remote sensin N
?J & bpy

Article

Using Predictive and Differential Methods with
K2-Raster Compact Data Structure for Hyperspectral
Image Lossless Compression *

Kevin Chow *, Dion Eustathios Olivier Tzamarias, Ian Blanes and Joan Serra-Sagrista

Department of Information and Communications Engineering, Universitat Autonoma de Barcelona,

08193 Cerdanyola del Valles, Barcelona, Spain; dion.tzamarias@uab.cat (D.E.O.T.); ian.blanes@uab.cat (I.B.);

joan.serra@uab.cat (J.S.-S.)

* Correspondence: kevin.chow@uab.cat

t This paper is an extended version of our paper publihsed in the 6th ESA /CNES International Workshop on
On-Board Payload Data Compression Proceedings.

check for
Received: 31 August 2019; Accepted: 17 October 2019; Published: 23 October 2019 updates

Abstract: This paper proposes a lossless coder for real-time processing and compression of
hyperspectral images. After applying either a predictor or a differential encoder to reduce the
bit rate of an image by exploiting the close similarity in pixels between neighboring bands, it uses a
compact data structure called k*-raster to further reduce the bit rate. The advantage of using such a
data structure is its compactness, with a size that is comparable to that produced by some classical
compression algorithms and yet still providing direct access to its content for query without any need
for full decompression. Experiments show that using k?-raster alone already achieves much lower
rates (up to 55% reduction), and with preprocessing, the rates are further reduced up to 64%. Finally,
we provide experimental results that show that the predictor is able to produce higher rates reduction
than differential encoding.

Keywords: compact data structure; quadtree; k%-tree; k?-raster; DACs; 3D-CALIC; M-CALIC;
hyperspectral images

1. Introduction

Compact data structures [1] are examined in this paper as they can provide real-time processing
and compression of remote sensing images. These structures are stored in reduced space in a compact
form. Functions can be used to access and query each datum or groups of data directly in an efficient
manner without an initial full decompression. This compact data should also have a size which is
close to the information-theoretic minimum. The idea was explored and examined by Guy Jacobson in
his doctoral thesis in 1988 [2] and in a paper published by him a year later [3]. Prior to this, works
had been done to express similar ideas. However, Jacobson’s paper is often considered the starting
point of this topic. Since then it has gained more attention and a number of research papers have
been published. Research on algorithms such as FM-index [4,5] and Burrows-Wheeler transform [6]
were proposed and applications were released, notable examples of which include bzip2 (https:
//linux.die.net/man/1/bzip2), Bowtie [7] and SOAP2 [8]. One of the advantages of using compact
data structures is that the compressed data form can be loaded into main memory and accessed
directly. The smaller compressed size also helps data move through communication channels faster.
The other advantage is that there is no need to compress and decompress the data as is the case
with data compressed by a classical compression algorithm such as gzip or bzip2, or by a specialized
algorithm such as CCSDS 123.0-B-1 [9] or KLT+JPEG 2000 [10,11]. The resulting image will have the
same quality as the original.

Remote Sens. 2019, 11, 2461; d0i:10.3390/rs11212461 www.mdpi.com/journal /remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-9693-9677
https://orcid.org/0000-0003-4729-9292
http://www.mdpi.com/2072-4292/11/21/2461?type=check_update&version=1
https://linux.die.net/man/1/bzip2
https://linux.die.net/man/1/bzip2
http://dx.doi.org/10.3390/rs11212461
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2019, 11, 2461 20f 24

Hyperspectral images are image data that contain a multiple number of bands from across the
electromagnetic spectrum. They are usually taken by hyperspectral satellite and airborne sensors. Data
are extracted from certain bands in the spectrum to help us find the objects that we are specifically
looking for, such as oil fields and minerals. However, due to their large sizes and the huge amount of
data that have been collected, hyperspectral images are normally compressed by lossy and lossless
algorithms to save space. In the past several decades, a lot of research studies have gone into keeping
the storage sizes to a minimum. However, to retrieve the data, it is still necessary to decompress
all the data. With our approach using compact data structures, we can query the data without fully
decompressing them in the first place, and this is the main motivation for this work.

Prediction is one of the schemes used in lossless compression. CALIC (Context Adaptive Lossless
Image Compression) [12,13] and 3D-CALIC [14] belong to this class of scheme. In 1994, Wu et al.
introduced CALIC, which uses both context and prediction of the pixel values. In 2000, the same
authors proposed a related scheme called 3D-CALIC in which the predictor was extended to the pixels
between bands. Later in 2004, Magli et al. [15] proposed M-CALIC whose algorithm is related to
3D-CALIC. All these methods take advantage of the fact that in a hyperspectral image, neighboring
pixels in the same band (spatial correlation) are usually close to each other and even more so for
neighboring pixels of two neighboring bands (spectral correlation).

Differential encoding is another way of encoding an image by taking the difference between
neighboring pixels and in this work, it is a special case of the predictive method. It only takes advantage
of the spectral correlation. However, this correlation between the pixels in the bands will become
smaller as the distance between the bands are further apart and therefore, its effectiveness is expected
to decrease when the bands are far from each other.

The latest studies on hyperspectral image compression, both lossy and lossless, are focused
on CCSDS 123.0, vector quantization, Principal Component Analysis (PCA), JPEG2000, and Lossy
Compression Algorithm for Hyperspectral Image Systems (HyperLCA), among many others. Some of
these research works are listed in [16-19]. In this work, however, we investigate lossless compression of
hyperspectral images through the proposed k?-raster for 3D images, which is a compact data structure
that can provide bit-rate reduction as well as direct access to the data without full decompression.
We also explore the use of a predictor and a differential encoder as preprocessing on the compact
data structure to see if it can provide us with further bit-rate reduction. The predictive method
and the differential method are also compared. The flow chart shown in Figure 1 depicts how the
encoding/decoding of this proposal works.

This paper is organized as follows: In Section 2, we present the k?-raster and discuss it in detail,
beginning with quadtree, followed by k?-tree and k?-raster. Later in the same section, details of the
predictive method and the differential method are discussed. Section 3 shows the experimental results
on how the two methods fare using k?-raster on hyperspectral images, and more results on how some
other factors such as using different k-values can affect the bit rates. Finally, we present our conclusions
in Section 4.

Remote Sens. 2019, 11, 2461 3of24

Predictive 5 Predictive
Encoding k*-raster Decoding
Original Reconstructed
Hyperspectral Hyperspectral
Image Image
Differential 2 Differential
Encoding k*-raster Decoding

Figure 1. A flow chart showing the encoding and decoding of this coder.

2. Materials and Methods

One way to build a structure that is small and compact is to make use of a tree structure and do
it without using pointers. Pointers usually take up a large amount of space, with each one having a
size in the order of 32 or 64 bits for most modern-day machines or programs. A tree structure with n
pointers will have a storage complexity of O(nlogn) whereas a pointer-less tree only occupies O(n).
For pointer-less trees, to get at the elements of the structure, rank and select functions [3] are used,
and that only requires simple arithmetic to find the parent’s and child’s positions. This is the premise
that compact data structures are based on. In this work, we will use k2-raster from Ladra et al. [20],
a concept which was developed from k?-tree, also a type of compact data structure, as well as the idea
of using recursive decomposition of quadtrees. The results of k*-raster were quite favorable for the
data sets that were used. Therefore, we are extending their approach for hyperspectral images and
investigate whether it would be possible to use that structure for 3D hyperspectral images. The Results
section will show us that the results are quite competitive compared to other commonly-used classical
compression techniques. There is a bit-rate reduction of up to 55% for the testing images. Upon more
experimentation with predictive and differential preprocessing, a further bit-rate reduction of up to
64% can be attained. For that reason, we are proposing in this paper our encoder using the predictor
or differential method on k2-raster for hyperspectral images.

2.1. Quadtrees

Quadtree structures [21], which have been used in many kinds of data representations such
as image processing and computer graphics, are based on the principle of recursive decomposition.
As there are many variants of quadtree, we will describe the one that is pertinent to our discussion:
region quadtree. Basically, a quadtree is a tree structure where each internal node has 4 children. Given
a 2D square matrix, it is partitioned recursively into four equal subquadrants. If a tree is built to
represent this, it will have a root node at level 0 with 4 children nodes at level 1, each child representing
a node and a subquadrant. Next, if the subquadrant has a size larger than 22, then each of these
subquadrants will be partitioned to give 4 more children and a new level 2 is added to the tree. Note
that the tree nodes are traversed in a left to right order.

