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Abstract: Although methods were proposed for eliminating sun glint effects from airborne and
satellite images over coral reef environments, a method was not proposed previously for unmanned
aerial vehicle (UAV) image data. De-glinting in UAV image analysis may improve coral distribution
mapping accuracy result compared with an uncorrected image classification technique. The objective
of this research was to determine accuracy of coral reef habitat classification maps based on glint
correction methods proposed by Lyzenga et al., Joyce, Hedley et al., and Goodman et al. The UAV
imagery collected from the coral-dominated Pulau Bidong (Peninsular Malaysia) on 20 April 2016
was analyzed in this study. Images were pre-processed with the following two strategies: Strategy-1
was the glint removal technique applied to the whole image, while Strategy-2 used only the regions
impacted by glint instead of the whole image. Accuracy measures for the glint corrected images
showed that the method proposed by Lyzenga et al. following Strategy-2 could eliminate glints
over the branching coral—Acropora (BC), tabulate coral—Acropora + Montipora (TC), patch coral (PC),
coral rubble (R), and sand (S) with greater accuracy than the other four methods using Strategy-1.
Tested in two different coral environments (Site-1: Pantai Pasir Cina and Site-2: Pantai Vietnam),
the glint-removed UAV imagery produced reliable maps of coral habitat distribution with finer
details. The proposed strategies can potentially be used to remove glint from UAV imagery and may
improve usability of glint-affected imagery, for analyzing spatiotemporal changes of coral habitats
from multi-temporal UAV imagery.
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1. Introduction

Coral reef platforms support diverse marine organisms including soft and hard corals,
invertebrates, and sponges. They provide many ecosystem services including revenue from fish
and fisheries, tourism, and reproductive sites for turtles and birds in shallow coastal environments.
Like other coastal and marine environments, corals are currently vulnerable to environmental and
anthropogenic threats across local to global scales: overexploitation of coastal resources, diving,
thermal stress, reduction in water quality, climate change, and ocean acidification [1,2]. Mapping coral
reef environments is an essential activity to help understand their health, monitor changes related to
environmental drivers or anthropogenic stress, and recover from stressors [3–5]. In order to efficiently
manage and protect coral ecosystems, managers require detailed information on the distribution,
extent and health of reef systems. Large-scale (tens of square kilometers) and fine-scale (detailed
mapping using pixels <10 m) studies on corals including reefs and their ecological communities
require satellite or airborne images with a high spatial resolution. The unmanned aerial vehicle
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(UAV) is characterized by better spatial, temporal, and radiometric resolution than any airborne or
satellite platform [6–9]. With multispectral and hyperspectral sensors mounted on UAV platforms,
high-resolution, georeferenced data can be acquired for studying spatial and temporal changes in
water quality [10] and coral state and bleaching [11,12]. UAV missions, however, can be seriously
hindered by specular water reflection problems such as hotspots, sun flaring, or sun glint [13].

The emergence and development of both sensor technology and image processing algorithms
eventually provided the enhanced capability of remote sensing for coral studies [4]. Multispectral
airborne and satellite sensors provide useful information for mapping submerged aquatic vegetation
such as coral benthic habitats, algae and seagrass meadows, and their ecosystem services [3,4,14–17] in
the shallow coastal areas where the spatiotemporal heterogeneity is high [18,19]. However, aquatic
remote sensing can be seriously impeded, mainly by the water quality (depth and clarity), and sun
glint effects. The sun glint problem is produced especially in a wind-roughened surface of water [20,21].
When the sun incidence angle is equal to the reflection angle, the incident light reflected on the rough
water causes specular reflection onto the camera. Commonly, the specular reflection causes high
brightness in images, reduces the signal-to-noise ratio, and results in a significant reduction in valid
observations. Thus, the sun glint problem limits the usefulness and accuracy of remotely sensed
data [21,22]. Extraction of detailed benthic habitat extent and distribution information from sun
glint-affected data is impossible for both single and multi-mission UAV flight acquisition data due to
repeated invalid observations in the study area [22,23].

