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Abstract: Velocity-component variances can be directly computed from lidar measurements using
information of the second-order statistics within the lidar probe volume. Specifically, by using
the Doppler radial velocity spectrum, one can estimate the unfiltered radial velocity variance.
This information is not always available in current lidar campaigns. The velocity-component variances
can also be indirectly computed from the reconstructed velocities but they are biased compared to
those computed from, e.g., sonic anemometers. Here we show, for the first time, how to estimate
such biases for a multi-lidar system and we demonstrate, also for the first time, their dependence on
the turbulence characteristics and the lidar beam scanning geometry relative to the wind direction.
For a dual-Doppler lidar system, we also show that the indirect method has an advantage compared
to the direct one for commonly-used scanning configurations due to the singularity of the system.
We demonstrate that our estimates of the radial velocity and velocity-component biases are accurate
by analysis of measurements performed over a flat site using a dual-Doppler lidar system, where
both lidars stared over a volume close to a sonic anemometer at a height of 100 m. We also show
that mapping these biases over a spatial domain helps to plan meteorological campaigns, where
multi-lidar systems can potentially be used. Particularly, such maps help the multi-point mapping of
wind resources and conditions, which improve the tools needed for wind turbine siting.
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1. Introduction

Scanning Doppler wind lidars (hereafter scanning lidars) are lidars that, depending on the
particular need, can probe the atmosphere at almost any given scanning configuration. They have
been employed within a wide range of applications including weather and climate monitoring [1,2],
atmospheric boundary-layer and turbulence studies [3–5], and wind energy [6,7]. Within the latter
application, scanning lidars have become intensively used for different purposes in recent years. It is
now common to employ such lidars in wind resource assessment [8,9], power curve performance
measurements [10], site conditions [11,12], wake analysis [13,14], and wind forecasting [15].

A dual-Doppler scanning lidar system consists of two scanning lidars separated from some tens
of meters and even up to kilometers [8]. Such a system is chosen over other configurations because
of different reasons. First, one can use a single scanning lidar to estimate both wind speed and wind
direction but we need to measure in more than one direction and assume that the wind is homogeneous
within the scanned volume, which is an assumption only valid for flat and homogeneous terrain. Thus,
the uncertainty (and sometimes the accuracy) of estimating the horizontal velocity components with
such a configuration is too high, particularly when measuring at the kilometer range. Second, in wind
energy we are mostly interested in the horizontal velocity components (wind speed and direction),
the longitudinal turbulence, i.e., the longitudinal velocity-component variance, and the vertical wind
shear, which are parameters that can be retrieved accurately with a dual-system configuration (here
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we focus our attention on the accuracy of turbulence estimates with such systems). Third, scanning
lidars are expensive and, thus, acquisition and maintenance of a triple system, which in principle can
be used to estimate the three velocity components and their variances, are not insignificant issues.
Fourth, measuring with multi-lidar systems is not trivial and logistically a difficult matter, particularly
for setups where their beams are synchronized both in space and time.

Dual-Doppler scanning lidar systems were recently used in the main experimental campaigns
within the New European Wind Atlas project [9,16]. In the RUNE campaign [8], the dual setup
provided detailed information with regards to the effect of the land and the sea-to-land change of
roughness on the wind. In the Perdigão campaign [17,18], multi-lidar systems were used to study the
wake after a solitary wind turbine on a ridge [19–21], and trapped lee-waves after two ridges under
stable conditions and the observations were compared to results from numerical modelling [22,23].
Menke et al. [24] used three pairs of scanning lidars in the same experiment to characterize how
recirculation after the ridges depends on atmospheric stability and position in the landscape. Scanning
lidars were mounted on platforms on two masts separated by 4.25 km to investigate the dynamics
of flow in a horizontal plane over a flat, but heterogeneous landscape in the Østerild Balconies
experiment [25].

It is important to note that in most of the previous studies, the works concentrated in the analysis
of the flow either by looking at the radial velocity (also known as the line-of-sight velocity), which is
the basic output of a lidar scan, or at the velocity components, which were reconstructed from radial
velocities using different methodologies. We believe that this is partly because the understanding
of atmospheric turbulence and how lidars probe the atmosphere are complex matters. We show,
for the first time, how to compute the bias of velocity-component variances using radial velocity
measurements from a multi-lidar system, in relation to those variances from an ideal anemometer.
We also show for the first time the dependence of these biases on turbulence characteristics, scanning
geometry, and lidar characteristics.