Considering a matrix of size n x n where 1 is a power of 2, it is recursively divided until each
subquadrant has a size of 22. For example, if the size of the matrix is 8 x 8, after the recursive division
of matrix, (8%)/(2%) = 16 subquadrants are obtained. It should be noted that the value of # in the image
matrix needs to be a power of 2. Otherwise, the matrix has to be enlarged widthwise and heightwise to

Remote Sens. 2019, 11, 2461 4 of 24

a value which is the next power of 2, and these additional pixels will be padded with zeros. As k?-trees
are based on quadtrees, the division and the resulting tree of a quadtree are very similar to those of a
k?-tree. Figure 2 illustrates how a quadtree’s recursive partitioning works.

&é@/éé

M1 2345678
1]1]0(0(0|0f0O|0O|O 110|0(0j0|0(f0|O 110(0|0)0|0]|0|0 1{0j0jojoj0j0|0
2]10(1|0(1]{0|0|0]|O 0[1[0|1]J0]{0[0]0 0l1fJ0[1]J0|0|0]|0O oj1joj1jojo|0|0
3]0(0|1]|0|0|0|0O]|O ojof1(ojojojo|o0 oj{0j1{ojojo|0|0O o(oj1jojojo|o]|o0
410(0[1(1{0|0|0]|O0 0{0f(1[1J0|0|0]|O0 0(ofj1(1jJ0j0|f0]0 ojofj1f1j]0jo0fo|o0
5(0{0|0(0|1|1]|0]|0 0(0[0|0OfJ1][1]0]0 0(0[0]|OfJ1]|1]0]0 0|0fj0|0f1]1]0]|0
6]0|(0|0|0|1|1|0]|0O ojofofofj1j{1j0|0 0oj{0f0|0]1|1]0|0 o(ofjojoj1j1jojo
710]0(0(0|0f0O|0O|O 0({0f0[0J0|0|0O]O 0o(ofofojojofojo ojofofojojofofo
810/0|/0]|0]|0]|0|0O]|O 0ojofofojojojo|0 0j{0|0|0|O0|0O|O|O 0o(ofjojojojo|0]|O
Level 0 (Root) Level 1 Level 2 Level 3

Root <— Level0

/\ - /N o

1 1 0 1 1 000 <«— Level 2

10010001 1011 1111 <«— Level3

Figure 2. A graph of 6 nodes (top) with its 8 x 8 binary adjacency matrix at various stages of recursive
partitioning. At the bottom, a k2-trees (k=2) is constructed from the matrix.

2.2. LOUDS

k?-tree is based on unary encoding and LOUDS, which is a compact data structure introduced by
Guy Jacobson in his paper and thesis [2,3]. A bit string is formed by a breadth-first traversal (going
from left to right) of an ordinal (rooted, ordered) tree structure. Each parent node is encoded with a
string of 1" bits whose length indicates the number of children it has and each string ends with a ‘0’
bit. If the parent node has no children, only a single ‘0’ bit suffices.

The parent and child relationship can be computed by two cornerstone functions for compact
data structures: rank and select. These functions give us information about the node’s first-child,
next-sibling(s), and parent, without the need of using pointers. They are described below:

ranky(m) returns the number of bits which are set to b, left of position m (inclusive) in the
bitmap where bis 0 or 1.
select, (i) returns the position of the i-th b bit in the bitmap where b is 0 or 1.

By default, b is 1, i.e., rank(m) = rank; (m). These operations are inverses of each other. In other
words, rank(select(m)) = select(rank(r)) = m. Since a linear scan is required to process the rank and
select functions, the worst-case time complexity will be O(n).

To clarify how these functions work, consider the binary trees depicted in Figure 3 where the one
on the left shows the values and the one on the right shows the numbering of the same tree. If the
node has two children, it will be set to 1. Otherwise, it is set to 0. The values of this tree are put in a bit
string shown in Figure 4. Figure 5 shows how the position of the left child, right child or parent of a
certain node m is computed with the rank and select functions. An example follows:

Remote Sens. 2019, 11, 2461 5o0f 24

To find the left child of node 8, we first need to compute rank(8), which is the total number of 1’s
from node 1 up to and including node 8 and the answer is 7. Therefore, the left child is located in
2*rank(8) = 2*7 = 14 and the right child is in 2*rank(8)+1 = 2*7+1 = 15. The parent of node 8 can be
found by computing select(|8/2]) or select(|4]). The answer can be arrived at by counting the total
number of bits starting from node 1, skipping the ones with ‘0’ bits. When we get to node 4 which
gives us a total bit count of 4, we then know that node 4 is where the parent of node 8 is.

1 1

/\ A

1 1 2 3
N N N N
1 1 1 0 4 5 6 7

/\ 2 NEVAN
1 0 0 O 1 0 8 9 10 11 12 13
/\
0 0 0 0 14 15 16 17

Figure 3. A binary tree example for LOUDs. The one on the left shows the values of the nodes and the
one on the right shows the same tree with the numbering of the nodes in a left-to-right order. In this
case the numbering starts with 1 at the root.

m | 12345 |6|7|8|9|10|11 |12 |13 | 14| 15| 16| 17
bit| 1|11 |1|1|1]0|1]|0 0| 0] 0] O

(=}
(=}
—_
f=)

Figure 4. A bit string with the values from the binary tree in Figure 3.

m 112(3|4] 5 6 8 | 12
Left child(m) = 2 - rank(m) 2146|810 12]14] 16
Right child(m) =2 -rank(m)+1 | 3 | 5| 7 | 9 | 11 | 13 | 15 | 17
Parent(m) = select(|m/2]) -1 |12 2|3 |46

Figure 5. With the rank and select functions listed in the first column, we can navigate the binary tree
in Figure 3 and compute the position node for the left child, right child or parent of the node.

In the next section, we will explain how the rank function can be used to determine the children’s
positions in a k?-tree, thus enabling us to query the values of the cells.

2.3. k?-Tree

Originally proposed for compressing Web graphs, k*-tree is a LOUDS variant compact data
structure [22]. The tree represents a binary adjacency matrix of a graph (see Figure 2). It is constructed
by recursively partitioning the matrix into square submatrices of equal size until each submatrix
reaches a size of k x k where k >2. During the process of partitioning, if there is at least one cell in the
submatrix that has a value of 1, the node in the tree will be set to 1. Otherwise, it will be set to 0 (i.e., it
is a leaf and has no children) and this particular submatrix will not be partitioned any further. Figure 2
illustrates an example of a graph of 6 nodes, its 8 x 8 binary adjacency matrix at various stages of
recursive partitioning, and the k-tree that is constructed from the matrix.

The values of k*-trees are basically stored in two bitmaps denoted by T (tree) and L (leaves).
The values are traversed in a breadth-first fashion starting with the first level. The T bitmap stores
the bits at all levels except the last one where its bits will be stored in the L bitmap. Note that the bit
values of T which are either 0 or 1 will be stored as a bit vector. To illustrate this with an example, we
again make use of the binary matrix in Figure 2. The T bitmap contains all the bits from levels 1 and 2.
Thus the T bitmap has the following bits: 1001 1101 1000 (see Figure 6). The bits from the last level,
level 3, will be stored in the L bitmap with the following bits: 1001 0001 1011 1111.

Consider a set S with elements from 1 to 7, to find the child’s or the parent’s position of a certain
node m in a k?-tree, we perform the following operations:

Remote Sens. 2019, 11, 2461 6 of 24

first-child(m) < rank(m) - k* where 1 < m < ||S||
parent(m) + select(|m/k?|) where 1 < m < ||S]|

Once again using the k?-tree in Figure 2 as an example, with the T bitmap (Figure 6) and the rank
and select functions, we can navigate the tree and obtain the positions of the first child and the parent.
Figure 7 shows how the nodes of the k?-tree are numbered.

Ex. Locate the first child of node 8:
rank;(8) *4=6*4=24
(There are 6 one bits in the T bitmap starting from node 0 up to and including node 8.)
Ex. Locate the parent of node 11:
selecty(|11/4]) = select;(2) =3
(Start counting from node 0, skipping all nodes with ‘0" bits, and node 3 is the first node that
gives a total number of 1-bit count of 2. Therefore, node 3 is the parent.

