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Abstract: In recent years, endmember variability has received much attention in the field of
hyperspectral unmixing. To solve the problem caused by the inaccuracy of the endmember signature,
the endmembers are usually modeled to assume followed by a statistical distribution. However,
those distribution-based methods only use the spectral information alone and do not fully exploit the
possible local spatial correlation. When the pixels lie on the inhomogeneous region, the abundances
of the neighboring pixels will not share the same prior constraints. Thus, in this paper, to achieve
better abundance estimation performance, a method based on the Gaussian mixture model (GMM)
and spatial group sparsity constraint is proposed. To fully exploit the group structure, we take the
superpixel segmentation (SS) as preprocessing to generate the spatial groups. Then, we use GMM
to model the endmember distribution, incorporating the spatial group sparsity as a mixed-norm
regularization into the objective function. Finally, under the Bayesian framework, the conditional
density function leads to a standard maximum a posteriori (MAP) problem, which can be solved using
generalized expectation-maximization (GEM). Experiments on simulated and real hyperspectral
data demonstrate that the proposed algorithm has higher unmixing precision compared with other
state-of-the-art methods.

Keywords: hyperspectral unmixing; Gaussian mixture model; spatial group sparsity;
superpixel segmentation; endmember variability; Bayesian framework

1. Introduction

Over the past few decades, the rich spatial–spectral joint information of hyperspectral imaging
(HSI) has greatly improved the sensing ability of remote sensing images. With the unique advantages
of high spectral resolution and union of imagery and spectrum, HSI has been widely used in various
fields, such as agricultural remote sensing, object classification, environment monitoring, and military
investigation [1–8]. However, limited by the spatial resolution of the instrument, atmospheric mixing
effects, and the complex natural surface, a single pixel always contains more than one spectrum
of features, resulting in a “mixed pixel” phenomenon. This brings great difficulty to the accurate
interpretation and recognition of hyperspectral image contents. Thus, the spectral unmixing (SU),
which refers to identify the proportion (abundance) of the basic constituent spectra (endmembers) in
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mixed pixels at the subpixel level, has been a major issue in hyperspectral remote sensing applications,
and has recently been extensively investigated [9–13].

The linear mixture model (LMM) is often used to describe the mixed pixel phenomenon due
to its simplicity and certain physical meaning, which assumes that the observed spectra are linearly
combined by the endmembers according to their respective abundance coefficients. The mathematical
form of LMM can be expressed as

yn =
M

∑
j=1

mjαnj + nn, s.t. αnj ≥ 0,
M

∑
j=1

αnj = 1, (1)

where yn ∈ RB, n = 1, ...N is the observed spectra (N denotes the number of pixels; B denotes the
number of bands), mj is the pure material (called endmember ), αnj is the corresponding proportions
(called abundance), and nn ∈ RB is additive noise. We have to note that the endmember set
mj : j = 1, ..., M is fixed for all the pixels. In addition, there are two physical abundance constraints
need to be considered in linear unmixing, the so-called abundance non-negative constraints (ANC)
and the abundance sum-to-one constraints (ASC).

In reality, due to environmental, atmospheric, and temporal factors, the spectrum of the same
pure substance received by the detector tends to change greatly. Even for the pure pixels that only
contain one material, the spectrum of the entire image may not be the same. The inaccuracy of
the endmember signature will affect the performance of the unmixing to a great extent. Therefore,
in practical applications, the unmixing process must solve the interference caused by the endmember
variability. In general, the mathematical form by considering the endmember variability can be
expressed a

yn =
M

∑
j=1

mnjαnj + nn, s.t. αnj ≥ 0,
M

∑
j=1

αnj = 1, (2)

where mnj ∈ RB : j = 1, ..., M, n = 1, ..., N. Here, the endmember set is not fixed, and the endmember
spectrum of each pixel yn could be different. Compared with the fixed endmember set, the use of
multiple endmembers per class has a more interpretable physical meaning and higher accuracy in
endmember and abundance estimation.

In recent years, many approaches and techniques have been proposed to solve the problem
caused by the endmember variability. In [14,15], the authors reviewed methods that take into account
the endmember variability can be expressed in two categories: (1) endmembers represented as a
discrete set or (2) endmembers represented as a continuous distribution. In the first category, the
spectrum corresponding to each pixel is supposed to be represented as a convex combination of
elements within the set. The core of this method is selecting the one with the smallest error by trying
every endmember combination, such as multiple endmember spectral mixture analysis (MESMA) [16],
AutoMCU [17,18], and BSMA [19]. However, those methods mentioned based on the endmember set
have a common disadvantage: when the spectral library and combination of the collection elements
is large, their complexity will increase exponentially and resulting in extreme searching efficiency
problem.

The second category usually takes the statistical method to model the distribution of endmembers.
The core of the method is to assume that the endmember of each pixel is derived from a sample of a
certain probability distribution. This method of modeling probabilistic sampling implies embracing
the large libraries, and the numerical values of the model are solvable. The current popular method
based on this category includes normal compositional model (NCM) [20], Beta compositional model
(BCM) [21], and Gaussian Mixture model (GMM) [22,23]. As NCM and BCM are both based on
the unimodal center hypothesis, in actual scenarios, the distribution of the endmember may not
be well represented. GMM takes a mixture of Gaussians to approximate any distribution that
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endmembers mnj may exhibit. Therefore, it has better flexibility accuracy in solving the problem
of endmember variability.

The performance of those methods in the second category often has a significant dependence on
the initial value of parameters but does not rely on the large-scale spectral database. Therefore, the
model is relatively intuitive and has been a research hotspot for the endmember variability problem.
However, the methods mentioned above only use spectral information alone and do not make full
use of the spatial information in the scene, because pixels are only treated as isolated entities without
considering the local correlation between them. The authors of [8,24–27] proved that the spatial
correlation between the observed pixels can be incorporated into in the unmixing process, which can
further enhance the performance in both the endmember extraction and abundance estimation. In that
vein, Iordache et al. [28] incorporated a spatial constraint in sparse unmixing by the total variation
regularizer, to find the minimum difference of the abundance among the neighboring pixels and
promote the piecewise smoothness. Zhou et al. [22] used the Laplacian smoothness and sparsity
constraint as the prior knowledge in GMM models to improve the accuracy of the abundance estimation.
In [26], a low-rank representation (LRR) method for HSI unmixing is proposed to find a low-rank
property in abundance maps and utilize spatial information between local pixels.