Here, we start with a general background on lidars (Section 2), where we first demonstrate
their capabilities to measure atmospheric turbulence (Section 2.1). Then we illustrate two ways of
estimating turbulence with a dual-Doppler scanning system (Section 2.2), where their advantages and
disadvantages are discussed. Then we describe an experimental campaign in which a dual system
measured during slightly more than one month over a volume close to a sonic anemometer at 100 m
(Section 3); this campaign is the basis of our analysis. Results with regards to observed biases of
radial velocity variances and biases of velocity-component variances between measurements from
the sonic anemometer and the dual system are shown in Sections 4.3 and 4.4 together with theoretical
estimations of these biases. Maps have been constructed showing the spatial variability of the bias of
the velocity-component variance by a dual system in Section 4.6. Finally, Discussion and Conclusions
are drawn in the last two sections.

2. Background

2.1. Generalities

Turbulence information from lidar(s) measurements can be retrieved using two methods. For
the first (direct) method, we compute second-order statistics of the three velocity components based
on the second-order statistics of the lidar(s) radial velocities. This has the potential advantage that
the computed second-order statistics, e.g., the velocity-component variances, can be unbiased, when
compared to the variances from an ideal instrument, if the second-order statistics of the lidar(s) radial
velocities account for the averaging (filtering) effect of the measurement volume. For the second
(indirect) method, we compute second-order statistics of the three velocity components directly from
the reconstructed velocity components, which have been already computed based on the lidar(s) radial
velocities. The latter method has the disadvantage that the computed second-order statistics are, if not
all most of the times, biased as we will explain later. However, as we will also show, the indirect
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method also has advantages compared to the direct method, particularly when turbulence is estimated
using a dual-scanning system.

In order to understand the origin of these biases and filtering effects, we can start by assuming
that the measurements are performed with a single scanning lidar (see Figure 1), which is measuring
the wind v = (u, v, w), where u, v, and w are the velocity components along the horizontal axes x- and
y-, and the vertical axis z, respectively, at a distance d f with a beam in the direction of the unit vector n,

n(φ, θ) = (cos θ cos φ, sin θ cos φ, sin φ), (1)

where θ is the azimuth angle in the x-y plane and φ the elevation (tilt) angle with respect to the same
plane. For simplicity, we first assume that the wind is aligned with the x-axis. The radial velocity of a
scanning lidar can be expressed as [26]:

vr(φ, θ, d f ) = n(φ, θ) · v
[
n(φ, θ)d f

]
. (2)

Figure 1. Sketch of a scanning lidar measuring the wind v at a distance d f with a beam in the direction
of the unit vector n = n(θ, φ).

Equation (2) ignores any averaging along the beam. However, we might consider all velocities
within the probe volume and, thus, a weighted average radial velocity along the lidar beam will
be [26]:

ṽr(φ, θ, d f ) =
∫ ∞

−∞
ϕ(s)n(φ, θ) · v

[
n(φ, θ)(d f + s)

]
ds, (3)

where ϕ is the weighting function that depends on the lidar type and characteristics, and s the distance
along the beam from the point of interest. Such averaging affects the spectrum of the lidar radial
velocity (see e.g., [11] ):

Fvr (k1) = ninj

∫∫
|ϕ̂(k · n)|2 Φij(k)dk2dk3, (4)

where ϕ̂ is the Fourier transform of ϕ, Φij the spectral velocity tensor, i.e., the three-dimensional spatial
statistics of velocity fluctuations, and k = (k1, k2, k3) the wave vector. Equation (4) shows that the lidar
radial velocity spectrum is rather similar to the one-point spectra of the velocity components,