Node |0 |1|2|3|4|5|6|7|8|9]|10]11
Bit |1|(0(O0O|1|1T|1|0|1]1]0| 0] O

Figure 6. A T bitmap with the first node labeled as 0.

Root

4 5 6 7 8 9 10 11

AN NP A YA AN

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Figure 7. An example showing how the rank function is computed to obtain the children’s position on
a k?-tree node (k=2) based on the tree in Figure 2. It starts with 0 on the first child of the root (first level)
and the numbering traverses from left to right and from top to bottom.

It was shown that k?-tree gave the best performance when the matrix was sparse with large
clusters of 0’s or 1's [20].

2.4. DACs

This section describes DACs which is used in k?-raster to directly access variable-length codes.
Based on the concept of compact data structures, DACs were proposed in the papers published by
Brisaboa et al. in 2009 and 2013 [23,24] and the structure was proven to yield good compression ratios
for variable-length integer sequences. By means of the rank function, it gains fast direct access to any
position of the sequence in a very compact space. The original authors also asserted that it was better
suited for a sequence of integers with a skewed frequency distribution toward smaller integer values.

Different types of encoding are used for DACs and the one that we are interested in for k*-raster
is called Vbyte coding. Consider a sequence of integers x. Each integer, which is represented by
|logax;| + 1 bits, is broken into blocks of bits of size S. Each block is stored as a chunk of S + 1 bits.
The chunk that holds the most significant bits has the highest bit set to 0 while the other chunks have
their highest bit set to 1. For example, if we have an integer 20 (10100,) which is 5 bits long and if the
block size is S = 3, then we can have 2 chunks denoted by the following: 0010 1100.

To show how the chunks are organized and stored, we again illustrate it with an example. If we
have 3 integers of variable length 20 (10100;), 6 (1103), 73 (1001001;) and each block size is 3, then the
three integers have the following representations.

20 00101100 (B12A12 By 1A11)
6 0110 (B2 1A2,1)
73 00011001 1001 (B3 3A33 B3 2A32 B3 1A31)

Remote Sens. 2019, 11, 2461 7 of 24

We will store them in three chunks of arrays A and bitmaps B. This is depicted in Figure 8.
To retrieve the values in the arrays A, we make use of the corresponding bitmaps B with the
rank function.

More information on DACs and the software code can be found in the papers [23,24].

o A1 | 100 (Aq,4) | 110 (Ap1) | 001 (Azq)
By 1(B11) 0(Bz1) 1(Bsy)
C, Ay | 010 (Aqp) | 001 (Az»p)
B, 0(By1,2) 1(Bsp)

Az | 001 (A3/3)
Bs 0 (Bsz)

GCs

Figure 8. Organization of 3 Directly Addressable Codes (DACs) clusters.
2.5. k*-Raster

k?-raster is a compact data structure that allows us to store raster pixels in reduced space.
It consists of several basic components: bitmaps, DACs and LOUDS. Similar to a k*-tree, the image
matrix is partitioned recursively until each subquadrant is of size k?. The resulting LOUDS tree
topology contains the bitmap T where the elements are accessed with the rank function. Unlike
k2-tree, at each tree level, the maximum and minimum values of each subquadrant are stored in
two bitmaps which are respectively called Vmax and Vmin. However, to compress the structure
further, the maximum and minimum values of each level are compared with the corresponding values
of the parent and their differences will replace the stored values in the Vmax and Vmin bitmaps.
The rationale behind all this is to obtain smaller values for each node so as to get a better compression
with DACs. An example of a simple 8 x 8 matrix is given to illustrate this point in Figure 9. A k*-raster
is constructed from this matrix with maximum and minimum values stored in each node in Figure 10.
The structure is further modified, according to the above discussion, to form a tree with smaller
maximum and minimum values and this is shown in Figure 11.

Next, with the exception of the root node at the top level, the Vinax and Vmin bitmaps at all levels
are concatenated to form Lmax and Lmin bitmaps. The root’s maximum (rMax) and minimum (rMin)
values are integer values and will remain uncompressed.

For an image of size n x n with n bands, the time complexity to build all the k*-rasters is
O(n3) [22]. To query a cell from the structure, which has a tree height of at most [log, 1] levels, the
time complexity to extract a codeword at a single Lmax level is O(log 1), and this is the worst-case
time to traverse from the root node to the last level of the structure. The number of levels, £, in Lmax
can be obtained from the maxinum integer in the sequence and with this, we can compute the time
complexity for a cell query, which is O(log n - £) [23,25].

To sum up, a k?-raster structure is composed of a bitmap T, a maximum bitmap Lmax, a minimum
bitmap Lmin, a root maximum rMax integer value and a root minimum rMin integer value.

Remote Sens. 2019, 11, 2461 8 of 24

=N G| [
el el Il LR A AR S
= INNW]

ksl lalala
SN FICH IV IO (NS VN IS 1 VNS
[y U FOVY TN IV) IV TS
e I I
NI I R
=l slslalala
= QO s [s O
LI E RS
[y PN FCAES) [IS I TN IS
el il Bl DRSS R ESS IS
I
=== === = =
RN R B ke ke el
[N 'Y IS TG ITSY (9 IVSS
[N IS IS S PSS
Sy U FCR R [V R TN IS
el Bl LSRRt SRS
N e e e e e
I R
=Wl (=]ajalua
[I¥) PN ITNY ITNQ 1TSS §3) ITNS
L FY S B B RS
=l D01 Bt Kt BN B EESS
e NN NI I ES
=== === ==
N R

1]1]1
Level 0 (Root) Level

Figure 9. An example of an 8 x 8 matrix for k?-raster. The matrix is recursively partitioned into square
subquadrants of equal size. During the process, unless all the cells in a subquadrant have the same
value, the partitioning will continue. Otherwise the partitioning of this particular subquadrant will

end at this point.
> «— Level 0
W
53 4 41 1-1 «— Level 1
54 4-4 5-4 43 43 1-1 32 1-1 44 42 3-1 1-1 «— Level 2

Figure 10. A k*-raster (k = 2) tree storing the maximum and mininum values for each quadrant of
every recursive subdivision of the matrix in Figure 9. Every node contains the maximum and minimum
values of the subquadrant, separated by a dash. On the last level, only one value is shown as each
subquadrant contains only one cell.

51 «— Level 0
W

0-2 1-0 1-0 40 — LeVel 1

0-1 1-1 0-1 1-0 0-2 30 1-1 30 0-3 0-1 1-0 30 «— Level 2

(40\0 (41\1(40\1(41\1 (41\1 01120022 — Level 3

Figure 11. Based on the tree in Figure 10, the maximum value of each node is subtracted from that of
its parent while the minimum value of the parent is subtracted from the node’s minimum value. These
differences will replace their corresponding values in the node. The maximum and minimum values of
the root remain the same.

2.6. Predictive Method

As mentioned in the Introduction, an interband predictor called 3D-CALIC was proposed by
Wau et al. in 2000 and another predictor called M-CALIC by Magli et al. in 2004. Our predictor is based
on the idea of least squares method and the use of reference bands that were discussed in both the
3D-CALIC [14] and M-CALIC [15] papers. Consider two neighboring or close neighboring bands of the
same hyperspectral image. These bands can be represented by two vectors X = (x1, X2, X3, ..., X1, X»)
and Y = (y1,Y¥2,Y3, ..., Yu—1,Yn) Where x; and y; are two pixels that are located at the same spatial
position but in different bands, and n is the number of pixels in each band. We can then employ
the close similarity between the bands to predict the pixel value in the current band Y using the
corresponding pixel value in band X, which we designate as the reference band.

A predictor for a particular band can be built from the linear equation:

Y =aX + 8 @

Remote Sens. 2019, 11, 2461 9 of 24

so as to minimize ||Y — Y|[2 where Y is the predicted value and Y is the actual value of the current
band. The optimal values for « and 8 should minimize the prediction error of the current pixel and
can be obtained by using the least squares solution:

MY Xl — Yiq Xi i Yi
7
nyi, xlz — (X x)?

@

ﬁ(:

B: ”217‘1:1 i — &Z?zl Xi
n

where 7 is the size of each band, i.e., the height multiplied by the width, & the optimal value of « and j
the optimal value of B.