The above methods are dedicated to fully exploiting spatial and spectral information.
Nevertheless, the prior knowledge or constraints assumption requires a rather strict condition that the
abundance of local pixels should be piecewise smooth, which means that the associated abundance of
the mixed pixels and their neighboring pixels should be similar. When the pixels are located at the
boundaries of different materials or the inhomogeneous region, the abundance in adjacent pixels does
not have these prior constraints. Thus, the local prior knowledge is not applicable in the whole HSI
scene and numerous methods based on spatial segmentation preprocessing have been proposed. In [29],
an iterative process with different sliding windows for the automated morphological endmember
extraction was proposed, which is one of the famous algorithms incorporating local spatial information.
Liu et al. incorporated an abundance separation and smoothness constraints on the spectral and spatial
domains respectively to promote the unmixing results [30]. However, those methods use a fixed-size
rectangle strategy. When the size of the maximum sliding window is relatively large, this will be
a time-consuming process. When the partitioned regions are fixed, the shape and size can not be
accustomed on the basis of different spatial structures. Recently, Wang et al. [31] proposed a spatial
group sparsity regularized non-negative matrix factorization (SGSNMF) method by minimizing the
reconstruction error. This algorithm takes superpixel segmentation (SS) as processing and integrates
the spatial group sparsity as group-structured prior information, and obtains relatively high efficiency
and precision in HSI unmixing.

Thus, in this paper, in an attempt to solve the problems caused by endmember variability,
fully consider the possible spatial correlation between local pixels, and achieve better abundance
estimation performance, a spatial group sparsity constraint based on Gaussian mixture model
(SGSGMM) is proposed. Motivated by the mentioned problems, first, we adopt the adaptive size
superpixel strategy to customize the shape and size of the unmixing region based on different spatial
structures and considering each superpixel as a nonoverlapping region. In these regions, pixels are
highly spatial correlated, the mixing pixel and its associated abundance should share the same
prior probability. Secondly, we incorporate the spatial group sparsity constraints in each superpixel
as a prior knowledge into the objective function. Finally, considering the endmember variability
phenomenon, we use GMM to model the endmember distribution. Under the Bayesian framework,
the conditional density function leads to a standard maximum a posteriori (MAP) problem, and a
generalized expectation-maximization is obtained to solve the objective function [32]. Compared with
other popular algorithms on both simulated and real hyperspectral datasets, the proposed method
SGSGMM can perform more accurate unmixing results.

The rest of this paper is structured as follows. The related GMM methods are briefly introduced
in Section 2. The details of the proposed model SGSGMM and the GEM for solving and optimization
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are introduced in Section 3. The performances of the proposed SGSGMM and comparison with other
state-of-art algorithms in synthetic datasets and real HSIs are presented in Section 4. The discussions
and conclusions of this paper are introduced in Sections 5 and 6.

2. Related Models

As the proposed model of this paper is based on the GMM framework, we will introduce the
formulation of GMM in the following section briefly.

The GMM method [22] is an LMM that considers the endmember variability and uses a mixture
of Gaussians to approximate any distribution of the endmember. The method can be classified in the
second category mentioned above (endmembers represented using a continuous distribution) and
starts by assuming the endmember p(mnj) follows a mixture of Gaussians distribution. The density
function p(mnj) can be described as

p(mnj|Θ) := fmj(mnj) =

Kj

∑
k=1

πjkN (mnj|µjk, Σjk), (3)

s.t. πjk ≥ 0, ∑
Kj
k=1 πjk = 1, with Kj being the number of components; πjk denotes the weight of its

kth Gaussian component in jth endmember, µjk ∈ RB; and Σjk ∈ RB×B denotes the mean matrix and
covariance matrix, respectively. Here, Θ := πjk, µjk, Σjk : j = 1, ..., M, k = 1, ..., Kj, mnj : j = 1, ..., M are
independent to each other.

The noise nn is also assumed to follow the Gaussian distribution, which has the density function
p(nn) := N (nn|0, D), where D denotes covariance matrix of noise, obtains the distribution of yn by
yn = ∑M

j=1 mnjαnj + nn, the observed pixel data yn will be another mixture of Gaussians, and we can
obtain the density function of yn as

p(yn|αn, Θ, D) = ∑
k∈K

πkN (yn|µnk, Σnk) , (4)

where αn := [αn1, ...αnM]T , K := { 1, ..., K1 } × { 1, ..., K2 } × ...× { 1, ..., KM } is the Cartesian product
of the M index sets, k:=(k1, ..., kM) ∈ K, πk ∈ R, Σnk ∈ RB×B are defined by

πk :=
M

∏
j=1

πjkj
, µnk :=

M

∑
j=1

αnjµjkj
, Σnk :=

M

∑
j=1

α2
njΣjkj

+ D. (5)

Here, if we setK := { 1 }×{ 1 }× ...×{ 1 }, then we have the weight of the Gaussian component
πk = π11 = ...πM1 = 1, which will exactly become the formulation of the NCM model. In that case,
the distribution of the mixed pixel yn becomes

p(yn|αn, Θ, D) = N
(

yn|
M

∑
j=1

αnjµj1,
M

∑
j=1

α2
njΣj1 + D

)
(6)

where Θ :=
{

µj, Σj := j = 1, ..., M
}

. We can clearly find from the above equation that the probability
distribution of each endmember is only one Gaussian component. Here, we intuitively introduce how
the GMM and NCM models work and the difference between them. NCM minimizes the error with
yn in the LMM linear combination by finding the Gaussian center µj of each endmember, and the
error weights can be seen balanced by its covariance matrix. GMM minimizes the error with yn in the
LMM linear combination by finding a group of Gaussian centers µjk of each endmember, and the error
weighted is balanced by the prior πk. Although NCM can be much improved in terms of computational
complexity compared to GMM, the single-peak hypothesis could not approximate the endmember
probability distribution in real scenes.
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3. GMM Unmixing with Superpixel Segmentation and Spatial Group Sparsity

In this section, first, we describe the specific steps in implementing the superpixel segmentation,
then introduce the GMM unmixing based on the spatial group sparsity. Finally, the details of using the
GEM algorithm to solve SGSGMM are described.

3.1. Formulation of the Proposed SGSGMM

The main goal of this paper is to solve the problem of endmember variability, taking into account
the possible spatial correlation between local pixels and seeking proper prior constraints to achieve
better abundance estimation. Endmember variability makes the spectrum of the same material appear
different in the spectral domain. The methods solving this problem can be expressed in two categories:
one is the endmember set, and the other is the continuous distribution. The methods of the first category
both try to search the minimum mean square error through all the endmember combination. Thus, they
will both face with the computational inefficiency difficulties. The second category takes the statistical
analysis of the pure pixels and assumes following a certain form of distribution. The current popular
unmixing methods of the second category have also been mentioned above: Normal compositional
model (NCM) [20], Beta compositional model (BCM) [21], and Gaussian mixture model (GMM) [22].
Nevertheless, they all ignore the local spatial correlation of HSI. More specifically, to incorporate the
spatial correlations between the observed pixels into the unmixing process. Zhou et al. [22] assumes
the abundances A have the proper smoothness and sparsity prior constraints. These prior constraints
have enhanced the performance of abundance estimation to a great extent. However, those constraints
both require a rather strict assumption that the associated abundance of the mixed pixel should be
similar, or the pixel are located in the homogeneous regions. When the pixels’ region is not pure or lies
on the boundaries of different materials, the abundance in adjacent pixels will not have any sparse or
smooth prior constraints. Thus, taking prior knowledge into the whole HSI scene is not applicable
under the unmixing process. In that vein, to cut the HSI into several homogeneous regions, so that
the pixels in the same superpixels incline to have common features and a high spatial correlation, can
better incorporate the abundance prior constraints.

