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Abstract: The Qinghai-Tibet Plateau (QTP) is among the most sensitive ecosystems to changes in
global climate and human activities, and quantifying its consequent change in land-cover land-use
(LCLU) is vital for assessing the responses and feedbacks of alpine ecosystems to global climate
changes. In this study, we first classified annual LCLU maps from 2001–2015 in QTP from MODIS
satellite images, then analyzed the patterns of regional hotspots with significant land changes across
QTP, and finally, associated these trends in land change with climate forcing and human activities.
The pattern of land changes suggested that forests and closed shrublands experienced substantial
expansions in the southeastern mountainous region during 2001–2015 with the expansion of massive
meadow loss. Agricultural land abandonment and the conversion by conservation policies existed in
QTP, and the newly-reclaimed agricultural land partially offset the loss with the resulting net change
of −5.1%. Although the urban area only expanded 586 km2, mainly at the expense of agricultural
land, its rate of change was the largest (41.2%). Surface water exhibited a large expansion of 5866 km2

(10.2%) in the endorheic basins, while mountain glaciers retreated 8894 km2 (−3.4%) mainly in the
southern and southeastern QTP. Warming and the implementation of conservation policies might
promote the shrub encroachment into grasslands and forest recovery in the southeastern plateau.
While increased precipitation might contribute to the expansion of surface water in the endorheic
basins, warming melts the glaciers in the south and southeast and complicates the hydrological
service in the region. The substantial changes in land-cover reveal the high sensitivity of QTP to
changes in climate and human activities. Rational policies for conservation might mitigate the adverse
impacts to maintain essential services provided by the important alpine ecosystems.

Keywords: Qinghai-Tibet plateau; land change hotspots; shrub encroachment; reforestation;
climatic change

1. Introduction

The Qinghai-Tibetan Plateau (QTP) is the most extensive (i.e., 74◦–104◦E, 25◦–40◦N) and the
highest (4500 m a.s.l. on average) highland on the Earth [1]. The large elevation difference with its
periphery makes QTP a greater heat source to the troposphere and forms a unique plateau atmospheric
circulation system [2,3]. As a result, QTP plays a crucial role in regulating climate and hydrology over
Asia [4–6] and hence gets described as the “water tower of Asia” [7,8]. Not only does QTP hold the
headwaters of several major rivers, but also it hosts the greatest concentration of high-altitude inland
lakes in the world. Specifically, there are 39.2% of the total number of lakes with an area greater than
1 km2 and 51.4% of lake areas in China located in QTP [8,9]. These unique natural settings together
with the complex topography make QTP one of the most ecologically-diverse areas. In particular, two
out of the 34 globally-important biodiversity hotspots, i.e., Himalayas and the mountains of Southwest
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China, are located in the QTP, and another two, i.e., the mountains of Central Asia and Indo-Burma,
are abutted to it [10,11].

QTP is one of the most sensitive and vulnerable regions to climate change and human activities [12],
mostly due to its unique topography, wide-spread distribution of permafrost, and fragile alpine
ecosystems closely associated with permafrost [13]. QTP has undergone a much faster (i.e., about
three-times) warming trend (~0.447 ◦C per decade) than the global average (0.15–0.20 ◦C per decade)
in the past fifty years according to the observations and the climate models [1,14,15]. The growing
threats, including accelerated permafrost thawing [16] and glacier melting [7], extended drought [17],
the speed-up of biodiversity loss [18], ever-growing human population and activities [19], and increased
food insecurity [20], constitute superior challenges to scientists and managers.

Tackling the above-mentioned challenges requires the understanding of the recent land-cover and
land-use change (LCLUC) processes across QTP and the underlying drivers [21,22] since LCLUC is
the most immediate manifestation of the impacts of human activities on terrestrial ecosystems [23,24].
Linking the detected changes to the corresponding environmental forcing and anthropogenic factors
could advance our understanding of LCLUC processes [22,25,26], which relies heavily on the accurate
and timely detection of LCLUC.

The use of remote sensing (RS) technology not only provides a landscape perspective on LCLUC,
but also ensures persistent exploration of their associated ecological processes [27,28]. Early LCLU
mapping in QTP utilized global or national LCLU maps usually derived from low-resolution satellite
imagery, such as NOAA/AVHRR. For example, Cui and Graf reviewed and discussed land-cover
changes in QTP during 1950–2000 using the information from the International Satellite Land Surface
Climatology Project for 1950 and the Global Land Cover 2000 database for 2000 [22]. Ding et al.
analyzed the land changes along the construction areas for the Qinghai-Tibet Highway and Railway
from 1981–2001 using the normalized difference vegetation index from NOAA/AVHRR [29]. Recent
LCLU work in QTP tends to involve high-resolution images at a resolution of 30 m or less, such
as Landsat TM/ETM or HJ-1. For instance, Lu et al. analyzed LCLUC and its driving forces in
Maqu, a county in QTP, using LCLU maps of 1989, 2004, 2009, and 2014 generated from Landsat TM
images [30] and reported a reverse of ecological degradation after 2009. Wu et al. mapped LCLU over
all of China using Landsat TM and HJ-1 for the years 2000 and 2010 and identified the changes by
subtracting the LCLU of 2000 from that of 2010 [31]. They reported significant changes in vegetation
coverage in QTP such as the grassland degradation in arid areas in the west.