®)

The difference between the actual and predicted pixel values of a band is known as the residual
value or the prediction error. When all the pixel values in the current band are calculated, these
prediction residuals will be saved in a vector, which will later be used as input to a k2-raster.

In other words, for a particular pixel in the current band and the corresponding pixel in the
reference band, ¢; being the residual value, y; the actual value of the current band, and x; the value of
the reference band, to encode, the following equation is used:

S =yi—(&-x+p).)
To decode, the following equation is used:
Yi=0i+ (& xi+p). (5)

The distance from the reference band affects the residual values. The closer the current band is to
the reference band, the smaller the residual values would tend to be. We can arrange the bands into
groups. For example, the first band can be chosen as the reference and the second, third and fourth
bands will have their residual values calculated with respect to the first band. And the next group
starts with the fifth band as the reference band, etc.

For this coding method, the group size (stored as a 2-byte short integer) as well as the & and j
values for each band (stored as 8-byte double’s) will need to be saved for use in both the encoder and
the decoder. Note that the size of these extra data is insignificant - which generally comes to around
3.5 kB - compared to the overall size of the structure.

2.7. Differential Method

In the differential encoding, which is a special case of the predictor where « = 1 and g = 0,
the residual value is obtained by simply taking the difference between the reference band and the
current band. For a particular pixel in the current band and the corresponding pixel in the reference
band, §; being the residual value, y; the actual value of the current band, and x; the value of the
reference band, to encode, the following equation is used:

i = Yi — Xi - (6)
To decode, the following equation is used:
yi=0i+x;. @)

Like the predictor, we can use the first band as the reference band and the next several bands can
use this reference band to find the residual values. Again, the grouping is repeated up to the last band.
For this coding method, only the group size (stored as a 2-byte short integer) needs to be saved.

Remote Sens. 2019, 11, 2461 10 of 24

2.8. Related Work

Since the publication of the proposals on k*-tree and k2-raster, more research has been done to
extend the capabilities of the structures to 3D where the first and second dimensions represent the
spatial element and the third dimension the time element.

Based on their previous research of k?-raster, Silva-Coira et al. [26] proposed a structure called
Temporal k?-raster (T — k’raster) which represents a time-series of rasters. It takes advantage of the fact
that in a time-series, the values in a matrix M; are very close to, if not the same as, the next matrix Mp
or even the one after that, M3, along the timeline. The matrices can then be grouped into T time instants
where the values of the elements of the first matrix in the group is subtracted from the corresponding
ones in the current matrix. The result will be smaller integer values that would help form a more
compact tree as there are likely to be more zeros in the tree than before. Their experimental results bear
this out. When the 7 value is small (T = 4), the sizes are small. However, as would be expected, the
results are not as favorable when the T value becomes larger (T = 50). Akin to the Temporal k-raster,
the differential encoding on k?-raster that we are proposing in this paper also exploits the similarity
between neighboring matrices or bands in a hyperspectral image to form a more compact structure.

Another study on compact representation of raster images in a time-series was proposed earlier
this year by Cruces et al. in [27]. This method is based on the 3D to 2D mapping of a raster where 3D
tuples <x,y, z> are mapped into a 2D binary grid. That is, a raster of size w x h with values in a certain
range, between 0 and v inclusive will have a binary matrix of w x h columns and v+1 rows. All the
rasters will then be concatenated into a 3D cube and stored as a k>-tree.

3. Results

In this section we describe some of the experiments that were performed to show the use of
compact data structures, prediction and differential encoding for real-time processing and compression.
First, we show the results with other compression algorithms and techniques that are currently in use
such as gzip, bzip2, xz, M-CALIC [15] and CCSDS 123.0-B-1 [9]. Then we compare the build time and
the data access time for k?-raster with and without prediction and differential encoding. Next, we show
the results of different rates in k?-raster that are produced as different k-values are applied. Similarly,
the results of different group sizes for prediction and differential encoding are shown. Finally, the
predictive method and the differential method are compared.

Experiments were conducted using hyperspectral images from different sensors: Atmospheric
Infrared Sounder (AIRS), Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), Compact
Reconnaissance Imaging Spectrometer for Mars (CRISM), Hyperion, and Infrared Atmospheric
Sounding Interferometer (IASI). Except for IASI, all of them are publicly available for download (http:
//cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData). Table 1 gives more detailed information
on these images. The table also shows the bit-rate reduction for using k*-raster with and without
prediction. Performance in terms of bit rate and entropy is evaluated for them.

For best results in k?-raster for the testing images, we used the optimal k-value, and also in the
case of the predictor and the differential encoder, the optimal group size for each image was used.
The effects of using different k-values and different group sizes will be discussed and tested in two of
the subsections below.

To build the structure of k?-raster and the cell query functions, a program in C was written.
The algorithms presented in the paper by Ladra et al. [20] were the basis and reference for writing
the code. The DACs software that was used in conjunction with our program is available at the
Universidade da Coruiia’s Database Laboratory (Laboratorio de Bases de Datos) website (http:/ /Ibd.
udc.es/research/DACS/). The package is called “DACs, optimization with no further restrictions”.
As for the predictive and differential methods, another C program was written to perform the tasks
needed to give us the results that we will discuss below. All the code was compiled using gcc or g++
5.4.0 20160609 with -Ofast optimization.

http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData
http://cwe.ccsds.org/sls/docs/sls-dc/123.0-B-Info/TestData
http://lbd.udc.es/research/DACS/
http://lbd.udc.es/research/DACS/

Remote Sens. 2019, 11, 2461 11 of 24

Table 1. Hyperspectral images used in our experiments. It also shows the bit rate and bit rate reduction using k*-raster with and without the predictor. x is the image
width, y the image height and z the number of spectral bands. The unit bpppb stands for bits per pixel per band.

2 2
Original Bit Ovtimal k2-Raster k2-Raster kP;Z{;iScttf: kp;g’;s::::
Sensor | Name C/U* Acronym Dimensions Depth P Bit Rate Bit-Rate . .
(X y X 2) (bpppb) k-Value (bpppb) Reduction (%) Bit Rate Bit-Rate
(bpppb) Reduction (%)
9 8} AG9 90 x 135 x 1501 12 6 9.49 21% 6.76 44%
16 U AGl16 90 x 135 x 1501 12 6 9.12 24% 6.63 45%
60 U AG60 90 x 135 x 1501 12 6 9.81 18% 7.06 41%
AIRS 126 U AGI126 90 x 135 x 1501 12 6 9.61 20% 7.05 41%
129 U AGI129 90 x 135 x 1501 12 6 8.65 28% 6.47 46%
151 U AGI51 90 x 135 x 1501 12 6 9.53 21% 7.02 41%
182 U AG182 90 x 135 x 1501 12 6 9.68 19% 7.19 40%
193 U AG193 90 x 135 x 1501 12 6 9.44 21% 7.06 41%
Yellowstone sc. 00 C ACY00 677 x 512 x 224 16 6 9.61 40% 6.87 57%
Yellowstone sc. 03 C ACY03 677 x 512 x 224 16 6 9.42 41% 6.72 58%
Yellowstone sc. 10 C ACY10 677 x 512 x 224 16 4 7.57 53% 5.84 64%
Yellowstone sc. 11 C ACY11 677 x 512 x 224 16 6 8.81 45% 6.52 59%
AVIRIS Yellowstone sc. 18 C ACY18 677 x 512 x 224 16 6 9.78 39% 7.04 56%
Yellowstone sc. 00 U AUY00 680 x 512 x 224 16 9 11.92 25% 9.04 44%
Yellowstone sc. 03 U AUY03 680 x 512 x 224 16 9 11.74 27% 8.87 45%
Yellowstone sc. 10 U AUY10 680 x 512 x 224 16 9 9.99 38% 8.00 50%
Yellowstone sc. 11 U AUY11 680 x 512 x 224 16 9 11.27 30% 8.77 45%
Yellowstone sc. 18 U AUY18 680 x 512 x 224 16 9 12.15 24% 9.29 42%
frt000065e6_07_sc164 U Cle4 640 x 420 x 545 12 6 10.08 16% 10.02 16%
frt00008849_07_sc165 U C165 640 x 450 x 545 12 6 10.37 14% 10.33 14%
CRISM frt0001077d_07_sc166 U C166 640 x 480 x 545 12 6 11.05 8% 11.08 8%
hrl00004{38_07_sc181 U C181 320 x 420 x 545 12 5 9.97 17% 9.52 21%
hrl0000648f_07_sc182 U C182 320 x 450 x 545 12 5 10.11 16% 9.84 18%
hrl0000ba9¢_07_sc183 U C183 320 x 480 x 545 12 5 10.65 11% 10.59 12%