From another perspective, the first step of the GMM approach is to separate the library into
M groups, where each group represents a material and is clustered into several centers. Then the
endmember combinations take place by picking one center from each group. Therefore, in the GMM
method, the size of each cluster will influence the probability of selecting its center to a large degree.
When the original HSI is difficult to separate into several clusters, directly using the GMM method for
unmixing causes the endmember cluster to not fit the ground truth very well. Sometimes GMM even
failed to estimated the distribution of clusters, and influence the unmixing accuracy of the abundance.
This case will be introduced in later experiments. Thus, taking SS to segment HSI will help the GMM
to separate the clusters better, and reduce the risk of failing to estimated the clusters distribution. In
this paper, we adopt the modified simple linear iterative clustering (SLIC) [31] algorithm to cut the
HSI into different regions. Compared with the original SLIC [33], the shape of each superpixel of the
method is composed of a regular hexagon. The advantage over the original SLIC is that each hexagon
has more nondiagonal neighborhoods than squares. Therefore, we can get more homogeneous spatial
regions as the center of initialization.

As shown in Figure 1, here, we take Principal Component Analysis (PCA) to obtain the first
principle component of HSI, which is used as the base image when conducting the SS. Then, the original
HSI is separated into several nonoverlapping and homogeneous regions, which are accustomed based
on different spatial structures. Therefore, the pixels are highly spatially correlated. Due to the spatial
dependence, each spatial group is expected to share the same endmember assignment and structure
property. Furthermore, in each superpixel, only a few corresponding endmembers will participate in
the process of unmixing, which means the shared structure property should be sparse. To take into
account both spatial and sparse priors of the abundance, we should seek a more appropriate sparsity
constraint at the level of spatial groups rather than the whole image. Recently, several mixed-norm
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regularizations have been proposed in machine learning, computer vision, and statistics [34,35]. One
typical example is Li et al., in which a l2,1-norm regularizer f (A) = ∑M̂

i=1 ||A
i||2 is taken to exploit

the group row sparsity within the abundance matrix A. Similarly, Yang et al. proposed the spatial
group sparse coding (SGSC) by extending the robust ability among the group training regions [36].
Here, we adopt the spatial group sparsity constraints, which is proposed in SGSNMF [31], which is
generalized as

f (A) =
P

∑
p=1

∑
Aj∈ϑp

cj||WpAj||2, (7)

where ϑp is the spatial groups (superpixels), P is the number of spatial groups, and cj is
the pixel-by-superpixel confidence index, which is defined as the inversely proportional to the
spatial–spectral distance; DP

j , Wp = diag(Wp
1 , ...Wp

M) ∈ RM×M is a diagonal matrix. The mathematical
form can be expressed as

cj =
1

DP
j

(8)

Wp
i =

1
|Āp

[i]|+ ε
(9)

where Āp
= [Āp

[1], ..., Āp
[M]T ] is the average abundance vector of the pth superpixel. Therefore, the

Wp
i matrix is equivalent to a weight matrix to prevent loss of spatial details inside each superpixel. ε

is an extremely small number to prevent the Wp
i matrix from approaching infinity when the average

abundance within the superpixel is zero.

PCA
Superpixel

Segmentation
Unmixing each superpixel 

using GMM with spatial 

group constraint

1st  Principal Component Superpixel MapIndian Pines Image

Figure 1. Algorithm flow chart of the proposed spatial group sparsity constraint based on Gaussian
mixture model (SGSGMM) method.

In the original SGSNMF method, the spatial distance and spectral distance is measured by the
Euclidean distance (ED) and spectral angle distance (SAD), respectively. Here, we adopt the SID-SAM
method to measure the spectral distance [37]; because it can consider the spectral angle and information
divergence of pixels at the same time, and, in the specific experiment, it can better capture the variability
and similarity between different pixels. In terms of spatial distance, we also use the ED method as the
standard for measurement. The mathematical form can be expressed as

Dspectral = SID(xi, xc)× tan(SAM(xi, xc)),

Dspatial =

√
(ix− cx)2 + (iy− cy)2

r

(10)

where Dspectral and Dspatial denote the spatial and space distance, respectively. xi denotes ith pixel
of the image, and xc denotes the cluster center of the cth superpixel. (ix, iy), (cx, cy) denote the
spatial coordinates of the ith pixel and cluster center of the cth superpixel. r is the average size of the
superpixels, which is utilized to control the total number of spatial groups. SID and SAM measurement
are defined as
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SID(xi, xc) = D(xi||xc) + D(xc||xi)

=
B

∑
k=1

pik log (
pik
pck

) +
B

∑
k=1

pck log (
pck
pik

)

=
B

∑
k=1

(pik − pck) log (
pik
pck

)

(11)

SAM(xc, xc) = cos−1 (
< xi, xc >

||xi||||xc||
) (12)

where pik =
xik

∑B
k=1 xik

, pck =
xck

∑B
k=1 xck

and xik denotes the kth band of pixel xi.

Besides, for improved weighting of the relative importance between spatial and spectral
similarities, we add the parameter λ to balance the spectral and spatial items. Then, the spatial–spectral
distance Dj can be generated as

Dj = (1− λ)×Dspectral + λ×Dspatial, (13)

Furthermore, considering that in the same superpixel, adjacent pixels are more likely to be
composed of the same material and thus have similarities. Therefore, combining proper smoothness
and sparsity prior constraints, the density function of the abundances A can be generalized as

p (A) ∝ exp

 P

∑
p=1

(− β1

2
Tr
(

ATLA
)
+

β2

2 ∑
Aj∈ϑp

cj||WPAj||2)

 (14)

where L is a graph Laplacian matrix constructed from wnm, n, m = 1, . . . , N with wnm = e||yn−ym ||2/2Bη2

for neighboring pixels; otherwise, 0. Tr(·) is the trace of the matrix, P denotes the number of superpixels,
Wp are defined in Equation (9), and cj are defined in Equations (8), (10), and (13), with β1 controlling
smoothness and β2 controlling sparsity of the abundance maps.