To avoid sun glint, some suggested conducting aerial surveys during an appropriate time of the
day, considering the sun (zenith) angle, wind speed, and field of view of the sensor [24]. This may
restrict the flying time available. While flying time is preferred during the lowest low tides, especially
for benthic habitat surveys, to avoid confounding effects of water columns, the sun glint effect remains a
potential problem. In this context, sun glint correction when mapping coral habitats was demonstrated
an essential step in the image processing workflow of UAV imagery.

The negative effects of sun glint in ocean color remote sensing and their possible solutions are
well documented [22]. The techniques of sun glint correction in ocean color and coastal and inland
remote sensing are many (Table S1, Supplementary Materials). Two sun glint removal techniques are
commonly used: (1) a radiative transfer model coupled with a statistical model of surface water to
predict water leaving reflectance [25,26], and (2) using near-infrared (NIR) wavelengths (700–1000 nm),
which exhibit maximum absorption and minimal water leaving radiance over clear waters, as a proxy
for the amount of sun glint in a pixel, and finding the spatial variation of glint intensity across the
image [27–31]. The developed sun glint rescue approaches are based on statistical analyses (probability
distribution) of water surfaces in satellite imagery and are not valid for high-resolution imagery
captured from UAV platforms [10].

Although previous studies attempted to improve the image processing workflow in order to correct
sun glint defects on images, most of them applied it to satellite and airborne images. The proposed
correction methods were applied to (1) ocean color remote sensing imagery with coarse spatial
resolution (>100 m each pixel) [25,32–34] or (2) coastal images with high spatial resolution (<10 m each
pixel) [28,35,36]. Recently, a few studies addressed sun glint issues in UAV applications, for example,
identifying the sun glint situation [13,37], characterizing environmental variables including sun glint
on water reflectance [10], and removing sun glint effects for successful survey of marine fauna like
dugong [23]. The internal (focal length, principal point, lens distortion) and external orientations (X, Y,
Z spatial positions and omega, phi, kappa angular positions) indicating stability of the drone are all
taken into account before UAV imagery is stitched together by a robust photogrammetric approach.
There are few studies of sun glint correction methods applied to UAV camera imagery across coral reef
areas. Thus, further studies on the development of sun glint correction methods, particularly for UAV
applications over coral waters, are desirable.

As mentioned earlier, when sun glint correction is performed, it is assumed that the water-leaving
signal of the pixels with near-zero in the NIR spectrum does not contain glint, and the largest NIR
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values (in the deep-water area) mainly contain glint. In heterogeneous coastal environments [38],
however, in the NIR spectra, there is often “residual” radiance. The NIR signal could be strong due
to the optical shallow-water quality and the presence of underwater substrates, for example, sandy
substrate [39], seagrasses [18], and corals [40,41]. Therefore, for coral-reef areas where the water surface
is less than 2 m [42,43], the common sun glint correction assumption may not work and necessitates
further extensive study [30]. In some cases, for example, the presence of benthic substrates made the
NIR signal strong [42,43] and the glint removal technique proved to be inefficient [30]. Apart from
poor assumptions, some techniques require ancillary information such as wind speed and direction,
wave slope, and other parameters at the time of satellite overpass, which is difficult to manage [20,36].
Therefore, many authors proposed many alternative solutions which do not require ancillary data to
precisely predict glint radiance (Table S1, Supplementary Materials). However, each sun glint removal
method has its respective merits and shortcomings. It is, therefore, essential to investigate the efficiency
of sun glint correction methods that can improve image quality and, thus, enhance the utility of these
methods for case-specific scientific applications.

Applications involving the use of UAV camera image pre-processing techniques for sun glint
effects in coral reef mapping were not extensively evaluated and implemented. An appropriate sun
glint removal technique is yet to be examined to improve UAV imagery, as well as the usefulness of
this method for coral and related habitat classification and distribution mapping.

The overall goal of this study was to test and validate a sun glint correction method for UAV
imagery that can be used for coral reef mapping applications. The relative efficiency of the optimized
algorithm was tested with a view to use high-resolution UAV images to evaluate its potential for
improving the conservation and management of coral resources.