Remote Sens. 2019, 11, 2461 12 of 24
Table 1. Cont.
2_ 2_
Ol B G B K Gl D
Sensor Name C/U* Acronym Dimensions Depth P Bit Rate Bit-Rate . .
(X y X 2) (bpppb) k-Value (bpppb) Reduction (%) Bit Rate Bit-Rate
(bpppb) Reduction (%)

Agricultural 2905 * C HCA1 256 x 2905 x 242 12 8 8.20 32% 7.47 38%
Agricultural 3129 * C HCA2 256 x 3129 x 242 12 8 8.08 33% 7.50 37%
Coral Reef C HCC 256 x 3127 x 242 12 8 7.38 39% 7.41 38%
Urban * C HCU 256 x 2905 x 242 12 8 8.59 28% 7.83 35%

Hyperion | Filtered Erta Ale t U HFUEA 256 x 3187 x 242 12 8 6.84 43% 5.99 50%
Filtered Lake Monona * 8] HFULM 256 x 3176 x 242 12 8 6.79 43% 6.06 49%
Filtered Mt. St. Helena * U HFUMS 256 x 3242 x 242 12 8 6.78 43% 5.88 51%
Erta Ale * U HUEA 256 x 3187 x 242 12 8 7.57 37% 6.99 42%
Lake Monona * U HULM 256 x 3176 x 242 12 8 7.52 37% 7.08 41%
Mt. St. Helena * U HUMS 256 x 3242 x 242 12 8 7.49 38% 6.93 42%
Level 01 % 8] 101 60 x 1528 x 8359 12 4 593 51% 4.69 61%

IASI Level 02% U 102 60 x 1528 x 8359 12 4 5.90 51% 4.75 60%
Level 03 % U 103 60 x 1528 x 8359 12 4 5.42 55% 4.58 62%
Level 04 % U 104 60 x 1528 x 8359 12 4 6.23 48% 4.90 59%

*: Calibrated or Uncalibrated; t: Cropped to 256 x 512 x 242; }: Cropped to 60 x 256 x 8359.

Remote Sens. 2019, 11, 2461 13 of 24

The machine that these experiments ran on has an Intel Core 2 Duo CPU E7400 @2.80GHz
with 3072KB of cache and 3GB of RAM. The operating system is Ubuntu 16.04.5 LTS with kernel
4.15.0-47-generic (64 bits).

To ensure that there was no loss of information, the image was reconstructed by reverse
transformation and verified to be identical to the original image in the case of predictive and differential
methods. For k?-raster, after saving the structure to disk, we made sure that the original image could
be reconstructed from the saved data.

3.1. Comparison with Other Compression Algorithms

Both k2-raster with and without predictive and differential encoding were compared to other
commonly-used compression algorithms such as gzip, bzip2, xz, and specialized algorithms such as
M-CALIC and CCSDS 123.0-B-1. The results for the comparison are shown in Table 2 and depicted in
Figure 12.

It can be seen that k?-raster alone already performed better than gzip. When it was used
with the predictor, it produced a bit rate that was basically on a par with and sometimes better
than other compression algorithms such as xz or bzip2. However, it could not attain the bit-rate
level done by CCSDS 123.0-B-1 or M-CALIC. This was to be expected as both are specialized
compression techniques, and CCSDS 123.0-B-1 is considered a baseline against which all compression
algorithms for hyperspectral images are measured. Nevertheless, k*>-raster provides direct access to
the elements without full decompression, and this is undoubtedly the major advantage it has over all
the aforementioned compression algorithms.

T T T T T T T T T T T T T T
K2-RASTER ==t
K2-RASTER+PREDICTOR, ===
GZIP
BZIP2
Xz
M-CALIC —&—
CC5D5 —o—

Rate (bpppb)
=]
T

AGY AGle ACYDD ACYO3 AUYDD AUYD3 HCA1l HCU HFUEAHFULM 101 102 Clge4 C165
Hyperspectral image

Figure 12. A rate (bpppb) comparison with other compression techniques.

Remote Sens. 2019, 11, 2461 14 of 24

Table 2. A rate (bpppb) comparison with other compression techniques. The optimal values for all compression algorithms (except for M-CALIC, CCSDS 123.0-B-1)
are highlighted in red. Results for CCSDS 123.0-B-1 are from [28].

Compression Technique (bpppb)
2 2
Sensor | Name C/U* Acronym k2-Raster kP;I:;iS:;: l,;i;?earzt:tri; gzip bzip2 XZ M-CALIC 123?(8)‘.]])3.81
9 U AG9 9.49 6.76 7.52 10.16 7.42 7.90 4.19 4.21
16 U AGl6 9.12 6.63 7.29 9.82 7.15 7.66 419 418
60 U AG60 9.81 7.06 7.82 1053 7.71 8.23 441 4.36
AIRS 126 U AGI126 9.61 7.05 7.78 1033 7.64 8.10 4.39 4.38
129 U AG129 8.65 6.47 6.96 9.50 6.68 7.22 4.08 412
151 U AGI151 9.53 7.02 7.74 1031 743 7.97 4.39 441
182 U AG182 9.68 7.19 7.94 1064 7.79 8.33 4.45 442
193 U AG193 9.44 7.06 7.77 10.15 747 7.94 4.42 4.42
Yellowstone sc. 00 C ACY00 9.61 6.87 7.79 1012 751 8.04 412 3.95
Yellowstone sc. 03 C ACY03 9.42 6.72 7.65 9.59 7.10 7.62 3.95 3.82
Yellowstone sc. 10 C ACY10 7.57 5.84 6.26 7.41 5.30 5.73 3.31 3.36
Yellowstone sc. 11 C ACY11 8.81 6.52 6.85 9.04 6.65 7.07 3.71 3.63
AVIRIS Yellowstone sc. 18 C ACY18 9.78 7.04 7.53 10.00 745 7.95 4.09 3.90
Yellowstone sc. 00 U AUY00 11.92 9.04 10.04 1239 999 10.61 6.32 6.20
Yellowstone sc. 03 U AUY03 11.74 8.87 9.91 1198 954 10.23 6.14 6.07
Yellowstone sc. 10 U AUY10 9.99 8.00 8.57 1017 7.71 8.40 5.53 5.58
Yellowstone sc. 11 U AUY11 11.27 8.77 9.21 1149 9.08 9.66 591 5.84
Yellowstone sc. 18 U AUY18 12.15 9.29 9.92 1229 990 10.58 6.33 6.21
frt000065e6_07_sc164 U Cle4 10.08 10.02 10.06 1098 842 7.15 7.34 4.86
frt00008849_07_sc165 U C165 10.37 10.33 10.37 11.03 8.68 7.51 7.73 491
CRISM frt0001077d_07_sc166 U C166 11.05 11.08 11.14 1120 9.04 7.64 8.44 5.44
hrl00004{38_07_sc181 8] C181 9.97 9.52 9.52 10.77 828 8.20 7.09 4.27
hrl0000648f_07_sc182 U C182 10.11 9.84 9.86 1090 8.53 7.90 7.28 4.49
hrl0000ba9¢_07_sc183 U C183 10.65 10.59 10.64 10.87 852 7.28 7.91 4.96

Remote Sens. 2019, 11, 2461

Table 2. Cont.