According to the method analysis of GMM in the Section 2,

p(Y|A, Θ, D) =
N

∏∏∏
n=1

p(yn|αn, Θ, D). (15)

Then, from the conditional density function p(Y|A, Θ, D) and the abundance priors p(A),
taking Bayes’ theorem, we can obtain the posterior:

p(A, Θ|Y, D) ∝ p(Y|A, Θ, D)p(A)p(Θ), (16)

where the GMM parameters p(Θ)(Θ := πjk, µjk, Σjk : j = 1, ..., M, k = 1, ..., Kj, mnj : j = 1, ..., M) is
assumed to be an uniform distribution. As maximizing p(A, Θ|Y, D) is equivalent to minimizing
− log p(A, Θ|Y, D), combining Equations (4) and (13)–(15), we can obtain the objective function as

ε(A,Θ) = −
N

∑
n=1

log ∑
k∈K

πkN (yn|µnk, Σnk) + εprior(A),

s.t. πk ≥ 0, ∑
k∈K

πk = 1, αnj ≥ 0,
M

∑
j=1

αnj = 1, ∀n,

(17)

where εprior(A) = ∑P
p=1(−

β1
2 Tr

(
ATLA

)
+ β2

2 ∑Aj∈ϑp cj||WPAj||2) and µnk, Σnk are defined in
Equation (5).
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3.2. Optimization of the Proposed SGSGMM

Due to the flexibility of the EM algorithm, it can also be regarded as a kind of particular case
of majorization-minimization algorithms [38], and we choose this algorithm to solve the SGSGMM
model. Considering that the parameters in the abundance matrix A and Θ of the GMMs need to be
iterated in each M step, here we use the generalized-expectation maximization (GEM) optimization
algorithm to solve, as long as the complete data log-likelihood increases [32].

In each superpixel, the GEM algorithm is divided into E steps and M steps in the optimization
solution. In the E step: we calculate the posterior probability of each implied variable γnk based on the
observed data and initialization parameters. The mathematical form can be expressed as

γnk =
πkN (yn|µnk, Σnk)

∑k∈K πkN (yn|µnk, Σnk)
. (18)

In the M step, we will maximize the expected value of the log-likelihood probability. According to
the Bayesian formula, incorporated the priors of A, the final objective function εM we need to minimize
can be expressed as

εM = −
N

∑
n=1

∑
k∈K

γnk {log πk + logN (yn|µnk, Σnk)}+ εprior, (19)

where the εprior are defined in Equation (15). The weight of the Gaussian mixture πk can be updated as

πk =
1
N

N

∑
n=1

γnk. (20)

In the next step, we need to focus on updating the µjk, Σjk, and A. Using Equation (5), we can obtain
the derivatives of the objective function εM in Equation (15) with respect to µjk, Σjk, and αnj:

∂εM
∂µjl

= −
N

∑
n=1

∑
k∈K

δlkj
αnjλnk, (21)

∂εM
∂Σjl

= −
N

∑
n=1

∑
k∈K

δlkj
α2

njΨnk, (22)

∂εM
∂αnj

=− ∑
k∈K

λT
nkµjkj

− 2αnj ∑
k∈K

Tr(ΨT
nkΣjkj

)

+ β1(LA)nj − β2(
cj

||WpA||2
(Wp)TWpA)nj,

(23)

where Wp is defined in Equation (9). L is the graph Laplacian matrix; δlkj
= 1 when l = k j, otherwise 0.

λnk ∈ RB×1 and Ψnk ∈ RB×B are given by

λnk = γnkΣ−1
nk (yn − µnk), (24)

Ψnk =
1
2

γnkΣ−T
nk (yn − µnk)(yn − µT

nk)Σ
−T
nk −

1
2

γnkΣ−T
nk , (25)

For the convenience of implementation, we can rewrite the derivatives Equations (23)–(25) in
matrix forms as

∂εM
∂µjl

= − ∑
k∈K

δlkj
(ATΛk)j, (26)

∂εM
∂vec(Σjl)

= − ∑
k∈K

δlkj
((A ◦A)TΨk)j, (27)
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∂εM
∂A

= − ∑
k∈K

ΛkRT
k − 2A ◦ ∑

k∈K
ΨkST

k + β1(LA)− β2((Wp)TWpApBp), (28)

where ◦ denotes the Hadamard product. Λk ∈ RN×B, Ψk ∈ RN×B2
denote the matrices formed by

λnk, Ψnk, and Bp ∈ Rnp×np is a diagonal matrix, which can be represented as

Λk := [λ1k, λ2k, ..., λNk]
T ,

Ψk := [vec(Ψ1k), vec(Ψ1k), ..., vec(ΨNk)]
T ,

Bp = diag(
c1

||WpA1||2
,

c2

||WpA2||2
, ...,

cnp

||WpAnp||2
)

vec(·) denotes the vectorization of the matrix and Rk ∈ RM×B, Sk ∈ RM×B2
are defined by

Rk := [µ1k1 , µ2k2 , ..., µMkM ]T , (29)

Sk := [vec(Σ1k1), vec(Σ2k2), ..., vec(ΣMkM )]T . (30)

Then, given an initial A, we can update γnk and A alternately until convergence. In the choice of step
size, we adopt the method in [18], decreasing Equations (26)–(28) by project gradient decent in each M
step.

3.3. Model Selection

As can be seen from the analysis in the previous section, suppose we have a library of
endmember spectra Yj ∈ RNj×B : j = 1, ..., M, with which we can estimate the GMM parameters
Θ := πjk, µjk, Σjk : j = 1, ..., M by the standard EM algorithm. However, the number of the components
Kj for each endmember will be difficult to predict. If the number of components Kj is set incorrectly,
it will seriously affect the simulated distribution of the endmembers and greatly affect the unmixing
accuracy of the model. To achieve adaptive selection of Kj, we use a model selection method
based on cross-validation-based information criterion (CVIC) to adaptively select the number of
components [39,40].

Suppose Yj is the input pure pixels for the jth endmember, we will divide the input set Yj into
V = 5 subsets (Y1

j , Y2
j , ..., Y5

j ) with equal size. Then, for the each subset Yv
j , the remaining data in the

subset are used to replace Yj in turn and calculate the cross-validation evaluation criteria:

LKj = ∑
v
LYv

j
(Θv

j ) (31)

where LYv
j
(Θv

j ) is expressed as the distribution difference between the real distribution and the
simulated distribution. Here, we choose the Kullbcal–Leibler (KL) divergence to measure the difference
between probability distribution. The KL divergence can be mathematically written as

DKL(gmj || fmj) =
∫
RB

gmj(y) log
gmj(y)

fmj(y|Θj)
dy

≈ − 1
Nj

Nj

∑
n=1

log fmj(y
j
n|Θj) + const,

(32)

where Nj denotes number of the jth endmember and yj
n denotes nth element for the jth endmember.