Although knowledge of LCLUC on QTP has been accumulating rapidly, gaps still exist. Most
studies up to date investigated Tibet with limited time and space extent, such as county-level LCLUC [30],
or focused on specific land types or processes, such as deforestation and reforestation [26,31], alpine
grasslands dynamics [19,32,33], and melting glaciers and water expansion [34]. Additionally,
the existing land-cover maps vary greatly in spatial resolution ranging from greater than 1 km [29]
to 30 m or finer, in temporal resolutions ranging from annual to 5- or 10-year intervals [30], and in
space extent from local to the whole region. Few studies have quantified LCLUC systematically
over the entire QTP with consistent yearly LCLU maps. Since the quality of satellite imagery greatly
influences the land-cover classification results, the medium spatial-resolution imagery with high
revisit frequency and extended spatial coverage, i.e., large swath width, provides a suitable solution
for generating annual land-cover maps at a large scale, such as the entire QTP region, with a low
cost per area compared to high-resolution satellite imagery [35,36]. This study tends to meet the
needs of quantifying LCLUC systematically with continued and reliable long-term land-cover maps
for this biologically-important region, for the sake of developing sustainable land management and
conservation strategies and assessing their impacts.
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In this study, we mapped and validated land-cover in QTP at annual step for the period of
2001–2015 at a spatial resolution of 250 m, analyzed the land-change hotspots patterns, and identified
the critical drivers to explore the underlying mechanisms. Our research was aimed at improving the
understanding of both the LCLUC spatial patterns and their driving factors (climate, environment,
and human activities) cited in the literature to be of importance in these ecosystems and discussing
how trends in both of those factors and the land changes found in this study overlap. We will answer
the following questions: (1) How did the LCLU change over 2001–2015 in QTP? (2) Where are the land
change hotspots? (3) What might drive the land-cover change?

2. Materials and Methods

2.1. Study Area

The Qinghai-Tibetan Plateau is located in southwestern China with a total area of 2.76 × 106 km2.
It mainly encompasses Qinghai province and Tibet Autonomous Region and extends into the southern
Uygur Autonomous Region of Xinjiang, southwestern Gansu, western Sichuan, and northern Yunnan
(Figure 1A). The northeast and northwest of QTP are bounded by the Kunlun, Arjin, and Qilian
Mountains (Figure 1A). The southwest and west of QTP are bordered by Bangladesh, Bhutan, Nepal,
India, Pakistan, and Tajikistan (Figure 1A). The elevation decreases from more than 8000 m in the west to
less than 1000 m in the east with greater heterogeneity in the mountains [12,37,38]. Strongly influenced
by the mountainous topography and the regional atmospheric circulation with the Indian and Pacific
monsoons and the Westerlies, QTP stretches from the humid monsoon climate zone in the southeast to
the frigid arid plateau climate zone in the northwest [39], featuring a significant precipitation gradient
ranging from about 1500 to less than 100 mm per year [40] and diverse ecosystems from forest, shrub,
meadow, and steppe, to desert [41].
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Figure 1. Study Area of Qinghai-Tibetan Plateau (QTP): (A) elevation, major Mts. (i.e., mountains) 
ranges, and provincial and country borders; (B) provincial cities, rivers, and the endorheic and 
exorheic basins. The grids, in dark blue dashed lines, overlaid are the corresponding MODIS tiles 
(e.g., h25v06). Boundaries of Changtang Plateau (shadowed with the dashed lines in (B) and the 
endorheic, and exorheic basins were determined from the 15-s HydroSHEDS (Hydrological data and 
maps based on SHuttle Elevation Derivatives at multiple Scales) drainage basin dataset [42]. Map 
created using ArcGIS 10.6 (ESRI, CA, www.esri.com). 

2.2. LCLU Mapping 

Figure 1. Study Area of Qinghai-Tibetan Plateau (QTP): (A) elevation, major Mts. (i.e., mountains)
ranges, and provincial and country borders; (B) provincial cities, rivers, and the endorheic and exorheic
basins. The grids, in dark blue dashed lines, overlaid are the corresponding MODIS tiles (e.g., h25v06).
Boundaries of Changtang Plateau (shadowed with the dashed lines in (B) and the endorheic, and
exorheic basins were determined from the 15-s HydroSHEDS (Hydrological data and maps based
on SHuttle Elevation Derivatives at multiple Scales) drainage basin dataset [42]. Map created using
ArcGIS 10.6 (ESRI, CA, www.esri.com).
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2.2. LCLU Mapping