Fij(k1) =
∫∫

Φij(k)dk2dk3, (5)

with the addition of the effect of the probe volume and the beam direction. We will be using the model
of Mann [27] (hereafter Mann model) to describe Φij. The Mann model contains three parameters
(know as Mann parameters), besides k, related to the dissipation rate αε2/3, the length scale of
turbulence L, and anisotropy Γ.
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Let us first assume that the lidar measures over a volume so small that we can neglect any
averaging, i.e., ϕ̂(k · n) = 1. Figure 2a shows the difference between the u- and w-velocity spectra,
and the radial velocity spectrum from a lidar whose beam is tilted from the x-y plane. For zero tilt,
Fvr = Fu and at a 90◦ tilt, Fvr = Fw.
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Figure 2. Simulated u- and w-velocity spectra and radial velocity spectra of a lidar with (a) and
without (b) the effect of filtering for different elevation angles with respect to the mean wind for
αε2/3 = 0.1 m4/3 s−2, L = 50 m, and Γ = 3. For the case of filtering (b), zR/L = 0.5.

We observe that for some relatively low tilt angles, the radial velocity spectrum contains more
energy than the u-velocity spectrum. Following Equation (4), we notice that Fvr has contributions
(also sometimes referred to as contamination) from Φ11, Φ22, Φ33, Φ12, Φ23, Φ13, i.e., of the u-, v- and
w-velocity spectra and uv-, vw-, and uw- cospectra. The Mann model (uniform shear version) assumes
F12 = F23 = 0, so the spectra of the radial velocity of a tilted lidar beam aligned with the wind is at
least, in the light of the Mann model, a mix of u-, and w-spectra and uw-cospectra. Note that at 15◦ tilt,
Φ13 ‘positively’ contributes to Fvr and the opposite behavior occurs at 165◦.

Figure 2b shows the same velocity spectra as Figure 2a but for a lidar with a weighting function
of the type

ϕ̂(k1) = sinc2(kzR/2), (6)
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where zR characterizes the length of the probe volume. This is a weighting function typical of pulsed
lidars (see e.g., [28]), where zR is half the length of a rectangular pulse. It is clearly shown the effect of
filtering, particularly for the high wave numbers.

For the filtering case, i.e., Figure 2b, it is seen that, although filtered, the radial velocity spectrum
for the first two elevation angles still peaks higher than the u-velocity spectra; there is thus a given
zR/L value for which the radial velocity variance σ2

vr is equal to the u-velocity variance σ2
u , although

zR/L 6= 0. There is also a range of zR/L values where σ2
vr /σ2

u > 1 for relatively low tilt angles.

2.2. Dual-Doppler Scanning System

Here we present two ways to estimate horizontal velocity variances with a dual-Doppler
system. When evaluating observations and estimations of variances from an experimental campaign
(see Section 4), only the second method will be used due to the level of information of the lidar
measurements. However, the first method is introduced here to provide the reader with a wider
understanding of lidar turbulence measurements.

2.2.1. Direct Velocity and Variance Computations

From Equations (1) and (2) and assuming a zero vertical velocity component, we can estimate the
two horizontal velocity components with a dual-Doppler scanning system as,[

vr1

vr2

]
︸ ︷︷ ︸

vr

=

[
cos θ1 cos φ1 sin θ1 cos φ1

cos θ2 cos φ2 sin θ2 cos φ2

]
︸ ︷︷ ︸

M

[
u
v

]
︸ ︷︷ ︸

v

, (7)

where the subindexes 1 and 2 refer to the two scanning lidars, and its variances as:[
σ2

vr1

σ2
vr2

]
︸ ︷︷ ︸

S

=

[
cos2 θ1 cos2 φ1 sin2 θ1 cos2 φ1

cos2 θ2 cos2 φ2 sin2 θ2 cos2 φ2

]
︸ ︷︷ ︸

P

[
σ2

u
σ2

v

]
︸ ︷︷ ︸

Q

, (8)

where we assume that the uv-covariance is zero. The velocity components can then be computed by

v = M−1vr (9)

and the velocity variances by
Q = P−1S. (10)

The velocity variances will be unbiased if the measured radial velocity variances are unfiltered.
This can be achieved by avoiding the effects of averaging within the measurement volume using
information of the Doppler radial velocity spectrum [26,28].