Then, maximizing LKj to find the corresponding Kj as the final number of components K̂ =

arg maxKj LKj .
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3.4. Implementation Issues

In this section, we introduce the implementation details of the algorithm. For better comparison
with other algorithms, the proposed method SGSGMM is tested in two scenarios: supervised and
unsupervised. In the unsupervised unmixing scenario, the pixel purity assumption is assumed, which
means there are enough pure pixels samples in the hyperspectral image for training to model the
endmember probability distributions. As the optimization for GMM is nonconvex, the initialization
will seriously affect the accuracy of the unmixing. Here, we use three different EE initialization
methods to test the robustness of our algorithm: (1) K-means initialization, (2) Vertex Component
Analysis (VCA) initialization [41], and (3) region-based VCA initialization [42].

Taking the endmember initialization to find the initial R1, we start with Kj = 1, and the initial

abundance A is set to A ← YRT
1
(
R1RT

1 + εIM
)−1 (by minimizing ||Y − AR1||2F). The covariance

matrices and noise matrices are set to Σj1 = 0.1IB and D = 0.0012 IB, respectively. Then, we adopt
the GEM algorithm to iteratively update under the initial conditions. When the number of iterations
reaches the predefined value, we can obtain relatively pure pixel Yj by thresholding the abundance
(e.g., αnj > 0.99); then, adapting the method in Section 3.3 and taking Yj as input to estimate the
number of components Kj, continue iterating Θ and A to algorithm convergence.

For the supervised unmixing scenario, the difference between the above unsupervised method
is that the library of the endmember spectra is assumed known. Thus, we could directly take the
pure pixel Yj as input, adopt CVIC to estimate the number of components Kj and using GEM to
iterate. Therefore no need to set the initial conditions of the algorithm. The detailed procedure of the
supervised and unsupervised cases are listed in Algorithms 1 and 2, respectively.

In the specific experiments, the number of endmembers is known in advance, and it can also be
automatically detected by the HySime method [43]. In both cases, PCA is adapted to reduce the high
computational cost. All thresholds involved in this paper are the convergence value of the algorithm
and the other is the CVIC threshold; the convergence threshold is set as 0.2% and the CVIC threshold
is set as 1%. For fairness of comparison, the maximum number of iterations for all the algorithms is set
to 100. The weighting spectral and spatial terms λ is set to λ = 0.5.

Algorithm 1 Details for unsupervised of SGSGMM

Input: Collected mixed pixel matrix Y; the parameter of smoothness and spatial sparsity constraint

β1, β2, and the weight value for the distance metric λ;

Output: The estimated abundance matrix A;

1: Preprocessing:
2: (a) Implement PCA and generate P spatial groups based on SLIC

3: (b) Take initialization to find initial R1 and set A← YRT
1
(
R1RT

1 + εIM
)−1

4: (c) Calculate weight matrix Wp by Equation (9), the confidence index cj by Equations (8) and (10)

5: for each superpixel:
6: while not converged do
7: E step: Calculate γnk by Equation (19)

8: M step: Calculate derivatives of µjk, Σjk, αnj by Equations (23)–(25)

9: Update γnk, A, µjk, Σjk and Wp.

10: if iterations > predefined iterations

11: Set pure pixels Yj = Y((A(:, j) == 1), :), and estimate Kj by Equations (31) and (33).

12: Go to E step

13: end if
14: end while
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Algorithm 2 Details for supervised of SGSGMM

Input: Collected mixed pixel matrix Y, endmember E; the parameter of smoothness and spatial

sparsity constraint β1, β2, and the weight value for the distance metric λ;

Output: The estimated abundance matrix A;

Preprocessing:

2: (a) Implement PCA and Generate P spatial groups based on SLIC

(b) the confidence index cj by Equations (8) and (10)

4: Take endmember E as input, using CVIC to estimate Kj and calculate µjk, Σjk by standard EM

Set A← YRT
K
(
RKRT

K + εIM
)−1 as initialization

6: for each superpixel:

while not converged do

8: E step: Calculate γnk by Equation (19)

M step: Calculate derivatives of µjk, Σjk, αnj by Equations (23)–(25)

10: Update γnk, A, µjk, Σjk and Wp.

end while

4. Experimental Results

In this section, we will compare the proposed SGSGMM with some state-of-the-art unmixing
methods—NCM [20], BCM (spectral version with quadratic programming) [21], GMM [22], and
SGSNMF [31]—in both synthetic and real datasets. BCM and NCM are both supervised algorithms.
Thus, we implement those methods with the pure pixels taken as input and results are the abundance
maps. For the GMM and SGSGMM algorithms, as the number of components Kj will affect the
calculation rate of the algorithm, to accelerate the computation time of iteration, the original data is
reduced to 10 dimensions by PCA as input.

In the quantitative comparison of abundance, we calculate the root-mean-squared error (RMSE)
for abundance error, which is defined as

RMSE = (
1
N ∑

n
|αGT

nj − αest
nj |2)1/2, (33)

where αGT
nj denotes the ground truth and αest

nj denotes the corresponding estimated abundances. For the

real HSI dataset, the RMSE of abundance error is calculated by errorj = ( 1
|I| ∑n∈I |αGT

nj − αest
nj |2)1/2, as

only some pure pixels in the real dataset are recognized as ground truth; here, the I denotes the pure
pixel index set.

4.1. Synthetic Datasets

To verify the ability in estimation of both endmembers and fractional abundances, and the
robustness of our algorithm under different initialization conditions, for the synthetic dataset,
our algorithm is tested in the unsupervised case. To better simulate the endmember variability
existing in the real hyperspectral images, the spectral of the endmember seeds are randomly selected
from the ASTER spectral library [18]: limestone, basalt, concrete, conifer, and asphalt (Figure 2). The
covariance of the endmember spectra are based on those endmember seeds with slight constant
variations. The endmember spectra range is including three parts, which is visible and near-infrared
(VNIR; 0.4 µm to 1.0 µm), the short-wavelength infrared (SWIR; 1.0 µm to 2.4 µm), and the thermal
infrared (TIR; 8 µm to 12 µm). Their covariance matrices are constructed by α2

jkIB + b2
jkµjkµT

jk, where µjk
is a unit vector controlling the major variation direction. The endmember spectral we used to generate
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the synthetic data are shown in Figure 3, where we can intuitively see the centers and variations of the
endmember spectral signatures.

(a)Synthetic Color Images (b)Original library spectra

Figure 2. (a) The color images of the synthetic dataset. (b) The spectral of the endmember seeds used
to construct the synthetic dataset, which is all extracted from the ASTER library.

Figure 3. The endmember spectral signatures of the synthetic dataset. The gray portion of the
background within the image represents the reflection value of the pure pixel reflectance at each
wavelength position. The different colors in the figure represent different components, and the
corresponding legend indicates its prior probability. The solid line indicates the center of Gaussians µjk,
and the dotted line indicates the variance range of each Gaussian component, which is constructed by
µjk ± 2

√
σ̂jkvjk) (σ̂jk denotes the largest eigenvalue of Σjk; vjk denotes the corresponding eigenvector).