The mapping of LCLU in QTP generally followed our previous work in Northern China [27,35]
with adaptation to this study region. Specifically, to acquire the predictors for mapping the land-cover,
we used the MODIS (Moderate Resolution Imaging Spectroradiometer) vegetation indices’ (VI) product
(MOD13Q1, 16-day Level 3 Global 250-m Sinusoidal Grid, Collection 5), which were stored in an
HDF (Hierarchical Data Format) file with the MODIS Sinusoidal sphere-based projection. Our study
area of QTP was mainly covered by 6 MODIS tiles, H24V05, H25V05, H26V05, H25V06, H26V06, and
H27V06 (dark blue dashed grids in Figure 1A). We collected all scenes (n = 6 × 23 scenes/y × 16 y − 18
missing scenes = 2190 scenes) of these 6 tiles from 2000–2015 at each 16-day interval. Each scene of the
MOD13Q1 VIs’ product included normalized difference vegetation index (NDVI), enhanced vegetation
index (EVI), blue, red, near-infrared (NIR), mid-infrared (MIR) reflectance, and pixel summary quality
assurance (QA) variables. The image preprocessing steps were completed with a set of scripts in the
IDL programming language, which implemented the user functions of the ENVI/IDL software, as well
as an ENVI/IDL plugin named the MODIS Conversion Toolkit. We drew the flowchart on processing
predictor variables in Figure A1 (Appendix A). After extracting each variable from these tiles for each
date, we conducted image mosaicking and then reprojected to the Albers Conic Equal Area projection
(central longitude of 105◦E, two standard parallels of 27◦N and 45◦N latitudes, and center latitude
of 35◦N) for each date using the nearest neighbor resampling approach. Based on the extracted time
series of variables from MOD13Q1, we derived the growing season (from the 97th–289th day of the
year), the statistics of the mean, standard deviation, minimum, maximum, and range of VIs, and the
reflectance of blue, red, near-infrared, and mid-infrared bands, which were used together with the
four-season (every three months from December of the last year to November of the target year) VIs’
statistics, to classify LCLU for each calendar year from 2001–2015. The QA variable was used to mask
out no data (i.e., QA equals −1) and cloudy (i.e., QA equals 3) pixels prior to calculating statistics.
In addition to the aggregated statistics, we calculated the vegetation phenological parameters for
each year of the study period (from 2001–2015) based on a 16-year time series of MODIS EVI from
2000–2015 with the software package of TIMESAT (Version 3.1) [43], because the TIMESAT program
applies QA-adjusted weights on EVI to derive phenological parameters in the growing season of the
target year according to both EVI and the QA series of the target year and the adjacent years. We used
the starting date, mid-season date, growing season length, base, peak, and amplitude of EVI, the rates
of increase at the beginning and decrease at the end of a season, and the seasonal integrals of EVI from
the derived phenological parameters as predictors for further classification.

Considering the important roles of terrain variables in determining vegetation distributions,
we also included elevation, slope, and aspect derived from the Shuttle Radar Topography Mission
Digital Elevation Model (SRTM 90 m DEM Version 4) with missing data filled by the Consultative
Group for International Agriculture Research [44].

Following the rules of the sampling criteria in the relevant literature and the visual interpretation
schema of our previous studies [27,35], we collected 5276 ground reference points covering 14 land-cover
types, i.e., deciduous broadleaved forest (DBLF), evergreen broadleaved forest (EBLF), evergreen
needle-leaved forest (ENLF), mixed forest (MIXF), closed shrubland (CLSH), open shrubland (OPSH),
meadow (MEDO), steppe (STEP), sparse vegetation (SPAS), urban area (URBN), agricultural land
(AGRI), bare ground (BARE), permanent snow cover (SNOW), and water (WATR) by means of a
semi-random method. Specifically, to collect the ground reference points, we first randomly generated
points based on the criteria that the distance between any pair pixels was greater than 1500 m to
minimize the spatial autocorrelation and the effects of triangular PSF (point spread function) along the
scan direction of the MODIS sensor [36]. Then, the ground reference points were identified through
visualized interpretation with the aid of the historical vegetation maps [45], the high-resolution images,
and user-pinned photos on Google Earth (GE), the species distribution information from Flora of
China (www.efloras.org), and the ground observations at the field stations of the Chinese Ecological
Research Network (CERN, www.cern.ac.cn). To avoid mixed land type reference points located on
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spatial heterogeneous areas, we also made sure each reference point as a MODIS pixel was located
within a uniform land-cover patch on GE imagery during the process of reference identification.
The sampling points of different years were also considered based on high-resolution GE imagery
available for different years. To facilitate ground reference points’ collection, we created a sample
collection reference table, which listed the ground photographs (available at GE or CERN), typical
high-resolution GE images, and a brief description of the locations for these LCLU types within QTP
(Supplementary Table S1).

Based on the acquired ground reference points, we extracted the training dataset with the
abovementioned variables and then randomly divided them into two subsets: 70% for training the
classifier and the rest for the independent validation. We built a land-cover classification model by
means of the “random forests” (RF) classifier [46] with the “randomForest” package provided by
the open source statistical software R [47] since the RF classifier has been proven to achieve high
classification accuracy and robust and efficient performance [27,35]. We set up the parameters of the
RF classifier (i.e., mtry of 6 and ntree of 500) using tuning functions according to the overall accuracy
and the efficiency. Based on the training subset, we formed three combination groups of predictors
as the training inputs to build three classification models (i.e., G1 encompassed all the predictors;
G2 included the growing season statistics of reflectance and VIs, the phenology parameters, and the
topographical variables; G3 was a modification of G2 by substituting four-season statistics of VIs for
the phenology parameters).