2. Materials and Methods

The UAV platform used was a fully equipped DJI Matrice 100 quadrotor, a developer-grade drone
with a 3-kg payload weight, which endured for about 14 min. A total of 2345 photos were captured
covering an area of 41 ha (Site-1: 14 ha and Site-2: 27 ha) of the west coast of Pulau Bidong, off the
east coast of Terengganu, Peninsular Malaysia (Figure 1). Pulau Bidong is an uninhabited island with
242 ha of land, and the shoreline of 9 km is surrounded by the South China Sea. Two sites were chosen
for this study considering the existence of coral community complexes. Two flight missions were
accomplished: one over Site-1, locally known as Pantai Pasir Cina, and the other over Site-2, locally
known as Pantai Vietnam, covering 14 and 27 ha, respectively (Figure 1). Although the geographic
distance between the two sites was close (about 500 m apart from each other), there were observable
differences in coral community assemblages (Table 1).

Note that data acquired from Site-1 were used to evaluate sun glint models, while data acquired
from Site-2 (twice as large as Site-1) were used to further validate the Site-1 method.

2.1. UAV Data: Acquisition and Processing

The approach to multispectral UAV image acquisition and mapping of coral benthic habitat is
outlined in Figure 2. It was based on four main steps: (1) all necessary activities for the multispectral UAV
image processing and analysis (data collection missions, image radiometric correction, georeferencing,
reflectance orthomosaics, and land masks); (2) four different sun glint corrections were applied based
on two different strategies (Strategy-1 and Strategy-2; see Figure 2); (3) image training for coral benthic
habitat classification; and (4) finally, in the validation, the efficacy of the sun glint correction method
was evaluated in terms of accuracy of the map products. These processes are later described in detail.

The UAV data acquisition was performed on 20 April 2016 between 2:00 and 3:00 p.m. Coordinated
Universal Time (UTC) +8 when the sun azimuth was 299.13◦. The flight mission was intentionally
scheduled at midday so that there was an obvious sun glint effect, which was the primary objective of
this study. The mission planner software Litchi (v4.0.1; https://flylitchi.com/) was used to design flight
tracks for each site and to monitor progress during data acquisition. Flight missions were flown at

https://flylitchi.com/
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an altitude of 160 m above ground level (AGL) and a cruising speed of 38 km/h. UAV flight tracks
were designed in a lawn-mowing pattern to enable expected overlap, with a 75% frontlap and 75%
sidelap. The UAV flight starting waypoint was set near the coast, and the subsequent waypoints were
away from the coast to the border of fringing reefs. The mission planner allowed the end waypoint
to be the landing site, i.e., the first starting waypoint. This design allowed easy retrieval of drones
when the weather was unexpected, or following marine bird interference or system failure. Surveys
were carried out at low tide (−0.1 m from mean sea level) to ensure that the effect of sun glint exposure
on the object of interest was investigated exclusively. The sites exhibit a mixed tide with a dominant
diurnal tide [44].

The environmental conditions during the UAV missions and in situ benthic surveys were also
recorded (Table 2). The oceanographic data were retrieved from the Hybrid Coordinate Ocean Model,
or HYCOM (http://www.hycom.org/), which is a part of the United States (US) Global Ocean Data
Assimilation Experiment (GODAE) at a scene position (at 5.60◦–5.65◦ north (N) and 103.0◦–103.1◦

east (E)). HYCOM provides data to produce daily three-dimensional (3D) snapshots of oceanographic
variables such as temperature, salinity, and current velocity at 1/12◦ resolution. On the day of our
survey (20 April 2016), the average seawater salinity was 33.1 ppt. Current measurements were taken
at two separate flow speeds measured along two orthogonal axes (known as U and V components).
The axes were oriented in such a way that U represents the horizontal flow in the east–west direction,
while V represents the vertical flow in the north–south direction. The U component was −0.001 m/s,
meaning that current flows in the westward direction, and the V component was 0.015 m/s, meaning
that current flows in the northward direction.