The size of the synthetic dataset we constructed is 60× 60. We choose one material as background,
the other materials are randomly placed in the corner, whose shape, width, and location are both
sampled from Gaussian distributions. Also, to allow the pixels to have a random value, the abundances
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are sampled from the Dirichlet distribution. The specific generation step of the abundance map
follows [44]. Here, the additive noises we added to the mixed pixels are assumed to follow the
Gaussian distribution N (nn|0, D) (D = diag

(
σ2

1 , σ2
2 , ..., σ2

B
)
∈ RB×B). Figure 2a shows the resulting

color images by extracting the bands corresponding to wavelengths 488 nm, 556 nm, and 693 nm. The
parameters in this experiment are superpixel size w = 7, the weighting spectral and spatial terms are
λ = 0.5, β1 = 0.2, and β2 = 0.1.

(1) Accuracy of abundance maps comparison: Figure 4 shows the abundance maps comparison in
the synthetic dataset. As NCM and BCM are both supervised methods, thus we take the endmember
spectra library as input. For SGSGMM, GMM, and SGSNMF methods, the endmember are both
taken region-based VCA methods as initialization [42]. Because the materials except the background
are randomly placed in the four corners when the image is generated, the four endmembers’
abundance map (basalt, limestone, conifer, and concrete) should look relatively clean and less cluttered.
Comparing the ground truth (the first row of the Figure 4), we can see that although the size and shape
of the GMM abundance maps are relatively consistent, some discrete and spatially isolated points are
not well estimated. These points that should have abundance values are predicted as 0, which can be
seen relatively clearly from the abundance map of asphalt and limestone. This is because the GMM
uses the pixels of the entire image as the training when processing the image, and some discrete points
are easily averaged out when the sparse priors constraints are performed in the entire image. It is
further explained that the use of SS and group sparse constraints as a priori can better improve the
unmixing accuracy within the GMM framework. For the BCM and NCM algorithms, although the
discrete points are estimated normally, the shape of the abundance map is much different from the
ground truth, which means that many pixels with an original abundance of 1 are predicted to have
an abundance of 0. This is related to the fact that the probability distributions of the BCM and NCM
models are not very close to the true endmember distribution. Although they all use the endmember
spectra library as input, the performance is farther than the ground truth. For the SGSNMF, which
also uses SS and group sparse constraints as the abundance priori, although it takes full use of the
local spatial and spectral information within the hyperspectral image pixels, it does not consider the
effects caused by endmember variability to unmixing. When the endmember spectra set is not fixed,
the spectrum of the entire image may not be the same. The inaccuracy of the endmember signature
will affect the performance of the unmixing to a great extent. Thus, the SGSNMF abundance maps
also perform relatively poorly. Compared with these four algorithms, the result in SGSGMM is much
closer to the ground truth map, which also shows the effectiveness of our proposed algorithm. The
quantitative performance of the abundance map is shown in Table 1.

(2) Histograms of pure pixels comparison: The histograms of the pure pixels for the five materials
are shown in Figure 5. As the BCM algorithm is not modeled as Gaussian distribution and SGSNMF is
also not a distribution-based method, the histograms of the statistical probability value for the five
materials is only compared among SGSGMM, GMM, and NCM algorithms. The estimated of each
distribution is calculated by multiplying the density function value of each bin position by the bin size
when projected to 1-dimensional space determined by performing PCA. The histograms in Figure 5
are the pure pixels for each material when projected to 1-dimensional space. The probability value
of the histogram is the frequency statistics of pure pixels falling into different intervals after PCA
dimensionality reduction. From Figure 5, we find that when the distribution of the pure materials
is generated by an unimodal Gaussian, all the estimated distribution are similar, such as limestone,
conifer, and asphalt. However, for basalt and concrete, where the probability distribution is the
multipeak, SGSGMM and GMM can provide a more accurate estimation, because NCM assumes the
endmembers for each pixel are sampled from single Gaussian. When comparing the two algorithms
GMM and SGSGMM, most of their histograms are similar and fitted to the ground truth. Nevertheless,
for basalt. SGSGMM provides a better estimation. This also confirms the point mentioned above that
taking SS will help GMM to better separate the clusters, and reduce the risk of failing to estimated
the distribution of the cluster. The quantitative analysis of these three algorithms is shown in Table 2,
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we calculate the probability value in each histogram between the ground truth and estimate value by
using RMSE Equation (33).
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Figure 4. Abundance maps comparison for the ground truth, SGSGMM, Gaussian mixture model
(GMM), spatial group sparsity regularized non-negative matrix factorization (SGSNMF), normal
compositional model (NCM), and Beta compositional model (BCM).

Table 1. Abundance errors for synthetic dataset.

×10−3 SGSGMM GMM SGSNMF NCM BCM

Asphalt 208 459 672 566 743
Shadow 80 197 261 278 311

Roof 118 340 463 460 586
Grass 51 129 175 248 273
Tree 81 161 236 262 277

Whole map 107 257 359 363 438
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Figure 5. The histograms of the pure pixels for the 5 materials. The x-axis is expressed as a pure pixel
for each material via PCA to 1-dimensional space, and the y-axis represents the proportion of occupying
each bin size in the histogram. The probability of each distribution is calculated by multiplying the
value of the density function at each bin location with the bin size.

Table 2. The root-mean-square error (RMSE) calculated between the probability value in each histogram
and the estimated value at each bin location for the synthetic dataset.

×10−4 SGSGMM GMM NCM

Limestone 49 48 51
Basalt 114 138 285

Concrete 90 91 285
Conifer 66 85 81
Asphalt 115 115 115
Mean 87 95 163

4.2. Real-Data Experiments

Two real HSIs are also used to evaluate the unmixing accuracy. In these experiments, for the
fairness of the experiment, all the algorithms are implemented as a supervised case and taking
endmember spectral library as input.

4.2.1. Mississippi Gulfport Datasets

For the real data experiments, the first real HSI was collected over the campus of Southern
Mississippi–Gulfpark. The size of the Gulfport dataset is 271× 284, and the spectra range is from
0.368 µm to 1.043 µm with 1 m/pixel spatial resolution. To better compare the unmixing results
between the proposed method and GMM, the ROI we selected is a 120 × 80 area, which contains
five materials: road, shadow, building, grass and tree. Compared with the previous ROI in [22],
it contains more trees and asphalt materials and is larger in size. The selected ROI area and the
corresponding abundance map are shown in Figure 6c,d. The superpixel map we used is shown in
Figure 6e. The parameters in this experiment are superpixel size w = 7; the weighting spectral and
spatial terms are λ = 0.5, β1 = 1, and β2 = 0.1.
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Figure 6. (a) The original RGB image. (b) The corresponding ground truth materials of Gulfport
dataset. (c) The selected ROI area. (d) The corresponding ground truth materials in the ROI. (e) The
superpixel map we used for the experiment. (f) The wavelength reflectance of mean spectra signature
for the 5 materials.