The accuracies of classification models were evaluated using overall classification accuracy (OA),
producer’s accuracy (PA), user’s accuracy (UA), and Kappa statistics. We found that the model
constructed with all predictors achieved the highest classification accuracy, which was consistent with
our previous studies. Thus, we applied the classification model built with G1 predictors to the whole
QTP to produce annual land-cover maps, as well as the class membership probability datasets at the
pixel level for each year from 2001–2015.

2.3. LCLUC Spatial Pattern Analysis

Land cover maps derived from satellite images were sensitive to the fluctuations of ecosystems
states, and it is problematic if land-cover changes during a specific period are computed as the difference
between the two ends [48,49]. In this study, we adopted the hotspot analyses used by Wang et al. [35]
to quantify land conversions among AGRI, BARE, CLSH, FORE (including all forest types), GRAS
(steppe and meadow), OPSH, SPAS, URBN, and WATR during the study period. Specifically, we
counted the percentages of the nine grouped land-cover types in each large grid cell of 2.5 × 2.5 km2

(10 × 10 MODIS pixels) to minimize the effect of “speckle” in land-cover maps and acquired time
series of land-coverage for each land-cover type at each large cell. To obtain an unbiased estimation of
temporal trends in land-cover, we regressed the land-coverage in the time series on time and estimated
the slope. The significant slopes (p-value < 0.1) were multiplied by the time period to quantify the
mean change of each land-cover type, and the corresponding standard errors were also multiplied
by the time period to estimate the uncertainty in net land-cover change. According to the estimated
LC gain/loss, the maps of land-cover change at the large-grid level were obtained, and LCC hotspots
were identified. We then explored the interrelationships among the spatial patterns of deforestation,
reforestation, agriculture abandonment and reclamation, grassland degradation, and surface water
expansion by calculating the areas of net land transfer among the land-cover types within QTP.

2.4. Environmental and Anthropogenic Forcing

To explore environmental forcing and human activities on LCLUC, we collected the following
variables. Due to a limited number of meteorological stations, we acquired the monthly daytime land
surface temperature (DLST) and nighttime land surface temperature (NLST) datasets from the gridded
land surface temperature global product (MOD11C3, Collection 6) at a 0.05◦ spatial resolution produced
with spatiotemporal gap-filling and aggregation. The monthly precipitation was extracted from the
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daily gridded rainfall product at 0.05◦ spatial resolution, provided by the Climate Hazards group
Infrared Precipitation with Stations (CHIRPS) dataset Version 2.0 [50]. The monthly evapotranspiration
(ET) was derived from the Evapotranspiration/Latent Heat Flux product (MOD16A2, Collection 6) with
500-m spatial resolution [51]. The monthly climate data were aggregated to annual mean time series.
After reprojection and resampling, we estimated the temporal trends (slope as the rate of change) of
these four climate variables using the method of “AAT” (i.e., trends on annual aggregated time series)
implemented in the green-brown R package [52]. To represent the anthropogenic activities, the changes
in population density between 2000 and 2015 were extracted from the Gridded Population of the World
(Version 4) [53].

3. Results

3.1. Accuracy of LCLU Mapping

According to the confusion matrix (Table 1), the overall accuracy and Kappa statistics of our
land-cover classification were 82.2% and 78.7%, respectively. The classification accuracies (both PA
and UA) of SNOW, WATR, and BARE were greater than 90%; URBN, ENLF, and AGRI had both
accuracies greater than 85%. The accuracy of grouped forests (FORE) in QTP, including DBLF, EBLF,
ENLF, and MIXF, achieved an average PA of 91.5% and UA of 95.4%. The omission errors of MEDO
and AGRI were 10.3% and 13.6%, respectively, mostly due to similar spectral characteristics among
MEDO, AGRI, and CLSH. There existed a large omission error of 77.4% for MIXF, mostly due to
the irregular spectral features caused by heterogeneous mixture of coniferous and broadleaved trees
and the complex altitudinal distribution of MIXF in the steep-slope environment (with an average
of 25◦). OPSH with a PA of 53.8% was likely to be misrecognized as MEDO, CLSH, SPAS, and STEP.
The omission error of CLSH was 34.3%, mainly because of the confusion with MEDO.

Table 1. Confusion matrix of the classification (UA, user’s accuracy; PA, producer’s accuracy; OA,
overall accuracy; Kappa, Kappa statistics; AGRI, agricultural land; BARE, bare ground; CLSH, closed
shrubland; DBLF, deciduous broadleaved forest; EBLF, evergreen broadleaved forest; ENLF, evergreen
needle-leaved forest; MIXF, mixed forest; MEDO, meadow; OPSH, open shrubland; SNOW, permanent
snow cover; STEP, steppe; SPAS, sparse vegetation; URBN, urban area; and WATR, water).