The systems in Equations (7) and (8) show that the estimations of v and Q depend on how
invertible the geometrical matrices M and P are. For the simple case where φ1 = φ2 = 0◦, one can
notice that det (M) is highest at θ1 = θ2 = 45◦ and that M is singular for small or equal azimuths
with respect to the axis between both lidars, e.g., θ1 = 0◦ and θ2 = 180◦. For P results are similar
except that the matrix also becomes singular for supplementary angles. This is because of the cosine
and sine of the azimuths are squared, so the system cannot distinguish the contributions of the u-
and v-components. Figure 3 shows within a spatial horizontal domain both det (M) and det (P) for
a dual-Doppler scanning system. The direct methods for estimating velocity variances will thus
show high random errors in the areas where we can estimate the velocity components with low
random errors.
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(a)

(b)

Figure 3. Spatial distribution of the determinant of M (a) and P (b) for a dual-Doppler scanning system
with φ1 = φ2 = 0◦ assuming the wind is aligned with the x-axis.

2.2.2. Indirect Variance Computations

As mentioned in Section 2.1, computing the second-order statistics from reconstructed velocity
components of a scanning lidar leads, in most of the cases, to biases due to filtering and contamination
effects. The relevant question is whether or not we can estimate these biases accurately.

The Reynolds stresses in the Cartesian coordinate system can then be computed as

〈u′iu′j〉 = Niα〈v′r,αv′r,β〉Njβ, (11)

where

〈v′r,αv′r,β〉 = nα
i nβ

j

∫
ϕ̂(k · nα)ϕ̂(k · nβ)Φij(k)dk, (no summation over α and β) (12)

is the covariance matrix of radial velocities, being α and β subscripts indicating the lidar numbering,
and assuming a dual-lidar system

N =

[
cos θ1 cos φ1 sin θ1 cos φ1 sin φ1

cos θ2 cos φ2 sin θ2 cos φ2 sin φ2

]+
, (13)

where “+” is the pseudoinverse of the matrix. Note that by using two lidars only, Equation (11) gives
the Reynolds stresses assuming that the velocity component perpendicular to the plane spanned by
the two beams is zero.

Equation (11) shows that the Reynolds stresses are function of the covariance matrix between
radial velocities from the number of lidars available and the scanning geometry, and Equation (12)
shows that this covariance matrix is a function of the turbulence characteristics, the probe volume of the
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lidars, and the scanning geometry. The idea is that in the case where no averaging effects are significant,
i.e., ϕ̂(k · n) ≈ 1, the dependence on the scanning geometry of the covariance matrix is compensated by
the scanning geometry dependence in Equation (11) so that velocity-component variances computed
with the latter expression are unbiased and a function of the turbulence characteristics only. This is
the case of a sonic anemometer with three pairs of transducers, which can be seen as a multi-lidar
scanning system with three beams.

For the particular case of a dual-Doppler scanning system, computing the Reynolds stresses is
only slightly easier compared to a multi-lidar system; the covariance matrix of radial velocities is of
size 2× 2. The complexity of the calculation involves the computation of each term in the covariance
matrix (Equation (12)).

Further, for a dual-Doppler system scanning at a point, i.e., a system whose probe volume is
so small that no averaging occurs, unbiased velocity-component variances cannot be obtained using
Equation (11). This is because we need to have at least a 3× 3 covariance matrix to solve the system
in Equation (12) without the need of assumptions regarding relations between covariances. But we
know that these relations are dependent on the turbulence characteristics; thus, such an approach is
not convenient. There are exceptions, however, of dual system configurations with very small probe
volumes, whose computed velocity-component variances are unbiased for at least two of the velocity
components. One is a dual system with the lidars measuring at zero elevation angles; in this case
the estimated u- and v-velocity variances are unbiased and the system is insensitive to the w-velocity
variance. Another is a dual system with the lidars perfectly aligned with the wind direction and each
lidar measuring at a given elevation angle; in this case the unbiased variances are those of the u- and
w-components and the system is insensitive to the v-velocity variance.

As we normally use dual systems with low elevation angles, the alternative is to solve
Equations (11) and (12) assuming, first, that ϕ̂(k · n) = 1 for both lidars, and, second, using the
probe volume characteristics. Thus the velocity-variance bias can also account for the inherent bias
that results from measuring with a dual-Doppler system.