Figure 7 shows the abundance maps comparison in the Gulfport dataset. We can see that SGSGMM
matches the ground truth (the first row of Figure 7) best, followed by GMM. For NCM, BCM, and
SGSNMF, we do not use PCA to get the main information while using the whole bands HSI dataset as
input. Nevertheless, they could not provide a more accurate estimation. For example, the first and
fourth abundance maps of NCM and BCM show that the pixels of asphalt and shadow are mixed
with roof, and NCM fails to estimate the abundance of the tree area. For SGSNMF, although the shape
and size of its abundance maps look good in general, some pure regions are inconsistent, which also
shows the insufficiency in this case. The abundance maps of SGSGMM not only show sparse areas,
but also explain adjacent boundaries. More specifically, in the comparison of the fifth abundance
maps, SGSGMM provides a relatively accurate estimation, whereas other algorithms perform poorly.
This is because there is a large number of homogeneous regions in the fifth material, therefore sparse
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structures of the spatial groups can be more effectively exploited. The quantitative abundance errors
of these algorithms are shown in Table 3, which also implies that SGSGMM performs best overall.
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Figure 7. Abundance maps comparison for the ground truth, SGSGMM, GMM, SGSNMF, NCM, and BCM.
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Table 3. Abundance errors for Gulfport dataset.

×10−3 SGSGMM GMM SGSNMF NCM BCM

Asphalt 189 384 513 474 440
Roof 220 333 286 647 660
Grass 57 67 95 183 130

Shadow 163 154 158 137 110
Tree 385 628 636 767 728

Whole map 158 276 280 357 351

The wavelength reflectance of endmember spectra for the Gulfport is shown in Figure 8. Figure 9
shows the histograms of the pure pixels for the five materials. The pure pixel for each material is
determined via PCA to 1-dimensional space. Although most of the histograms are single peaks, NCM
still performs poorly when estimating the endmember distribution. In contrast, our method and GMM
algorithm are more suitable for this pure pixel distribution. Comparing the performance of all five
materials, our algorithm can provide a better fit to the ground truth. The quantitative analysis presents
in Table 4, which can also be verified. Noted that evaluation metric we use are slightly different from
those used in [22], the specific details can be referred to the uploaded code.

Figure 8. The wavelength reflectance space of the endmember signature estimated for the Gulfport
dataset, which has the same meaning as in Figure 5.

Table 4. The RMSE calculated between the probability value in each histogram and the estimated value
at each bin location for the Gulfport dataset.

×10−4 SGSGMM GMM NCM

Asphalt 100 232 178
Roof 72 227 305
Grass 41 71 134

Shaodw 219 219 566
Tree 54 90 112

Mean 97 168 259
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Figure 9. The estimated distributions and the histograms of pure materials for the SGSGMM, GMM,
and NCM.

4.2.2. Salinas-A Datasets

The second real HSI is collected by the AVIRIS sensor over Salinas Valley, California, which is a
512 × 217 image with 224 bands and high spatial resolutions (3.7-m pixels). The ROI we choose to
experiment with is a small sub-scenario Salinas image, denoted as Salinas-A. This is also commonly
used. It contains 86× 83 pixels, including six materials. The RGB image and corresponding abundance
map are shown in Figure 10a,b. The superpixel map we used is shown in Figure 10c. The parameters
in this experiment are set to: superpixel size w = 7, the weighting spectral and spatial terms λ = 0.5,
β1 = 1, and β2 = 0.1.

The abundance maps comparison from different algorithms is shown in Figure 11. We can
clearly see the inefficiency of NCM, BCM, and SGSGMM on this dataset. NCM, BCM, and SGSNMF
all fail to estimate the pure pixels of corn, and SGSNMF performs too many inconsistent regions,
which should be the pure material areas. SGSGMM matches the ground truth best, followed by GMM.
The quantitative abundance errors of these algorithms are shown in Table 5, which also implies that
SGSGMM performs best overall. Figure 12 shows the wavelength reflectance space of the endmember
signature for the Salinas-A dataset. The estimated distributions and the histograms of pure pixels for
the SGSGMM, GMM, and NCM are shown in Figure 13. We can see that for lettuce 7wk, NCM still
does not fit the histograms, although the distribution is not multiple peaks. For lettuce 5wk, the GMM
algorithm do not closely approximate the ground truth since the pure pixels are not single peaks.
This also shows that our method can help the GMM better separate the clusters and enhance the
performance in the estimated distribution. The quantitative analysis is presented in Table 6.
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Figure 10. (a) The original RGB image. (b) The corresponding ground truth materials of Salinas-A
dataset. (c) The superpixel map we used for the experiment. (d) The mean spectra of the 6 materials.
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Figure 11. Abundance maps comparison for the ground truth, SGSGMM, GMM, SGSNMF,
NCM, and BCM.
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Figure 12. The wavelength reflectance space of the endmember signature estimated for the Salinas-A
dataset, which has the same meaning as in Figure 5.

Figure 13. The estimated distributions and the histograms of pure materials for the SGSGMM, GMM,
and NCM.
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Table 5. Abundance errors for Salinas-A dataset.

×10−3 SGSGMM GMM SGSNMF NCM BCM

Brocoli 528 715 511 1421 511
Corn 1291 2087 8068 8790 8021

Lettuce 4wk 150 2096 2766 2732 2396
Lettuce 5wk 556 520 324 1858 1536
Lettuce 6wk 530 1975 9985 2529 1597
Lettuce 7wk 790 1046 1427 3053 2423
Whole map 407 802 2502 2268 2006

Table 6. The RMSE calculated between the probability value in each histogram and the estimated value
at each bin location for the Salinas-A dataset.

×10−4 SGSGMM GMM NCM

Brocoli 315 291 317
Corn 140 382 586

Lettuce 4wk 177 172 196
Lettuce 5wk 63 150 150
Lettuce 6wk 116 233 134
Lettuce 7wk 151 163 215

Mean 160 231 266

5. Discussion

In this section, we will present an analysis of the sensitivity and efficiency of the algorithm and
further discuss the limitations of the method.