Meteorological data were recorded from the European Center for Medium-Range Weather Forecasts
(ECMWF) online dataset (https://www.ecmwf.int/). ECMWF is an independent intergovernmental
organization based in Reading, United Kingdom (UK). During the field trip, the sea surface temperature
was about 30.3 °C, and the sky was noticeably clear and sunny (total cloud cover 1.2% at 12:00 p.m.
UTC+8) at the beginning of the UAV survey. The cloud cover gradually increased during the benthic
in situ data collection time, especially in the evening (total cloud cover 41.9% at 6:00 p.m. UTC+8).
The forecasted wind direction and speed suggested that the winds blew westward and subsided near
dusk (the U component of wind decreased from noon −3.192 m/s to dusk −2.263 m/s). Furthermore,
the wind V component also showed that the wind speed decreased from noon −1.982 m/s to dusk
−0.379 m/s (a negative value indicates that the winds blew toward the southern direction of the site).

The tidal predictive data used in this study were taken from the WorldTides web interface
(https://www.worldtides.info/) established by US Oregon State University. The WorldTides prediction
is based on harmonic analysis, method of least squares (HAMELS). The tide height was taken at 5.621◦

N and 103.056◦ E, representing the center position of the scene. During the study periods, tide heights
were between −0.1 m and 0.1 (measured from mean sea level). The highest predicted astronomical tide
in the island is 1.17 m, and the lowest astronomical tide is −1.13 m. The average of all high waters is
0.47 m, whereas the average of all low waters is −0.47 m from mean sea level. Note that both predicted
astronomical tide and mean high/low waters were calculated over a full nodal cycle (~18.6 years),
starting at 1 January 2000 by the WorldTides research team.

The UAV was mounted with two cameras: Zenmuse X3 and Micasense RedEdge. The Zenmuse X3
with a rolling shutter and 3.6-mm focal length (https://www.dji.com/) provided 12.0 megapixels (4000 ×
3000 pixels) of true-color imagery with non-reflectance-compensated outputs that were was used to get
first-person views of the drone’s flight mission movements. This study explicitly used the Micasense
RedEdge with a global shutter, 47.2◦ field of view, and 5.5-mm focal length (https://www.micasense.com/)
with an image size of 1.3 megapixels (1280 × 960 pixels) for mapping coral habitat. The spectral
range of the instrument is 455 to 727 nm with a width of 10–40 nm. The instrument receives radiance
in the visible (blue with 475-nm central wavelength, green 560-nm wavelength, and red 668-nm
wavelength), near-infrared (NIR; 840-nm wavelength), and red-edge (717-nm wavelength) regions.
This camera was pointed near nadir during the missions and programmed in 3 s to capture each

http://www.hycom.org/
https://www.ecmwf.int/
https://www.worldtides.info/
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image. Images of a calibrated reflectance panel were captured immediately before and after each
flight, along with sun irradiance measurements via an onboard downwelling light sensor to generate
reflectance-compensated outputs from Micasense RedEdge. The sky was well lit with low complete
cloud cover during the UAV data acquisition (see Table 2).
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Table 1. Coral benthic habitat characteristics of study sites.

Site Characteristics Site-1: Pantai Pasir Cina Site-2: Pantai Vietnam

Tide type Mixed tide (dominant diurnal)

Coral benthic substrates

Shallow area (−0.1 to −1 m water
depths during the lowest tide)

Fine sand; submerged rocks; coral
rubble

Fine sand; submerged rocks; coral
rubble

Reef flat (−1 to −5 m water depths
during the lowest tide)

Live coral cover is dominated by
branching coral—Acropora (branching

and bottlebrush), tabulate
coral—Acropora and Montipora, patch

coral, and several non-coral components
such as dead coral with algae, coral

rubble, sand, and dead mushroom coral

Live coral consists of
branching—Acropora, tabulate

coral—Acropora, and massive coral
Non-coral cover, such as coral rubble,
dead coral with algae, and submerged

rocks

Reef crest (−5 to −6 m water
depths)

Live coral cover is dominated by
mushroom coral, branching

coral—Acropora, and massive coral
Live coral consists of massive coral and

tabulate—Acropora; submerged rocks
are also present

Reef front/fore reef (−6 m to −7 m
water depths)