AGRI BARE CLSH DBLF EBLF ENLF MIXF MEDO STEP OPSH SNOW SPAS URBN WATR SUM UA
(%)

AGRI 153 0 4 1 0 0 1 11 0 3 0 0 5 0 178 86.0
BARE 0 149 0 0 0 0 0 0 0 2 0 7 3 1 162 92.0
CLSH 4 0 92 4 0 9 0 17 0 5 0 0 0 0 131 70.2
DBLF 0 0 3 48 2 6 3 0 0 0 0 0 0 0 62 77.4
EBLF 2 0 1 4 58 8 6 0 0 0 0 0 0 0 79 73.4
ENLF 0 0 6 4 4 195 12 1 0 0 0 0 0 0 222 87.8
MIXF 0 0 1 2 0 2 7 0 0 0 0 0 0 0 12 58.3

MEDO 14 0 31 0 0 0 2 296 7 14 1 0 0 0 365 81.1
STEP 3 0 0 0 0 0 0 3 47 5 0 4 2 0 64 73.4
OPSH 1 2 2 0 0 3 0 1 8 43 0 4 1 0 65 66.2
SNOW 0 0 0 0 0 0 0 0 0 0 29 0 0 0 29 100
SPAS 0 7 0 0 0 0 0 0 5 5 0 37 2 1 57 64.9

URBN 0 1 0 0 0 1 0 1 0 3 0 2 98 1 107 91.6
WATR 0 0 0 0 0 0 0 0 0 0 0 0 0 50 50 100

SUM 177 159 140 63 64 224 31 330 67 80 30 54 111 53
PA (%) 86.4 93.7 65.7 76.2 90.6 87.1 22.6 89.7 70.1 53.8 96.7 68.5 88.3 94.3

Average PA = 77.4%, average UA = 80.2%, OA = 82.2%, Kappa = 78.7%

3.2. Patterns and Hotspots of Land-Cover Change in QTP during 2001–2015

Net change: During 2001–2015, QTP witnessed remarkable LCLU changes (Figure 2). Agricultural
land and permanent snow/ice shrank by 5850.3 km2 (about a −5.1% reduction) and 8894.1 km2 (−3.4%),
respectively. Bare ground and meadow decreased substantially with net losses of 20,676.8 km2 (−2.8%)
and 22,968.8 km2 (−4%), respectively. Net loss of these land-cover types was mostly due to expansion
of FORE, steppe, closed/open shrubland, sparse vegetation, and water. In particular, FORE and
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closed shrubland significantly expanded with a net gain of 13,111 km2 (4.8%) and 8952.4 km2 (5.7%),
respectively. Likewise, steppe, sparse vegetation, and open shrubland increased by 9660.6 km2 (2.4%),
10,413.4 km2 (2%), and 9342.3 km2 (21%), respectively. There was a noticeable increase of 5866.4 km2

(10.2%) in water surface. Urban areas also expanded 585.7 km2 at a rate of 41.2%.
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open shrubland; SNOW, permanent snow cover; STEP, steppe; SPAS, sparse vegetation; URBN, urban
area; and WATR, water.

Forest and closed-shrubland change hotspots: The spatial patterns of forest change from 2001–2015
concentrated in the southeast such as the southeastern Qin Mountains, the Hengduan Mountains,
the southern Nyenchen Tanglha Mountains, and the eastern edge of the Himalayas (Figures 1A and 3A).
Forest expansion mainly happened in the previous closed shrubland, meadow, and agricultural land
(Figure 3). Closed shrubland also expanded towards the Central Plateau at the expense of decreased
meadow (Figure 3B,C). In particular, the forest gain of 16,295.3 km2 mostly came from the losses of
closed shrubland (5523.8 km2), meadow (3963.3 km2), and agriculture land (3954.8 km2). Forest loss
of 3183.7 km2 was mostly converted to closed shrubland (1594.8 km2), agriculture land (714.4 km2),
and open shrubland (397.7 km2).