(1) Sensitivity analysis to different initializations: As the endmember spectra library is not
used as input in the unsupervised scenario, the initialization conditions will affect the accuracy
of the unmixing to a large extent. In order to test the sensitivity and robustness of the proposed
method. Here, we test the comparison algorithms under three different initialization conditions
to compare the unmixing performance, including K-means, VCA, and region-based VCA. More
specifically, K-means and VCA are looking for their candidate endmember in the original spectra,
whereas region-based VCA searches for the candidate endmember in the average spectrum of each
superpixel. The scatter plot of the endmember center under different initial conditions is shown in
the Figure 14. We can see that the region-based initialization provide a more approximate and robust
initial value relative to the optimal global solution compared with other initializations. This is because
the region-based initial condition searches for candidate endmembers in each homogeneous region,
and the original spatial information in the image can be well preserved under the correct superpixel
groups. The specific abundance error values under different initial conditions are shown in the Table 7;
we can see that the corresponding unmixing results within region-based method preform the highest
accuracy, whereas the K-means initialization based performs poorly because it failed to estimate the
center of the endmember well. Furthermore, in the comparison of the unmixing results within different
algorithms, we can find that SGSGMM performs the best unmixing precision under all initialization
conditions followed by GMM. The SGSNMF algorithm does not perform good unmixing accuracy even
under the region-based initialization condition, although the local spatial information in the image
is fully considered, which also illustrates the importance of considering the endmember variation
problem to the accuracy of unmixing. For NCM and BCM, as they are both supervised methods,
the algorithms are only implemented with the endmember library as input. Therefore, the experiments
in different initialization situations are not considered. Comparing the results with these GMM, NCM,
and BCM methods, which simulate endmember variability through probability distributions, we can
also confirm that taking SS and group sparsity constraints can better capture the spatial data structure
and enhance the performance in the abundance estimation.
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(a) (b)

(c) (d)

Figure 14. The scatter plot of the synthetic dataset under different initial conditions. The gray dots are
the pixels when projected by PCA. (a) The original endmember scatter plot of the synthetic dataset
with estimated GMM. (b) The endmember scatter plot by K-means initialization. (c) The endmember
scatter plot by VCA initialization. (d) The endmember scatter plot by region-based VCA initialization.

Table 7. Abundance errors for synthetic dataset under different initialization conditions.

×10−4 K-Means VCA Region-Based VCA NCM BCM
SGSGMM GMM SGSNMF SGSGMM GMM SGSNMF SGSGMM GMM SGSNMF

Limestone 402 615 818 278 524 668 208 459 672 566 743
Basalt 97 194 330 85 145 262 80 197 261 278 311

Concrete 301 515 533 158 425 448 118 340 463 460 586
Conifer 159 147 254 72 147 173 51 129 175 248 273
Asphalt 84 190 319 108 192 236 81 161 236 262 277

Whole map 209 332 451 140 287 357 107 257 359 363 438

(2) Sensitivity analysis to different size superpixels: Figure 15 shows the performance of SGSGMM
with different group sizes. The initialization is the default region-based VCA. From Figure 15e, we can
see that when the size of superpixels is set to relatively larger, the precision of its abundance map is
declining; further, comparing Table 7, we find that the precision value is gradually approaching to the
GMM with the same initialization conditions. This also demonstrates that when the group size is set so
large that there only exits one superpixel, the pixels within one spatial group will not be homogeneous
and will no longer expect to share the same sparse property. The group sparsity priors will have
similar sparsity constraints to the GMM model. When the size of superpixels is set to w = 7, w = 8,
the performance of the unmixing becomes the best. However, when the group sizes is setting smaller,
the accuracy of the unmixing will decrease. This is because when the superpixel is too small, there is
not enough data for training, and those superpixels will have no statistical significance.
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Figure 15. Performance analysis of SGSNMF with respect to different size superpixels. (a) w = 5.
(b) w = 7. (c) w = 9. (d) w = 11. (e) RMSE of abundance values with respect to w.

(3) Efficiency analysis with real hyperspectral data: The efficiency comparison with synthetic and
real HSI is provided in Table 8. In this experiment, the original data is reduced to 10 dimensions by
implementing PCA. The maximum number of iterations for all the algorithms is set to 100, and the
convergence threshold is set is 0.2%. The experiments are performed on the laptop with 2.6-GHz
Intel Core CPU, 16GB memory. From Table 8, we can see that the time required for the SGSNMF
algorithm is significantly less than other algorithms. As other algorithms are distribution-based
methods, more running time is required to search for the endmember combinations. From the detailed
procedures in Algorithms 1 and 2, we can find that for SGSGMM, each iteration in the estimation
of abundances has spatial complexity O(|K|NB2) and time complexity O(|K|NB3). NCM has the
same complexity but with |K| = 1. Hence, compared with the Gaussian mixture models, less runtime
is required. Compared with the GMM and SGSGMM algorithms, we can see that our algorithm
requires fewer time resources than GMM. The complexity of these algorithms is the same, and, due
to the SLIC segmentation preprocessing, for SGSGMM, the overall running time should be larger.
However, the pixels in the same superpixels incline to have common features and a high spatial
correlation, which will speed up the convergence of the algorithm in this homogeneous regions.
Therefore, the overall convergence time of SGSGMM is relatively small.

Table 8. Efficiency comparison for the real hyperspectral data.

Times (s) SGSGMM GMM SGSNMF NCM BCM

Gulfport 1611 2293 38 268 1008
Salinas-A 803 980 15 528 2017

Limitation: As seen from the above complexity analysis, for the GMM and SGSGMM algorithms, the
computational resources needed are relatively large. The main factors affecting the efficiency of GMMs
are |K| and B. When the number of components, Kj, increases, the complexity would grow exponentially.
In the actual processing, we can introduce the thresholds to reduce the number of components or
reducing the number of pure pixels to a fixed number by random sampling. Another limitation is that
our method is only tested in the scene with a large number of pure pixels region. As our method is a
statistical learning method, in the highly mixed scenes, such as spaceborne data, the presence of regions
of pure pixels may not hold, and the pure pixel samples are not sufficient for training to model the
continuous endmember distribution. Note that this limitation exists more or less in the method based
on the statistical analysis. On the basis of ensuring the feasibility, and to verify the performance of the
proposed method when considering the mixed pixel problem, the synthetic experiment is designed with
adequate mixed pixels in the dataset together with enough pure pixel samples.
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6. Conclusions

In this paper, a novel unmixing algorithm based on Gaussian mixture model (GMM) and spatial
group sparsity constraint is proposed. In an attempt to solve the problems caused by endmember
variability and fully exploit the possible spatial correlation, we adopt SLIC segmentation to generate
the spatial groups and cut the HSI into different nonoverlapping regions. In these regions, pixels are
highly spatial correlated. The mixing pixel and its associated abundance within a local spatial group
should share the same prior property constraints. Thus, under the Bayesian framework, we put the
spatial prior and the sparsity of the abundance as a modified mixed-norm regularization into the
objective function as prior knowledge. Experiments on both simulated and real hyperspectral data
demonstrate that the proposed algorithm can achieve higher precision unmixing results compared
with other state-of-art methods.
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