Live coral cover is dominated by
branching coral—Acropora and

Pocillopora (bushy); another coral colony
form is massive coral—Porites, Favites,

Platygyra, and Goniastrea

Deep sea (>−7 m water depth)

Fine sand, dead coral, and live coral
patches with a combination of

branching, massive, and submassive
coral such as Acropora, Pocillopora,

Porites, Favites, and Gonisastrea

Fine sand, dead coral, and live coral
patches with the combination of

branching, massive, and submassive
coral such as Acropora, Pocillopora,

Porites, Favites, and Gonisastrea

Table 2. Oceanographic, meteorological, and tidal data during unmanned aerial vehicle (UAV) missions
and in situ benthic surveys. UTC—Coordinated Universal Time.

Environmental charactEristics
Date: 20 April 2016

Data SourceTime (UTC+8)
12:00 p.m. 6:00 p.m.

Oceanographic data
Salinity (ppt) 33.1 Hybrid Coordinate Ocean

Model (HYCOM),
http://www.hycom.org/

U component of current (m/s) −0.001
V component of current (m/s) 0.015

Meteorological data
Sea surface temperature (◦C) 30.3 European Center for

Medium-Range Weather
Forecasts (ECMWF),

https://www.ecmwf.int/

U component of wind (m/s) −3.197 −2.263
V component of wind (m/s) −1.982 −0.379

Total cloud cover (%) 1.2 41.9

Tidal dataat 0.0 m mean sea level
Tide height (m) −0.1 0.1

WorldTides,
https://www.worldtides.info/

Lowest astronomical tide (m) −1.13
Highest astronomical tide (m) 1.17

Mean high water (m) 0.47
Mean low water (m) −0.47

http://www.hycom.org/
https://www.ecmwf.int/
https://www.worldtides.info/
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As suggested in the technical notes of the sensor supplier, the calibration panel was used
for radiometric calibration on sunny days (see https://support.micasense.com/hc/en-us/articles/
360025336894). The calibration panel has a visible and near-infrared spectrum calibration curve.
The sensor supplier provides the calibration data in the range of 400 nm to 850 nm as absolute
reflectance (a value between 0 and 1). In this study, the average panel albedo for bands (red = 0.68,
green = 0.69, blue = 0.68, NIR = 0.63, red edge = 0.68) was used to represent the calibration curve with
five reflectance values or albedos, one for each of the five bands of the Micasense RedEdge camera.
The panel dimension was 15.5 cm by 15.5 cm, and, for radiometric calibration, it was ensured that at least
one-third of the image width was taken. Due to it being most effective in overcast, completely cloudy
conditions, the downwelling light sensor data were not used for image post-processing. The drone
global positioning system (GPS) module was installed at a higher position than the light sensor, thus
causing its shadow to be cast on the light sensor when the drone changed its cruising direction.

https://support.micasense.com/hc/en-us/articles/360025336894
https://support.micasense.com/hc/en-us/articles/360025336894
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Multispectral images collected from UAV flights were geotagged by an onboard GPS module prior
to photogrammetric processing using Pix4D Mapper Pro software (v4.1.24; https://www.pix4d.com/).
The radiometric calibration was done automatically in the “DSM (Digital Surface Model), Orthomosaic,
and Index” module of Pix4D Mapper Pro and the radiometric correction type selected was “camera
only”. The corresponding calibration panel image was imported into the module for the selected
band, an ROI (Region of Interest) was drawn on the image to define the area of radiometric calibration,
and the albedo value was inserted for the selected band. This procedure was repeated for each of
the five bands. The module utilized the values of some parameters in the EXIF (Exchangeable Image
File Format) metadata of the drone images to correct variables such as incoming sunlight irradiance,
ISO, aperture, shutter speed, vignetting, sensor response, and optical system when producing the
reflectance map. Further details on the radiometric calibration for the Micasense RedEdge camera can
be found at https://support.micasense.com/hc/en-us/articles/115000831714-How-to-Process-RedEdge-
Data-in-Pix4D. Each geotagged image was radiometrically calibrated and stitched together to
produce a geo-referenced orthomosaic (datum WGS84 UTM zone 48N coordinate system) (Figure 2).
The programmable processing settings for the Pix4D orthomosaic generation were as follows: full
tie-point image scale, a minimum of three tie-points per image, and a 0.5 image scale with a multi-scale
view for point cloud densification. Reflectance orthomosaics (Site-1: 11.25 cm/pixel and Site-2: 11.39
cm/pixel) were imported into ENVI software (https://www.harrisgeospatial.com/) for further spectral
analysis in four-band configurations (red (R), green (G), blue (B), NIR). The red-edge band was not
used in this study due to it being less useful in coral habitat mapping.