Agricultural abandonment and reclamation: We also found the decline of agricultural land
(8765.2 km2) in the eastern QTP during 2001–2015 (Figure 3D), and the loss was mainly associated
with the expansion of forest (4634 km2) in the eastern mountains and meadow (1764.4 km2) near
the provincial city Xining. To a lesser extent, agricultural lands were converted to open shrubland
(561.1 km2), urban area (232.6 km2), and water (325.6 km2). On the other hand, new agricultural
lands were also found for some patches in the eastern QTP (Figure 3D). In southeastern Qaidam Basin
(Figure 1A), the patches with gains in agricultural land approximately corresponded to the areas with
loss in sparse vegetation (605.7 km2) and bare ground (257.6 km2) (Figure 4C,D). While in southern
and southeastern QTP, the gains in agricultural land mainly came from the forest (927.7 km2), meadow
(369.2 km2), and closed shrubland (266.4 km2).
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Grassland change: The meadow in the southeastern QTP (Figure 3C) declined significantly and
was mostly converted to closed shrubland (13,805 km2), steppe (7562.9 km2), forest (5027.5 km2), open
shrubland (4880 km2), and sparse vegetation (1670.3 km2) (Figures 3 and 4). Contrary to the meadow
loss in the southeast, the meadow in northeast QTP expanded (Figure 3C) into steppe (−7396.7 km2),
sparse vegetation (−2363.1 km2), agricultural land (−2557.5 km2), and closed shrublands (−776.8 km2).
The steppe gain appeared in two clusters (Figure 4A). One was in the vicinity of the three adjacent
cities (i.e., Lhasa, Nagqu, and Nyingchi), and the net gain of steppe was accompanied by a massive
decline of meadow (−9126 km2) and glacier (−3050 km2). The other was located near the border of the
Qaidam Basin (Figures 1A and 4A), where open shrublands also increased by 1143 km2, but sparse
vegetation and bare ground loss by 16,620 and 1725 km2, respectively. The steppe loss hotspots also
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mainly concentrated in two areas. One was in the outer edges around the Qaidam Basin due to the
enormous meadow expansion of 8646 km2 (Figures 3C and 4A). The other hotspot of steppe loss was
in western Tibet between the cities of Ga’er and Nagqu where steppe was mainly converted to sparse
vegetation (9832 km2) and bare ground (1332) (Figure 4A,C,D). In summary, the grassland (i.e., steppe
and meadow) changes were highly spatially heterogeneous. The loss was mainly converted into
closed/open shrubland, forest, and sparse vegetation, while the grassland gains were mainly from
sparse vegetation, glacier, and agricultural land.
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Loss of permanent snow/ice (glaciers): The massive glacier loss mainly occurred in the south
and southeast, especially in the Ganges-Brahmaputra river basin (Figures 1B and 5A). Where the
glacier loss, bare ground, sparse vegetation, steppe, and open shrubland increased substantially by
2638.7, 2192.3, 1821.8, and 667.5 km2, respectively. Meanwhile, forest and closed shrubland gained
by 477.4 km2 and water surface by 128 km2, while meadow lost by 1067 km2. On the contrary to the
massive loss, spots with glacier gain were scarce and scattered (Figure 5A). In these spots, glaciers
and water expanded by 100 and 225 km2, respectively, together with the shrinkage of bare ground
(−571 km2).

Expansion of surface water bodies: The surface water changes were mainly distributed in the
endorheic basins (Figures 1B and 5B), especially on the Changtang Plateau. Continued expansion
of the water drowned the vast areas of bare ground (−5113.7 km2), sparse vegetation (−1279.2 km2),
grassland (−660.0 km2), and agricultural land (−360.8 km2). There were also many small water-gain
clusters around Nyingchi near the mountains of Hengduan, Nyenchen Tanglha, and the eastern edge of
the Himalayas (Figures 1A and 5B), where large patches of glaciers were distributed on the top of these
mountains. The small water-gain clusters here were associated with the loss of glacier (−283.8 km2,
Figure 5). Water loss occurred in many small patches in the west and center of the endorheic basins
(Figure 5B). There were also several large patches with surface water retreat along Yamdrok Lake and
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Brahmaputra River in the south of Lhasa (Figures 1B and 5B). As a result, the bare ground, sparse
vegetation, and steppe advanced into these patches by 803.0, 444.4, and 295.9 km2, respectively.
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4. Discussion

4.1. Economy Shift, Conservation Policy, and Agricultural Lands’ Change

Agricultural land reduction was mainly a result of conservation policies and, to a lesser extent,
expansion of urban areas. Different from the flat cultivated land in eastern China, the agriculture in
the southeastern QTP can be called “valley agriculture” because most (65%) of the cultivated lands
occur in the high-elevation (>2500 m) river valley plains (i.e., Huangshui River, Minjiang River, Dadu
River, and Brahmaputra River) [20]. These valleys meet the temperature and the light required for crop
growth, as well as the topographical condition for tillage and irrigation. However, the agricultural
outputs of most QTP farmlands are low because the farmlands are surrounded by rolling mountains
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and are vulnerable to erosion [54]. To complement the low income from agricultural production,
farmers and herdsmen often make earnings from other non-cropping activities such as livestock
farming [20,55]. Since 2000, the national environmental protection policies have been implemented in
most of China and covered more than 67.6% of QTP (Figure A3B). As a result, a total of 155 protected
reserves have been established in QTP, accounting for 32.4% of the total area [56,57]. Consequently,
many croplands, especially those marginal for agriculture, were converted into woodland or grassland
via natural succession or plantation. For instance, the decline of agricultural land in the areas between
Xining and Linxia in the northeast was partially driven by the policy of returning farmland to forest
and grassland (Figures 3D and A3B) and the related changes in human population (Figure A3A).

