GPS+Galileo PPP-AR), we see that the results improve from 9.3 mm to 6.7 mm (28%) for the East
component, 8.3 mm to 5.6 mm (33%) for the North component and 24 mm to 16.8 mm (30%) for the
Up component.

Table 8. Global RMS of 1-σ values for PPP and PPP-AR for the entire network examined.

Global Mode East (mm) North (mm) Up (mm)

Galileo
PPP 17.0 14.6 33.1

PPP-AR 13.7 12.2 30.8

GPS
PPP 11.8 9.4 26.0

PPP-AR 9.3 8.3 24.0

GPS + Galileo
PPP 7.9 6.1 17.2

PPP-AR 6.7 5.6 16.8

4. Discussion and Conclusions

In this paper we investigated the performance (in term of repeatability) of kinematic PPP
and PPP-AR positioning using GPS, Galileo and combined measurements of the two systems on a
global network.

The Galileo-only PPP-AR solution performance repeatability reaches 14 mm in horizontal direction
and 31 mm in vertical direction. This level is of similar order of magnitude and just below the GPS-only
solution one. It is expected that once the Galileo constellation is complete, the accuracy of Galileo-only
PPP and PPP-AR will improve relative to today (due to the addition of four more satellites and to the
availability of receiver antenna calibration for Galileo L5 frequency).

The Multi-GNSS solutions for both PPP and PPP-AR give much better results in term of repeatability
than both systems used separately (we observe a gain in repeatability of around 30% in horizontal and
in vertical directions); and this even though the Galileo-only solutions are by little not better than the
GPS-only solutions. This is logically explained by the increased number of measurements and the
highest satellite geometry diversity in the Multi-GNSS solutions relatively to the single systems ones
(with only one inter-system bias parameter added). This result proves also that despite the unavailable
receiver’s antenna patterns for the E5 Galileo frequencies used in this study, the two systems are
already compatible at the sub-centimeter level. We assume, as a consequence, that parameters that are
highly correlated such as the vertical components, the tropospheric ZTD parameter and the station
clocks are more de-correlated in the Multi-GNSS solutions than in single-systems ones.

The best repeatabilities observed in this study for a 300 s dynamic Multi-GNSS GPS + GAL
PPP-AR solution reach less than 3 mm in horizontal direction and 7 mm in the vertical one for the
BRUX receiver. The global network statistics are a little larger with 8 mm in horizontal and 17 mm in
vertical directions. For the global network, no particular geographical pattern has been seen among
the 50 stations used.

These results show that Galileo can really contribute to Multi-GNSS precise positioning and
improve the best solutions obtained today with GPS. Scientific, geodetic and geophysical applications
can already benefit from the combined processing of GPS and Galileo observations.
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