When broadly separate land and water in the masking process, an automatic image processing
algorithm could not work due to pixel noise. Therefore, land and water were manually defined
by visual interpretation of the false-color composites (band 1 = NIR; band 2 = R; band 3 = G).
In false-color composites, water appears blue. Next, the land which included sandy and rocky areas
without vegetation was separated from water bodies using normalized difference water index (NDWI)
thresholds [45]. The threshold value was positive (between 0 and 1) for water [46]. Human-made objects
(i.e., impervious surfaces), such as buoys, jetty, boats, and fish cages, were visually identified using the
operator’s skill, and their extent was manually delineated. Identified land including vegetation, sand
and rocks, and impervious surfaces were masked from the image. The land-masked image underwent
sun glint correction to create coral benthic habitat cover maps.

2.2. Glint Removal Procedures

Four glint removal procedures were used for image pre-processing (Figure 2), and all are well
known for high-resolution imagery of shallow water reef applications [22]. It is worth highlighting
that the tested methods are described in terms of reflectance, R, but can similarly be applied to data
expressed as radiance, L, or digital number, DN.

Firstly, we applied the three methods proposed by Hedley et al. [28], Lyzenga et al. [35], and
Joyce [47]. All these methods used a subset of deep-water pixel samples (see Figure 3 for yellow ROI)
to compute the regression slope (bi) from a line of linear correlation between NIR (R(NIR)) and each
visible band (Ri(VIS)) (as expressed in Equation (1)). Note that Hedley et al. [28] and Joyce [47] used
the least square approach to define bi, whereas Lyzenga et al. [35] used the covariance between each
visible band and the NIR for obtaining bi.

Ri(VIS)′ = Ri(VIS) − bi
[
R(NIR) −Rre f (NIR)

]
, (1)

where Rre f is the minimum in NIR value used for Hedley et al. [28], the mean NIR value for Lyzenga
et al. [35], and the modal NIR value for Joyce [47]. These values were derived from the same set of
deep-water pixels.

https://www.pix4d.com/
https://support.micasense.com/hc/en-us/articles/115000831714-How-to-Process-RedEdge-Data-in-Pix4D
https://support.micasense.com/hc/en-us/articles/115000831714-How-to-Process-RedEdge-Data-in-Pix4D
https://www.harrisgeospatial.com/
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Figure 3. UAV images from Site-1 (Pantai Pasir Cina) on 20 April 2016. (a) Image without glint correction;
images after glint correction using the methods proposed by (b) Lyzenga et al. [35], (c) Joyce [47],
(d) Hedley et al. [28], (e) Goodman et al. [29], pre-processed using Strategy-1. In (a) (i) the yellow
region of interest (ROI) shows the location of deep-water pixels used for the glint removal procedure
(where applicable). In each situation (i), a true-color composite with zoomed-in views is shown, along
with (ii) reflectance spectra of red (R), green (G), and blue (B) bands for pixels along the 10-m transect
line from point A (un-glinted area) to A’ (glinted area).
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Next, each pixel is corrected independently in the Goodman et al. [29] suggested method.
The reflectance in the NIR band is subtracted from each visible band, and a wavelength-independent
offset is added. To calculate the offset ∆, the bandwidths tested in the glint removal exercise of
Goodman et al. [29] were 640 nm (R(640)) and 750 nm (R(750)) (Equation (2)). However, the closest
bandwidths used in this drone survey, i.e., 668 nm and 840 nm, were employed.