The special natural settings of QTP and recent rapid growth of the transportation infrastructure
have promoted the booming of tourism (e.g., 29.9% of Tibet’s GDP in 2016) [56,58,59]. As a result,
economic development has absorbed more and more agricultural laborers into urban areas [60]. This is
reflected in the population change (Figure A3A): during 2000–2015, the urban population growth rate,
with an average of more than 15 persons/km2, was much higher than the rural population growth
of 0–3 persons/km2. Similar to many other regions in China, rural-urban migration has driven the
development of urbanization in QTP, and urban expansion is mostly converted from farmland near
the major cities [35].

4.2. Conservation, Climate Change, and Woodland Expansion into Grassland

Climate warming and overgrazing are two major threats to alpine grasslands, which account for
about 50% of the whole plateau area and 44% of the total grassland area in China [32,61]. Warming can
convert marginal grassland to desert and reduce the ecosystem stability [62] by producing less biomass
in dry years, but more biomass in wet years. Overgrazing severely decreases the surface biomass
and creates soil heterogeneity [63]. Overgrazing and warming-induced instability are believed to be
the two major causal factors that lead to shrub encroachment into grasslands [64,65]. It was reported
that from 1990–2009, about 39% of the alpine meadow in the northwest Yunnan was converted to
woody shrubland [18]. We found that during 2001–2015, alpine meadow in QTP sharply decreased by
23 × 103 km2. The loss of alpine meadow was mostly in the southeast, and approximately 72% of the
loss was converted to shrublands (closed and open) and forests. Warming and overgrazing may also
lead to the conversion of meadow to dry steppe, as we showed that 23% of the meadow loss in the
southeast became dry steppe. Closed shrublands in the southeast also became forests via succession
(Figure 3A,B), especially in the eastern boundary favored by increased precipitation (Figure 6C).

In areas with increased rainfall, such as the southern outermost edge of Qaidam Basin in the
northern QTP, the alpine meadow was expanding on the land that was originally sparse vegetation
and alpine steppe (Figures 3C, 4A,C and 6C). For the same reason, alpine steppe gained from originally
vegetation and desert around the southern boundary of Qaidam Basin (Figure 4A), and the sparse
vegetation appeared in the eastern Kunlun Mountains due to the restoration (Figure 4C,D). The above
results indicated that the ecological environment in the above areas shifted towards a positive direction,
which was partially driven by the increased precipitation (Figure 6C) and the implementation of
conservation policies (Figure A3B), such as the Reduce Grazing Return Grasslands Project under the
“Grain for Green Program” and the Conservation and Restoration of the Qilian Mountain ecosystem
Project under the “Natural Forest Conservation Program”. Lehnert, Wesche, Trachte, Reudenbach,
and Bendix [16] illustrated a similar view that the significant increase of vegetation cover between
2000 and 2013 was primarily driven by the positive precipitation trend in the regions of southern and
eastern Qinghai. However, the alpine steppe and sparse vegetation were degraded to barren land
around the areas between Nagqu and Ga’er (the prefectures of Nagqu and Nagari) in the western QTP
(Figure 4). This illustrated that the climatic conditions in the western plateau are not favorable to the
growth of vegetation (Figure 6A,C,D). The degradation of grassland and sparse vegetation to barren
land in arid areas of the western Qinghai-Tibet Plateau is closely related to the worsening drought
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due to the strong increasing trend of daytime and nighttime temperature during the past decades
(Figure 6A,B) [17,31].Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 21 
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Conservation policies may also play an important role in shrubland and forest expansion in
QTP. The eastern QTP historically experienced an unprecedented deforestation due to the modern
commercial timber production [22,66], especially since the late 1950s in the eastern Himalayas and the
Hengduan mountains [25,40]. The degradation of forest and shrub ecosystems led to the decline of the
ecosystem function and service and resulted in damage or even the collapse of the entire system [67,68].
Conservation policy implementation started in the late 1980s. The central government successively
promulgated the laws of Forest and Prairie and implemented them as “the Shelterbelt Development
Program” to promote the restoration of ecosystems for soil and water conservation in the middle and
upper reaches of Yangtze River. Additionally, many nature reserves such as key ecological function
areas and national ecological security barrier areas have been identified and established rapidly in
recent decades [26], which has played a positive role in the ecological protection and restoration in QTP.
Especially since 2000, the Chinese government has implemented a series of environmental protection
policies and afforestation and reforestation programs such as the “Grain for Green” and “Natural
Forest Conservation” programs [26,35,69]. Our results showed that the area where the policies were
implemented matched with the area of woodland expansion (Figure 3A,B and Figure A3B). Our results
also revealed a forest loss hotspot caused by a natural disturbance, i.e., the Wenchuan earthquake
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in May 2008, which destroyed many forest habitats (red box in Figure 3A). These areas were then
regenerated into shrublands (red box in Figure 3B).