3. Experimental Campaign

3.1. Description

The campaign took place at the Høvsøre Test Station in northwest Jutland, Denmark from 30 April
to 15 May 2014 [29]. The goal of the campaign was to compare single- and dual-Doppler retrievals
of the horizontal wind speed and direction. The single-Doppler retrievals were made by acquiring
radial velocity measurements over a narrow sector with a long-range scanning lidar (WindScanner).
For the dual-Doppler retrievals, two other WindScanners were configured to intersect their laser beams
over a measurement volume of interest. The campaign is described in more detail in Simon [30].
The corresponding dataset can be accessed through Vasiljevic et al. [29]. A WindScanner is a modified
version of Leosphere’s WindCube 200S scanning pulsed Doppler lidar [31].

For this study, we are interested in the dual-Doppler measurements with the two WindScanners
as they were deployed to stare at the 116.5-m cup anemometer and scanned with a pulse length of
200 ns accumulating Doppler spectra within 500 ms. Figure 4 illustrates the configuration of the two
WindScanners and the meteorological mast at the site.

The two WindScanners k and w were measuring at elevation angles of 5.32 and 3.10◦ from a
distance of 1135 and 1625 m, respectively, and at azimuthal positions so that winds coming from
165.66 and 229.57◦, respectively, were aligned to their line-of-sights. Although they stared at the 116.5-m
cup anemometer, we use the measurements from the 100-m Metek USA-1 sonic anemometer so that
we can compare the radial velocity variances and the WindScanner reconstructed Cartesian-based
velocity variances against those of the sonic anemometer. Hereafter, u and v refer to the wind-aligned
and cross horizontal velocities, respectively.
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Figure 4. A sketch of the campaign at the Høvsøre Test Station in Denmark. The two WindScanners
are shown in rectangles (k in black and w in red), their beams with similar color, the meteorological
mast in blue with a 100-m sonic anemometer s in cyan. Coordinates are in UTM 32, WGS84.

3.2. Data Handling and Filtering

We performed the analysis of the measurements based on 10-min statistics. The two WindScanners
were concurrently operating during 2582 10-min periods (approximately 15 days). The analysis was
performed as follows:

1. We analyzed the 20-Hz sonic anemometer measurements within each 10-min period and filtered
out the 10-min periods where more than 1% of the 20-Hz data within each 10-min showed a sonic
status signal lower than two. This procedure resulted in 2574 10-min periods for the analysis.

2. We corrected the 20-Hz sonic anemometer measurements using the 3D correction
by Metek GmbH [32], which has been shown to give the correct velocity-component spectra
ratio in the inertial subrange [33].

3. We computed the mean horizontal wind speed and wind direction, linearly interpolated the voids
in each 10-min time series due to the sonic status filter, performed azimuth and tilt rotations to
the sonic anemometer velocity components to have the u-velocity component aligned with the
10-min mean wind direction, and calculated the u- and v-velocity variances.

4. We also transformed the sonic anemometer velocities to estimate the sonic-based radial
velocities on the WindScanners beams’ directions and computed the mean and variance of
both radial velocities.

5. We retrieved the WindScanners’ radial velocities within each 10-min interval and filtered out
scans where the carrier-to-noise ratio (CNR) was either below −25 dB or above −5 dB. This
procedure tries to avoid inaccurate scans and those where hard targets were hit (e.g., the mast).
We only analyzed 10-min periods if both lidars showed at least 1000 scans per 10-min interval
(out of ≈1200). This left us with 1982 10-min periods for analysis.

6. We used the algorithm by Goring and Nikora [34] to detect spikes in the radial velocity time
series and filtered out those for each lidar. Again, we only analyzed 10-min periods if both lidars
showed at least 1000 scans per 10-min interval (out of ≈1200). This left us with 1939 10-min
periods for analysis.

7. We computed mean and variances on both WindScanners radial velocities, reconstructed the east
and north velocity components from these radial velocities and thus the wind direction assuming
w = 0. We rotated these velocity components to estimate u (aligned with the mean horizontal
wind) and v the crosswind, and estimated their variances.