∆ = A + B [R(640) −R(750)], (2)

where A and B are constants (A = 0.000019 and B = 0.1). This study, therefore, applied Equation (3)
with slight modification of Goodman et al. [29] in terms of bandwidths.

Ri(VIS)′ = Ri(VIS) −R(750) + ∆ (3)

2.3. Evaluation of Sun Glint Correction Methods

The abovementioned four glint removal procedures were applied to images pre-processed with
two strategies. Strategy-1 was applied to the whole image. The glint removal procedures were applied
to the land-masked image straightway to produce normalized sun glint-corrected images. Zhang
and Wang [20] stated that precise knowledge of the performance of different glint removal models
across the world’s oceans is required to help mask glint-contaminated regions while retaining as much
as possible the useful regions. This motivated this study to follow Strategy-2, where glint removal
algorithms were applied to the glinted area only. The glinted area in the land-masked image was
separated from the un-glinted area via a decision tree (rule-based approach), where several glinted
sand pixels were sampled from shallow-water (−0.5 m) and deep-water (−7 m) regions to develop
rules to mask the un-glinted areas [13,48]. The glint removal procedures were applied to the glinted
area, and the de-glinted area was then merged with the un-glinted area to form normalized sun
glint-corrected images. Both strategies were tested on the Site-1 and Site-2 land-masked images to
produce sun glint-corrected images (Figure 2). Pixel normalization was performed by adding a positive
value to the lowest pixel value among the bands and then dividing by the highest pixel value to set the
pixel value range 0 to 1.

To investigate the relative performance of sun glint correction algorithms used for coral benthic
habitat mapping, the two strategies with four glint removal methods and their products were compared.
The uncorrected image was added to act as a control. Reconstruction of the glint-contaminated area
under Strategy-2 and subsequently making the image glint-free may represent a better solution to the
glint removal problem. The knowledge rendered from this study may enhance the ability of researchers
to handle glint-contaminated remote sensing imagery.

2.4. Coral Habitat Mapping

Field data collected during this study were used to train UAV image data (to produce benthic
habitat classification maps) and to verify the sun glint-corrected UAV results. Field data were collected
from 3:30 to 5:00 p.m. UTC+8 immediately after the UAV acquisition on 20 April 2016. The spot check
survey technique [49] was used to collect field data on the benthic composition of coral reefs (Figure 1).
Spot check data were recorded either from a boat (depth sounding via a portable depth sounder) or in
water (snorkeling and diving) and geotagged (datum WGS84 UTM zone 48N coordinate system) using
GPS and Garmin BaseCamp software (available at https://www.garmin.com/). Coral communities were
visually identified (Table S2, Supplementary Materials) based on expert knowledge. Each underwater
photograph was inspected visually, and literature was used to confirm the benthic class [50]. The in
situ data were stratified randomly per site into a training dataset (~60%) and validation dataset (~40%)
for use in the classification of benthic habitats. In total, Site-1 in situ data consisted of 147 branching
coral—Acropora (BC), 157 tabulate coral—Acropora +Montipora (TC), 247 patch coral (PC), 329 coral
rubble (R), and 91 sand (S); Site-2 comprised 163 BC, 169 TC, 239 PC, 357 R, and 95 S field data points.

https://www.garmin.com/
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Using depth-invariant bottom index (DII) [51,52], a water-column correction technique for both
glint-corrected and uncorrected UAV images was performed to remove benthic habitat reflectance
variations, as the water depth may affect the classification results (Figure 2). DII requires the ratio of
the water-column attenuation coefficient between visible band pairs, which can be derived statistically
by using the reflectance of similar objects at different depths. Pixels from water depths of −0.5 m and
−3 m covering sand only were sampled to derive three DII combinations from three visible bands (blue
and red band; red and green band; green and blue band).

For the benthic habitat image classification, the in situ data were transformed into regions of
interest (ROIs) and categorized into five classes by referring to the benthic classification scheme (see
Table S2, Supplementary Materials). The training ROIs were overlaid on the sun glint-corrected
(following Strategies 1 and 2), uncorrected true-color (RGB) composites and DIIs for each site. Benthic
habitat maps were produced using pixel-based image classification via the support vector machine
(SVM) algorithm in ENVI software.