4.3. Increased Precipitation/Warming and Water Surface Expansion/Glacier Retreat

Global studies showed that the endorheic lakes in all the regions in the world have been expanding
in the last 30 years, and the mean rate of expansion was estimated as 390 km2 y−1 for the Tibetan
Plateau [70,71]. In this paper, we found that QTP gained 5866.4 km2 of new surface water area,
which was slightly larger than the 5460 km2 calculated from the rate of 390 km2 y−1. The difference
might be due to different image source (MODIS versus Landsat images), spatial resolution, and/or
classification methods [49]. The long-term trend of terrestrial water storage (TWS) derived from the
Gravity Recovery and Climate Experiment (GRACE) illustrated that TWS presented two clusters in
QTP during 2003–2015 (Figure A2). This clearly shows that TWS increased in most of the endorheic
basin (i.e., bounded with purple color) with a mean of approximately 0.59 ± 0.65 mm y−1. This could
be partly linked to the expansion of surface water due to the increase of precipitation (Figure 6C)
in the endorheic basin [9,72,73]. Small patches with water surface expansion also appeared in the
northeastern QTP, which might be caused by both the dam impounding for hydroelectric power in the
upper reaches of the Yellow River and the precipitation increase (Figure 6C) [74].

Contrary to the expansion of surface water in the endorheic basin, the mountain glaciers in the
southern QTP retreated (Figure 5A), which is consistent with recent reports [75,76]. Both daytime and
nighttime temperatures showed increasing trends in the southeastern QTP (Figure 6A,B). The melting
of glacier and ice is reported to relate to the steep rise in temperature [77], and the extent of glacier
shrinkage is projected [7,76]. Additionally, the deposition onto the glaciers of light-absorbing aerosol
particles such as dust and black carbon could accelerate glaciers’ melting due to the darkening effect [78]
and the reduced albedo, which act to absorb more solar radiation [1,3,79]. The rapid glacier melting
and recent drought also led to the shrinkage of TWS [80]. For example, TWS in the southeastern
QTP decreased with a mean of approximately −1.36 ± 0.62 mm y−1 during 2003–2015 (Figure A2).
Continued warming is expected to melt the glaciers and thaw the permafrost, which might accelerate
the hydrological processes in this “water tower of Asia” [81]. The rapid melting of glaciers in early
spring could trigger water scarcity in early summer and exert great pressure on humans of many
countries in Asia [16,82].

5. Conclusions

The land-cover changes during 2001–2015 are highly spatially heterogenous across the plateau.
Woodlands experienced substantial expansion in the southeast with the expansion of meadow shrinkage,
mostly driven by conservation policies, warming, or/and overgrazing. Policies on returning farmlands
to forests and grasslands for soil and water conservation mostly drive the agricultural land conversion.
Increased precipitation promotes the expansion of surface water in the center and east of the endorheic
basins, as well as the local expansions of meadow, steppe, and sparse vegetation. Warming in the south
and the southeast melts the mountain glaciers and, together with drought, leads to the shrinkage of
terrestrial water storage in the southeast. Continued warming is expected to melt the glaciers and thaw
the permafrost, which might accelerate the hydrological cycles and modify the carbon cycles, thus
complicating the responses and feedbacks of the alpine ecosystems to global change. The substantial
changes in land-cover reveal the high sensitivity of QTP to changes in climate and human activities.
Rational policies for conservation might mitigate the adverse impacts to maintain essential services
provided by the important alpine ecosystems.

At a broad level, land-use-cover change, human activities, and climate change are closely related
as they have causal relationships. By analyzing the spatial patterns of LCLUC in QTP and exploring
the possible causes and effects, this study highlighted the joint impacts of human decision-making and
natural biophysical processes on ecosystems. For example, climate change plays a leading role in the
west of QTP, while human economic development, environmental protection policies, and climate
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change play a joint role in the east. The methods adopted in this study could be used for quantifying
LCLUC in other mountainous regions, and the discussions on potential factors driving LCLUC set
a sound base for further LCLUC modeling to support decision-making on ecological conservation
policies for sustainable development.
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Spatial patterns of terrestrial water storage anomalies trend

Due to the important roles surface water bodies and glaciers play in the regional hydrologic cycle,
terrestrial ecosystems, and climate change over QTP, we explored the spatial patterns of the variations
in terrestrial water storage (TWS) over QTP based on the satellite gravity mass anomalies’ data at
high-temporal resolution provided by the Gravity Recovery and Climate Experiment (GRACE) mission
since the spring of 2002. The variations of TWS were sensitive to fluctuations in both event flow
(precipitation-driven) and base flow (stored in ice sheets, soil, and groundwater) [83,84]. We acquired
the latest release of the GRACE global monthly mass concentration blocks (mascons) Version v02.3 with
the correction of the glacial isostatic adjustment model from the NASA Goddard Space Flight Center
(GSFC) [85]. On land and ice cover area, the mascon primarily describes the total variability in water
content after the removal of atmospheric and oceanic effects [86]. For each mascon, this product contains
the time-variable gravity monthly time series with the removal of the mean over the span of years from
2004 to 2016 in terms of cm equivalent water height and the associated time-dependent uncertainties
(the detailed description of the GSFC mascon estimation procedure refers to Luthcke, Rowlands,
Sabaka, Loomis, Horwath, and Arendt [83]). We estimated the temporal trend of GRACE-derived TWS
anomalies using the same method as the trend estimation of climate variables in Section 2.4 [52].
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