Compression Technique (bpppb)

2 2

Sensor Name C/U* Acronym k2-Raster kPrIe{;is:;:]l;i fﬁii::i:l gzip bzip2 xz M-CALIC 1253_]1)3_81
Agricultural 2905 C HCA1 8.20 7.47 7.47 890 7.07 740 5.39 -
Agricultural 3129 * C HCA2 8.08 7.50 7.50 884 704 735 5.28 5.70
Coral Reef C HCC 7.38 7.41 741 745 574 590 4.59 542
Urban * C HCU 8.59 7.83 7.83 924 746 7.83 5.25 5.71

Hyperion | Filtered Erta Ale t 8] HFUEA 6.84 5.99 6.15 763 555 6.00 4.19 4.32
Filtered Lake Monona * 8} HFULM 6.79 6.06 6.18 761 550 594 4.21 4.45
Filtered Mt. St. Helena * 8] HFUMS 6.78 5.88 6.15 718 544 574 411 4.35
Erta Ale U HUEA 7.57 6.99 7.06 869 641 6.73 4.87 4.32
Lake Monona * 8] HULM 7.52 7.08 7.13 869 646 6.74 4.94 4.45
Mt. St. Helena * U HUMS 7.49 6.93 7.04 826 628 6.48 4.82 4.36
Level 011 8] 101 5.93 4.69 5.01 590 448 398 2.94 2.89

IASI Level 021 U 102 5.90 4.75 5.03 596 444 401 2.92 2.88
Level 031 8] 103 5.42 4.58 4.79 525 394 375 2.92 2.88
Level 041 U 104 6.23 4.90 5.20 630 471 424 2.97 2.90

*: Calibrated or Uncalibrated; t: Cropped to 256 x 512 x 242 except for CCSDS 123.0; f: Cropped to 60 x 256 x 8359 except for CCSDS 123.0.

15 of 24

Remote Sens. 2019, 11, 2461 16 of 24

3.2. Build Time

Both the time to build the k*-raster only and the time to build k?-raster with predictive and
differential preprocessing were measured. They were then compared against the time to compress
the data with gzip. The results are presented in Table 3. We can see that the build time for k?-raster
only took half as long as with gzip. Comparing the predictive and the differential methods, the time
difference is small although it generally took longer to build the former than the latter due to the
additional time needed to compute the values of & and f. Both, however, still took less time to build
than gzip compression.

Table 3. A comparison of build time (in seconds) using k?-raster only and k?-raster with predictive and
differential methods.

Build Time (s) .
Hyperspectral > > Gzip
Image K2-Raster k=-Raster + k*“-Raster + Compression (s)
Predictor = Differential
AGY9 1.86 2.23 212 3.18
AGl6 1.78 2.22 2.09 3.49
ACY00 8.32 10.11 9.49 15.01
ACYO03 8.26 10.00 9.47 15.32
AUY00 5.56 7.39 6.84 12.10
AUY03 5.59 7.38 6.76 12.68
Cle4 17.84 21.32 21.59 27.94
C165 17.89 22.83 22.92 30.83
HCA1 1.98 2.67 2.47 5.59
HCA2 1.98 2.64 2.42 5.80
HFUEA 2.38 3.01 3.05 7.59
HFULM 2.41 3.04 2.87 7.57
HFUMS 2.33 2.95 2.76 8.26
101 14.58 18.62 16.56 31.59
102 14.66 17.49 16.66 29.64

3.3. Access Time

Several tests were conducted to see what the access time was like to query the cells in each image
and we found that the time for a random cell access took longer for a predictor compared to just using
the k?-raster. This was expected but we should bear in mind that the bit rates are reduced when a
predictor is used, thus decreasing storage size and transmission rate. Note that the last column also
lists the time to decompress a gzip image file and it took at least 4 or 5 times longer than using a
predictor to randomly access the data 10° times. Table 4 shows the results of access time in milliseconds
for 100,000 iterations of random cell query done by getCell(), a function which was described in the
paper from Ladra et al. [20] for accessing pixel values in a k?-raster.

Remote Sens. 2019, 11, 2461 17 of 24

Table 4. A comparison of access time (in milliseconds) using k?-raster only and k?-raster with predictive
and differential encoders.

100,000 Iterations of Random Access (ms) .

Hyperspectral > > Gzip
Image I2-raster k--raster + k~-raster + Decompression (ms)
Predictor Differential

AG9 90 125 92 474
AG16 85 121 85 459
ACY00 275 485 426 1949
ACY03 269 474 424 1912
AUY00 151 489 402 1941
AUY03 151 485 402 1957
Cl64 273 400 381 4048
C165 301 420 397 4382
HCA1 77 131 127 735
HCA2 76 121 118 737
HFUEA 93 150 129 684
HFULM 92 148 129 680
HFUMS 91 146 134 670
101 155 222 244 2517
102 168 236 255 2396

3.4. Use of Different k-Values

With k?-raster, we found that different k-values used in the structure would produce different bit
rates and different access time. In general, for most of our testing images the k-value is at its optimal
bit-rate level when it is between 4 and 9. The reason is that as the k-value increases, the height of the
constructed tree becomes smaller. Therefore, the number of nodes in the tree will decrease and so will
the size of the bitmaps Lmax and Lmin that need to be stored in the structure. Table 5 shows the bit
rates of some of the testing images between k = 2 and k = 20. Additionally, experiments show that
as the k-value becomes higher, the access time also becomes shorter, as can be seen in Table 6. As the
k-value gets larger, the tree becomes shorter, thus making it faster to traverse from the top level to a
lower level when searching for a particular node in the tree. As there is a trade-off between storage
size and access time, for the experiments, the k-value that produces the lowest bit rate for the image
was used.

For those who would like to know which k-value would give the best or close to the best rate,
we recommend them to use a value of 6 as a general rule. This can be seen from Table 5 where the
difference in the rate produced by this value and the one by the optimal k-value averages out to be
only about 0.19 bpppb.

3.5. Use of Different Group Sizes

Tests were performed to see how the group size affects the predictive and differential methods.
The group sizes were 2, 4, 8,12, 16, 20, 24, 28 and 32. The results in Table 7 and Figure 13 show that
for most images, they are at their optimal bit rates when the size is 4 or 8. The best bit-rate values
are highlighted in red. For the range of group size tested, we can also see that except for the CRISM
scenes (which consist of pixels with low spatial correlation, thus leading to inaccurate prediction), the
bit rates for the predictor are always lower than the ones for differential encoding, irrespective of the
group size.

For users who are interested in knowing which group size is the best to apply to the predictive and
differential methods, a size of 4 is recommended for general use as the difference in bit rate produced
by this group size and the one by the optimal group size averages out to be about 0.06 bpppb.

For the rest of the experiments, the optimal group size for each image was used to obtain the
bit rate.

Remote Sens. 2019, 11, 2461 18 of 24
Table 5. Rates (bpppb) for different k-values for some of the testing images. The k-value with the lowest rate is in red.
Hyperspectral | 4 _, 5 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
Image

AGY 13.06 10.11 10.03 10.47 9.49 998 1068 9.89 10.65 - 11.23 1033 1129 953 1157 11.72 1078 1252 1213
AGl16 1272 978 9.66 1011 9.12 957 1032 951 10.29 - 1082 998 1086 9.17 11.11 11.28 1032 12.07 11.68
ACY00 1234 1020 9.76 - 9.61 991 - 969 983 987 995 1024 1020 - - - - - -
ACYO03 11.81 9.87 9.56 - 942 971 - 950 965 970 976 10.01 9.98 - - - - - -
AUY00 1531 1293 12.20 - 12.08 12.35 - 11.92 1211 1213 1217 1252 1243 - - - - - -
AUY03 15.03 12.60 12.00 - 11.90 12.20 - 11.74 1193 1194 1200 1234 1225 - - - - - -
Cle4 12.60 1042 10.17 - 10.08 - - 1034 1020 10.76 1048 - - - - - - - -
C165 12.84 10.67 10.48 - 10.37 - - 10.54 1051 10.79 11.03 - - - - - - - -
HCA1 1079 941 8.85 8.45 874 9.36 8.20 8.51 8.68 8.85 8.88 8.92 9.21 - - - - - -
HCC 9.43 8.12 7.79 741 7.75 8.40 7.38 767 7.85 806 812 826 8.56 - - - - - -
HFUEA 8.82 7.80 7.30 7.24 7.41 8.07 6.84 7.25 7.43 7.66 7.68 7.71 8.07 - - - - - -
HFULM 8.69 7.70 7.20 7.13 7.33 8.02 6.79 7.21 7.40 7.64 7.66 7.68 8.05 - - - - - -
101 8.03 - 5.93 - - 6.45 - - - - - - - - 6.59 7.79 8.30 8.73 6.36
102 8.02 - 5.90 - - 6.48 - - - - - - - - 6.64 7.92 8.46 897 645

Remote Sens. 2019, 11, 2461

Table 6. Access time (ms) for different k-values for some of the testing images. The best access time is in red.