4. Results

Here we first provide theoretical estimations of the radial velocity spectra by the WindScanners
and sonic anemometer for given turbulence characteristics and wind directions based on the
experimental setup. Then we show comparisons between the measurements of the radial velocity
variances and velocity-component variances between the WindScanners and the sonic anemometer
measurements and their behavior with wind direction. We also add to the latter comparisons the
estimations of the bias in radial velocity variances and velocity-component variances as a function
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of wind direction and turbulence characteristics based on the Mann model. Finally, we show the
theoretical spatial variation of the bias in velocity-component variances in a horizontal large domain.

4.1. Radial Velocity Spectra Estimation

We can estimate the theoretical behavior of the radial velocity spectrum of both the k or the w
WindScanner beams and those of the sonic anemometer (aligned with either the k or the w WindScanner
beam) for all possible wind directions using Equation (4). Figure 5 shows this behavior for the two
wind directions parallel to either lidar, namely 165◦ for k and 230◦ for w, assuming zR/L = 0.5
for the WindScanners and zR/L = 0 for the sonic anemometer, with Mann model parameters of
αε2/3 = 0.1 m4/3 s−2, L = 100 m, and Γ = 3 for both directions.

0.0001 0.001 0.01 0.1 1 10

0

0.2

0.4

0.0001 0.001 0.01 0.1 1 10

0

0.2

0.4

(a)

(b)

Figure 5. Radial velocity spectra of the k and w WindScanners and those of an ideal sonic anemometer
aligned with either WindScanner (s, w or s, k) for two wind directions: 165◦ (a) and 230◦ (b).

It is clearly illustrated that when the WindScanner beam is aligned with the wind direction,
i.e., 165◦ for k and 230◦ for w, the radial velocity spectrum peaks the highest, as it becomes close to
the u-velocity spectrum since the elevation angle is rather small. The WindScanner beam that is not
aligned with the direction shows a lower spectral peak, which is located at a higher wavenumber as this
becomes more ‘contaminated’ by the v-velocity spectrum. It is also noticed the filtering effect, which
attenuates the energy in the spectrum stronger with increasing wavenumbers and is strongest for the
wind-aligned beam at the highest frequencies, but it is the other way around for the lowest frequencies.

4.2. Radial Velocities

We first start by looking at the ability of both WindScanners to perform radial velocity
measurements by comparing their 10-min means with those from the sonic anemometers. Figure 6
shows such comparison and the plots illustrate two sets of data: the red indicating all radial velocity
estimates and in black a selection of data where the difference between the WindScanner and the sonic
anemometer measurement is lower than 0.5 m s−1. Although we performed filtering on the radial
velocities of both WindScanners, we still had 10-min periods where the difference in the mean between
the WindScanners and the sonic anemometer was rather high, particularly for the k WindScanner. This
is mainly because the beam of k hit often the mast, due to mast vibrations, and the CNR filter was not
able to account for all hits. Since we are interested in turbulence measures, we use such a selected
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data to avoid completely unrealistic turbulence measurements. The amount of 10-min periods left for
analysis was therefore reduced to 1514.
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Figure 6. Scatter plot of the radial velocities of the WindScanners and the sonic anemometer in the
beam direction of the k lidar (a) and w lidar (b). The red markers correspond to all data and the black
markers to selected data (see text for details)

4.3. Radial Velocity Variance

When looking at the intercomparison between radial velocity variances between the WindScanners
and the sonic anemometer (Figure 7), we find a high correlation and a bias of about 15% for both
WindScanners. We know from Equation (4) that these biases are a function of the turbulence
conditions and wind direction, and thus, high scatter does not necessarily indicate that the turbulence
measurements are inaccurate but may indicate the variation in turbulence conditions inherent in
the data.

0.01 0.1 1 5

0.01

0.1

1

5
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0.01

0.1

1

5

(a) (b)

Figure 7. Scatter plot of the radial velocities’ variances of the WindScanners and the sonic anemometer
in the beam direction of the k lidar (a) and w lidar (b). The results of a linear regression through the
origin are also shown together with the coefficient of determination R2.

Figure 8 shows the behavior of such bias with wind direction, where we also plot a loess fit [35]
with a 35% data span of the 10-min statistics and the theoretical predictions for zR/L = 0.25, 0.5,
and 1.0.
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Figure 8. Ratio of the radial velocity variance of the WindScanners to the sonic anemometer as a
function of wind direction in the beam direction of the k lidar (a) and w lidar (b). Measurements and a
loess fit to the measurements are shown in markers and predictions in colored solid lines. The standard
error of the loess fit is shown in solid black line.

For most wind directions, the bias in the measurements is below one but there are some 10-min
periods in which it is above one for both WindScanners. This is theoretically not possible and thus
the WindScanners’ radial velocity variance might be overestimated (see Section 4.5 for a possible
explanation). The bias is in average between the prediction assuming zR/L = 0.25 and 0.5; some of
the differences between predictions and observations are related to problems when estimating the
variances from the measurements but they can also be due to the different turbulence characteristics of
each 10-min period. For the 200–250◦ direction range, for both w and k lidars, the prediction using
zR/L = 1.0 fits the measurements indicating that under these directions the length scale of turbulence
is comparable to the lidar probe volume.

4.4. Velocity-Component Variances

We can also look at the intercomparisons between velocity-component variances between the
WindScanner system and the sonic anemometer. These are illustrated in Figure 9 where we get slightly
higher correlations and lower biases (about 14%) when compared to the results for the radial velocity
variance in Figure 7.

Since we know that these ratios of the velocity-component variances are also wind direction and
turbulence dependent, we can also show their behavior with the measured direction (see Figure 10).
The figure illustrates that these ratios are below and very close to one. The predictions for zR/L = 0.25
and zR/L = 0.50 match the measured average bias within some direction ranges closely well but,
as with the radial velocity variance ratios, each 10-min period is characterized by different turbulence
characteristics, and so we should not expect a perfect match for all measurements.
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Figure 9. Scatter plot of the horizontal velocity-component variances of the WindScanners and the
sonic anemometer. The results for the u- and v-velocity components are shown in frames (a) and (b),
respectively. The results of a linear regression through the origin are also shown together with the
coefficient of determination R2.
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Figure 10. Ratio of the velocity components’ variance of the WindScanners to the sonic anemometer as
a function of wind direction. The result for the u- and v-velocity components are shown in frames (a)
and (b), respectively. Measurements and a loess fit to the measurements are shown in markers and
predictions in colored solid lines. The standard error of the loess fit is shown in solid black line.

4.5. Radial Velocity Spectra

In Figure 7, we show that particularly for very low values, the radial velocity variances of both
lidars are often higher than those of the sonic anemometer. We know that this is not possible if
turbulence is assumed homogeneous within the probe volume (see Figure 5); in this case the lidars
only filter turbulence for a range of turbulence length scales. Figure 11 shows the ratio of the radial
velocity spectra of the WindScanners’ beams to the sonic anemometer for each of the WindScanners’
beams. As illustrated, the spectra ratio decreases with increasing wavenumber, as expected due to
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probe-volume filtering. However, at a frequency≈0.2–0.3 Hz (k1 ≈ 0.2–0.3 m−1 for a mean wind speed
close to 2π m s−1), the ratio increases for both lidars, which is a typical behavior when lidar-based
signals are contaminated by noise [28]. For completeness, we also show the theoretical spectra ratio for
each WindScanner beam assuming zR/L = 0.25 for a wind direction of 290◦, which is close to the mean
wind direction. Both observed ratios follow closely the theoretical computations up to k1 ≈ 0.2 m−1.
The theoretical ratios also show a difference between the two WindScanners, although lower than that
of the observations.

0.01 0.1 1

0

0.2

0.4

0.6

0.8

1

Figure 11. Radial velocity spectra ratio of the WindScanners to the sonic anemometer for each
WindScanner beam as function of wavenumber. In solid lines, the theoretical spectral ratio is shown for
each WindScanner beam for 290◦ winds assuming zR/L = 0.25

4.6. Spatial Behavior of Velocity-Variance Biases

So far we know that the velocity variances computed from a dual-Doppler scanning system are
biased when compared to those measured by an ideal instrument and that the bias depends on the
turbulence characteristics and the scanning configuration with respect to the wind direction. This
also means that if we are able to measure at multiple points within a spatial domain, i.e., a different
beam configuration per position, we will then have a variation of the bias in velocity variances within
the domain. This variation also depends on the turbulence characteristics and on the relative angles
between the lidar beams and the wind direction.