Hyperspectral Access Time (ms)

Image k=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
AGY9 345 167 130 114 91 84 83 82 82 - 60 59 5 56 55 52 60 51 47
AGl6 334 152 114 108 8 79 78 80 75 - 55 54 53 53 59 51 58 48 45
ACY00 3553 1085 573 - 291 225 - 152 133 125 114 110 104 - - - - - -
ACY03 3521 1112 572 - 277 223 - 149 131 122 112 120 102 - - - - - -
AUY00 3569 1135 592 - 292 228 - 153 133 126 115 113 106 - - - - - -
AUY03 3559 1123 58 - 279 221 - 152 133 124 115 109 103 - - - - - -
Cle4 2924 964 606 - 272 - - 159 161 138 131 - - - - - - - -
C165 3754 1017 555 - 290 - - 178 156 152 145 - - - - - - - -
HCA1 1179 384 213 154 124 106 80 78 69 71 62 61 62 @ - - - - - -
HCC 1203 406 233 172 139 123 95 94 8 8 8 79 79 - - - - - -
HFUEA 1409 465 262 184 148 127 93 9 8 8 77 76 76 - - - - - -
HFULM 1427 467 262 193 155 130 94 9% 8 90 79 81 80 - - - - - -
101 999 - 79 - - 679 - - - - - - - - 610 709 715 728 450
102 1047 - 759 - - 698 - - - - - - - - 651 746 746 730 472

19 of 24

Remote Sens. 2019, 11, 2461

T T
AGY-PRED —+—
14 - AGS-DIFF ——
ACYOD0-PRED
ACY00-DIFF
AUYO0-PRED
AUYOD-DIFF —=—
C164-PRED —&—
C164-DIFF ——
12 - HCA1-PRED —a—

e
HCA1-DIFF —s— T~
HFUEA-PRED e)
HFUEA-DIFF e
101-PRED o
I01-DIFF —&— e
— . I 2

JUIN i

Rate (bpppb)

&

--'"'0'"__---

Group size

24

28

Figure 13. A rate (bpppb) comparison of different group sizes.

Table 7. A rate (bpppb) comparison of different group sizes using the predictive and the differential

methods. The optimal values are highlighted in red.

32

Hyperspectral Group Size
Image 2 4 8 12 16 20 24 28 32

AGY9-Pred 803 741 719 713 716 715 717 717 725
AGI-Diff 811 760 751 752 763 758 774 773 8.00
ACY00-Pred 774 705 703 736 755 778 781 818 818
ACY00-Diff 803 758 779 818 840 873 9.09 948 9.13
AUY00-Pred 994 922 918 953 970 10.03 10.02 10.53 10.34
AUY00-Diff 1033 991 10.18 1049 1071 11.14 1132 1191 11.36
C164-Pred 10.08 10.11 1017 1020 1023 1020 1031 1024 10.24
C164-Diff 10.06 10.08 10.13 10.16 10.18 10.20 10.31 10.22 10.17
HCA1-Pred 751 730 731 751 765 815 831 809 816
HCAI1-Diff 757 747 768 766 800 834 895 884 847
HFUEA-Pred 6.07 601 605 613 625 633 641 621 655
HFUEA-Diff 611 615 630 644 675 663 681 670 7.07
101-Pred 522 491 478 475 473 474 469 473 471
101-Diff 532 510 501 504 501 506 502 505 506

3.6. Predictive and Differential Methods

The proposed differential and predictive methods were used to transform these images into
data with lower bit rates. They were then used as input to k?-raster to further reduce their bit rates.
Their performance was compared together with Reversible Haar Transform at levels 1 and 5, and
the results are presented in Table 8. Figure 14 shows the entropy comparison of Yellowstone(03 using
differential and predictive methods while Figure 15 shows the bit rate comparison between the two

Remote Sens. 2019, 11, 2461 21 of 24

methods. Both show us that the proposed algorithm has brought benefits by lowering the entropy and
the bit rates. The data for reference bands are left out of the plots so that the reader can have a clearer
overall picture of the bit rate comparison.

Compared to other methods, the predictive method outperforms others, with the exception
of Reversible Haar Transform level 5. However, it should be noted that while the predictive and
differential methods require only two pixels (reference pixel and current pixel) to perform the reverse
transformation, it would be a much more involved process to decode data using Reversible Haar
Transform at a higher level. The experiments show that for all the testing images, the predictive
method in almost all bands perform better than the differential method. This can be explained by the
fact that in predictive encoding the values of « and 8 in Equation (1) take into account not only the
spectral correlation, but also the spatial correlation between the pixels in the bands when determining
the prediction values. This is not the case with differential encoding whose values are only taken from
the spectral correlation.

AVIRIS Uncalibrated Yellowstone03 (AUY03)

ENTROPY (ORIGINAL I‘MAGE) —
ENTROPY (PREDICTOR GROUP SIZE 8) ——
//-\A/\\ENTROPY (DIFFERENTIAL GROUP SIZE 4) R

I“f \\. “«”.“ ‘(\"_J/ B J\‘\’\]

Bit-rate (bpp)

0 50 100 150 200

Spectral band

Figure 14. An entropy comparison of Yellowstone03 using differential and predictive methods. Data
for reference bands are not included.

AVIRIS Uncalibrated Yellowstone03 (AUY03)

BIT-RATE K2-RASTER (ORIGINAL I‘MAGE)
— BIT-RATE K2-RASTER (PREDICTOR GROUP SIZE 8) ——
\ BIT-RATE K2-RASTER (DIFFERENTIAL GROUP SIZE 4)

Jeps f/\/ ,‘V‘f'\/ \ .“/ \\I T “‘/ ’7\"'\"‘\\I) J

[

Bit-rate (bpp)

0 50 100 150 200

Spectral band

Figure 15. A bit rate comparison of Yellowstone03 using differential and predictive methods on
k?-raster. Data for reference bands are not included.

Remote Sens. 2019, 11, 2461 22 of 24

Table 8. A rate (bpppb) comparison using different transformed methods: predictor, differential,
reversible Haar level 1 and reversible Haar level 5 on k?-raster. The optimal values are

highlighted in red.
Transformation Type

Hyperspectral Without Reversible Reversible
Image Transformation Predictor Differential Haar Haar

anstormatio (Levell) (Level 5)
AG9 9.49 6.76 7.52 8.10 6.83
AGl6 9.12 6.63 7.29 7.81 6.60
ACYO00 9.63 6.87 7.79 8.01 7.00
ACY03 9.44 6.72 7.65 7.86 6.87
AUY00 11.92 9.04 10.04 10.33 9.35
AUY03 11.74 8.87 9.91 10.18 9.23
Cle4 10.08 10.02 10.06 10.01 9.83
C165 10.37 10.33 10.37 10.33 10.16
HCA1 8.20 7.47 7.47 7.37 7.05
HCC 7.38 7.50 7.50 6.71 6.54
HFUEA 6.84 5.99 6.15 7.12 6.75
HFULM 6.79 6.06 6.18 7.14 6.83
101 5.93 4.69 5.01 5.26 4.54
102 5.90 4.75 5.03 5.26 4.57

4. Conclusions

In this work, we have shown that using k?-raster structure can help reduce the bit rates of a
hyperspectral image. It also provides easy access to its elements without the need for initial full
decompression. The predictive and differential methods can be applied to further reduce the rates.
We performed experiments that showed that if the image data are first converted by either a predictive
method or a differential method, we can gain more reduction in bit rates, thus making the storage
capacity or the transmission volume of the data even smaller. The results of the experiments verified
that the predictor indeed gives a better reduction in bit rates than the differential encoder and is
preferred to be used for hyperspectral images.

For future work, we are interested in exploring the possibility of modifying the elements in a
k?-raster. This investigation is based on the dynamic structure, dk>-tree, as discussed in the papers by
de Bernardo et al. [29,30]. Additionally, we would like to improve on the variable-length encoding
which is currently in use with k?-raster, and hope to further reduce the size of the structure [23,24].

Author Contributions: conceptualization, K.C., D.E.O.T., IB. and].S.-S.; methodology, K.C., D.E.O.T., I.B. and
].S.-S.; software, K.C.; validation, K.C., I.B. and].S.-S.; formal analysis, K.C., D.E.O.T,, I B. and].S.-S.; investigation,
K.C.,, D.E.O.T, LB. and].S.-S.; resources, K.C., D.E.O.T., I.B. and].S.-S.; data curation, K.C., I.B. and J.S.-S.;
writing—original draft preparation, K.C., LB. and].S.-S.; writing—review and editing, K.C., I.B. and J.S.-S.;
visualization, K.C., I.B. and].S.-S.; supervision, L.B. and].S.-S.; project administration, I.B. and J.S.-S.; funding
acquisition, I.B. and J.S.-S.

Funding: This research was funded by the Spanish Ministry of Economy and Competitiveness and the European
Regional Development Fund under grants RT12018-095287-B-100 and TIN2015-71126-R (MINECO/FEDER, UE)
and BES-2016-078369 (Programa Formacién de Personal Investigador), and by the Catalan Government under
grant 2017SGR-463.

Acknowledgments: The authors would like to thank Magli et al. for the M-CALIC software that they provided
us in order to perform some of the experiments in this research work.

Conflicts of Interest: The authors declare no conflict of interest.

Remote Sens. 2019, 11, 2461 23 of 24

Abbreviations

The following abbreviations are used in this manuscript:

AIRS Atmospheric Infrared Sounder

AVIRIS Airborne Visible InfraRed Imaging Spectrometer

CALIC Context Adaptive Lossless Image Compression

CCSDs Consultative Committee for Space Data Systems

CRISM Compact Reconnaissance Imaging Spectrometer for Mars
DACs Directly Addressable Codes

IASI Infrared Atmospheric Sounding Interferometer

JPEG 2000 Joint Photographic Experts Group 2000

KLT Karhunen-Loéve Theorem

LOUDS Level-Order Unary Degree Sequence

MDPI Multidisciplinary Digital Publishing Institute

PCA Principal Component Analysis

SOAP Short Oligonucleotide Analysis Package

References

1. Navarro, G. Compact Data Structures: A Practical Approach; Cambridge University Press: Cambridge, UK, 2016.
2. Jacobson, G. Succinct Static Data Structures. Ph.D. Thesis, Carnegie-Mellon, Pittsburgh, PA, USA, 1988.

10.
11.

12.

13.

14.

15.

16.

17.

Jacobson, G. Space-efficient static trees and graphs. In Proceedings of the Annual Symposium on Foundations
of Computer Science (FOCS), Research Triangle Park, NC, USA, 30 October—1 November 1989; pp. 549-554.
Grossi, R.; Gupta, A.; Vitter,].S. High-order entropy-compressed text indexes. In Proceedings of the
14th Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, MD, USA, 12-14 January 2003;
Volume 72, pp. 841-850.

Ferragina, P.; Manzini, G. Opportunistic data structures with applications. In Proceedings of the 41st Annual
Symposium on Foundations of Computer Science, Redondo Beach, CA, USA, 12-14 November 2000; p. 390.
Burrows, M.; Wheeler, D. A Block Sorting Lossless Data Compression Algorithm; Technical Report; Digital
Equipment Corporation: Maynard, MA, USA, 1994.

Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome. Genome Biol. 2009, 10, R25.

Li, R; Yu, C; Li, Y; Lam, T, Yiu, S.; Kristiansen, K.; Wang, J]. SOAP2: an improved ultrafast tool for short
read alignment. Bioinformatics 2009, 25, 1966-1967.

Consultative Committee for Space Data Systems (CCSDS). Image Data Compression CCSDS 123.0-B-1;
Blue Book; CCSDS: Washington, DC, USA, 2012.

Jolliffe, I.T. Principal Component Analysis; Springer: Berlin, Germany, 2002; p. 487.

Taubman, D.S.; Marcellin, M.W. JPEG 2000: Image Compression Fundamentals, Standards and Practice; Kluwer
Academic Publishers: Boston, MA, USA, 2001.

Wu, X.; Memon, N. CALIC—A context based adaptive lossless image CODEC. In Proceedings of the 1996
IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, Atlanta,
GA, USA, 9 May 1996.

Wu, X.; Memon, N. Context-based adaptive, lossless image coding. IEEE Trans. Commun. 1997, 45, 437-444.
Wu, X,; Memon, N. Context-based lossless interband compression—Extending CALIC. IEEE Trans.
Image Process. 2000, 9, 994-1001.

Magli, E.; Olmo, G.; Quacchio, E. Optimized onboard lossless and near-lossless compression of hyperspectral
data using CALIC. IEEE Geosci. Remote Sens. Lett. 2004, 1, 21-25.

Kiely, A.; Klimesh, M.; Blanes, I; Ligo, J.; Magli, E.; Aranki, N.; Burl, M.; Camarero, R.; Cheng, M.; Dolinar, S.;
etal. The new CCSDS standard for low-complexity lossless and near-lossless multispectral and hyperspectral
image compression. In Proceedings of the 6th International WS on On-Board Payload Data Compression
(OBPDC), ESA/CNES, Matera, Italy, 20-21 September 2018.

Fjeldtvedyt, J.; Orlandi¢, M.; Johansen, T.A. An efficient real-time FPGA implementation of the CCSDS-123
compression standard for hyperspectral images. IEEE]. Sel. Top. Appl. Earth Obs. Remote Sens. 2018,
11,3841-3852.

Remote Sens. 2019, 11, 2461 24 of 24

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Béscones, D.; Gonzélez, C.; Mozos, D. Hyperspectral image compression using vector quantization, PCA
and JPEG2000. Remote Sens. 2018, 10, 907.

Guerra, R.; Barrios, Y.; Diaz, M.; Santos, L.; Lopez, S.; Sarmiento, R. A new algorithm for the on-board
compression of hyperspectral images. Remote Sens. 2018, 10, 428.

Ladra, S.; Param4,].R.; Silva-Coira, F. Scalable and queryable compressed storage structure for raster data.
Inf. Syst. 2017, 72, 179-204.

Samet, H. The Quadtree and related hierarchical data structures. ACM Comput. Surv. (CSUR) 1984,
16, 187-260.

Brisaboa, N.R.; Ladra, S.; Navarro, G. k?-trees for compact web graph representation. In International
Symposium on String Processing and Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2009;
pp- 18-30.

Brisaboa, N.R.; Ladra, S.; Navarro, G. DACs: Bringing direct access to variable-length codes. Inf. Process
Manag. 2013, 49, 392-404.

Brisaboa, N.R.; Ladra, S.; Navarro, G. Directly addressable variable-length codes. In International Symposium
on String Processing and Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2009; pp. 122-130.
Silva-Coira, F. Compact Data Structures for Large and Complex Datasets. Ph.D. Thesis, Universidade da
Corufia, A Corufia, Spain, 2017.

Cerdeira-Pena, A.; de Bernardo, G.; Farifia, A.; Parama,].R.; Silva-Coira, F. Towards a compact representation
of temporal rasters. In String Processing and Information Retrieval; SPIRE 2018; Lecture Notes in Computer
Science; Springer: Cham, Switzerland, 2018; Volume 11147.

Cruces, N.; Seco, D.; Gutiérrez, G. A compact representation of raster time series. In Proceedings of the Data
Compression Conference (DCC) 2019, Snowbird, UT, USA, 26-29 March 2019; pp. 103-111.

Alvarez Cortés, S.; Serra-Sagrista, J.; Bartrina-Rapesta, J.; Marcellin, M. Regression Wavelet Analysis
for Near-Lossless Remote Sensing Data Compression. IEEE Trans. Geosci. Remote Sens. 2019.
doi:10.1109/TGRS.2019.2940553.

De Bernardo, G.; Alvarez Garcia, S.; Brisaboa, N.R.; Navarro, G.; Pedreira, O. Compact querieable
representations of raster data. In International Symposium on String Processing and Information Retrieval;
Springer: Cham, Switzerland, 2013; pp. 96-108.

Brisaboa, N.R.; De Bernardo, G.; Navarro, G. Compressed dynamic binary relations. In Proceedings of the
2012 Data Compression Conference, Snowbird, UT, USA, 10-12 April 2012; pp. 52-61.

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Quadtrees
	LOUDS
	k2-Tree
	DACs
	k2-Raster
	Predictive Method
	Differential Method
	Related Work

	Results
	Comparison with Other Compression Algorithms
	Build Time
	Access Time
	Use of Different k-Values
	Use of Different Group Sizes
	Predictive and Differential Methods

	Conclusions
	References