Figures 12 and 13 illustrate examples for two wind directions of the variation of the
velocity-variance biases within a horizontal domain using the locations of the lidars of the experimental
campaign at Høvsøre. We assume that all points in the domain are measured at a height of 100 m
and zR/L = 0.25. We also constrain the analysis to all points within a rectangular domain where both
lidars scan with elevation angles lower than 10◦.
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(a)

(b)

Figure 12. Spatial variation of velocity-variance biases of the dual-Doppler scanning system (lidars in
solid rectangles) with respect to the velocity-variance measured at each point for a height of 100 m for
a 90◦ wind. Turbulence is characterized by Γ = 3 and zR/L = 0.25. Frame (a) shows the bias for the
u-velocity component, i.e., σ2

uws
/σ2

us
, and (b) that for the v-velocity component, i.e., σ2

vws
/σ2

vs
.

(a)

(b)

Figure 13. Same as Figure 12 but for a 180◦ wind.
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In general, for the two wind directions, the biases in both velocity components are close to or
below one, as expected from the results in Figure 10. For both directions, we see the difficulties to
estimate both velocity variances when the beams are close to be aligned. Particularly for the 90◦ case
and for the v-variance bias, we see a large area where the bias becomes lower than 0.6 (the range is
limited to these values for visualization purposes and so it appears as white). This is because the
lidars are deployed on a line close to 90◦ and it is difficult for the system to properly distinguish the
variations of the v-component (nearly perpendicular to the beams). For the 180◦ case, we see that south
and north of the lidars’ connecting line, the bias is generally very close to one and much lower than
one, respectively. This is because for this wind direction and for many of the positions, the lidar radial
velocity variance becomes positively (south of the line) and negatively (north of line) contaminated
by the w-component, in a similar fashion as shown in Figure 2. Note that the 10◦ constrain should
appear as white disks around the lidar positions but in the figure the disks are ragged due to the spatial
resolution (100 m) of the rectangular domain.

5. Discussion

It is unavoidable to ask ourselves the question on whether or not turbulence estimations are
improved by adding a third or a fourth lidar. For the direct method, the system relating velocity
variances and radial velocity variances becomes less singular the closer the added lidar(s) beam(s) are
aligned with the vertical axis. For the indirect method, it would be very valuable as we would not be
restricted to low elevation angles; a bias due to the probe volume still remains but as shown in the
description of the method, it can be estimated for a multi-lidar system. Combining the abilities of both
methods can be investigated in the future.

The direct method relies on our ability to determine the unfiltered radial velocity variance. For
continuous-wave lidars, the Doppler radial velocity spectrum has been used to determine the unfiltered
second-order moments of wind [26,28]. However, for pulsed lidars like most scanning lidars, the
Doppler radial velocity spectrum has not been studied in much detail and few campaigns have
attempted to store this information.

Spatial mapping of the velocity-variance biases, as that shown in Section 4.6, can help us for the
planning of campaigns, particularly those related to estimation of site conditions and for the evaluation
of turbulence models. Future work is undergoing on the analysis of the behavior of the velocity
variances along the ridges at the Perdigão and Alaiz campaigns from the dual-Doppler scanning lidar
measurements.

6. Conclusions

Although it was not the purpose of this study, from the experimental campaign at Høvsøre,
we observed a high degree of agreement and no significant bias between the radial velocities
measured by two WindScanners and those from a sonic anemometer deployed at 100-m on the
site’s meteorological mast.

We theoretically and experimentally demonstrated that the lidar radial velocity variance is filtered,
i.e., it is lower than that of a point-like measurement, due to the lidar’s probe volume. The degree of
filtering is a function of the turbulence structure.

We also demonstrated both theoretically and experimentally that the variances of the velocity
components from reconstructed velocity components can be filtered and (positively or negatively)
contaminated by other velocity components.

We also showed that unfiltered velocity-component variances can be estimated from unfiltered
radial velocity variances with a system of linear equations but that caution must be taken when using
a dual-Doppler scanning system as the system can easily become singular.

Finally, we showed that the ratio of the true horizontal velocity variance to the reconstructed
horizontal velocity variance measured by a number of WindScanners can be accurately estimated and
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that this ratio depends on both the turbulence characteristics and the scanning configuration with
respect to the mean wind direction.
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