SVM is a non-parametric supervised machine learning classifier developed by Cortes and
Vapnik [53]. The objective of applying SVM was to find an optimal hyperplane that could separate
the input dataset into five benthic classes in a fashion consistent with the training dataset. Due to its
high classification accuracy, this method is prescribed for the classification of multispectral images
with small separable spectral values and is, thus, suitable for benthic habitat mapping [54]. In SVM,
complex hyperplanes are represented by kernels. The Gaussian radial base function kernel is used
in SVM for image classification due to its robust capabilities compared to other kernels (e.g., linear,
polynomial, and sigmoid kernels) and requires minimal optimization for training [55].

2.5. Validation of Sun Glint Correction Methods

To evaluate the performance of using glint removal algorithms on UAV images with an aim
to produce coral habitat maps, the quality of the resulted maps was examined through (a) visual
inspection and (b) quantitative accuracy assessment [56]. For the accuracy assessment, the benthic
habitat maps generated from Strategy-1 and Strategy-2 were compared with independent in situ
reference (validation) data not used in training image classification. By applying the “confusion matrix
using ROIs” module in ENVI software [57], confusion matrices were developed based on absence or
presence using validation ROIs. The matrices provided essential accuracy assessment parameters such
as the overall accuracy (OA), user and producer accuracies (UA and PA), and Kappa coefficient of
agreement (k). These accuracy components take the non-diagonal attributes into interpretation and
explain the differences between the actual and expected agreement by chance [58].

3. Results

3.1. Comparison of Image Quality Based on Glint Correction Methods

To assess how well the different glint correction methods performed in mapping benthic habitats,
the results were quantitatively estimated based on the accuracy of the classification of the coral cover,
and the products were qualitatively evaluated by visual inspection of RGB composites. Note that the
RGB images were radiometrically corrected before the glint removal algorithm was applied to produce
reflectance values. All the glint-corrected images were normalized to provide a simulated positive
0 to 1 water-leaving reflectance value. The reflectance values in Figures 3 and 4 are not the “true”
benthic reflectance; normalization was performed to observe the effects of glint removal on reflectance.
Therefore, the observed differences between those corrected images can be attributed to the sun glint
removal techniques only.

The uncorrected image (Figure 3a(i)) exhibited conspicuous sun glint patterns with higher glint
intensity in the right side of the image. Winds during image acquisition may explain the higher amount
of glint on the right-hand side of the image, as the southern and east parts were sheltered from wave
actions. Visual inspection of glint-corrected images suggested that glint cover noticeably hindered the
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visual quality of the image and glint removal techniques following Strategy-1 and Strategy-2 improved
it (Figures 3 and 4). Glint correction algorithms recovered glint-masked areas, as clearly noticeable in
the glint-corrected results (Figures 3b–e and 4b–e).Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 26 
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Figure 4. UAV images from Site-1 (Pantai Pasir Cina) on 20 April 2016. (a) Image without glint correction;
images after glint correction using the methods proposed by (b) Lyzenga et al. [35], (c) Joyce [47],
(d) Hedley et al. [28], (e) Goodman et al. [29], images pre-processed using Strategy-2. In each situation
(i), a-true color composite with zoomed-in views is shown, along with (ii) reflectance spectra of red (R),
green (G), and blue (B) bands for pixels along the 10-m transect line from point A (un-glinted area) to A’
(glinted area).
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Figure 3b(i)–e(i) show that all four methods following Strategy-1 improved the UAV images
from Site-1. The glint removal algorithm removed the discontinuities in glint distribution. The result
suggests that the methods proposed by both Hedley et al. [28] and Joyce [47] (Figure 3c(i),d(i)) corrected
the glint-impacted pixels in near-shore and very shallow water areas, leaving similar patterns of sun
glint, visible as a yellow hue in the near-shore areas and dark purple in deeper areas. The distinctive
strong red region found in the image processed using the method proposed by Lyzenga et al. [35]
(Figure 3b(i)) indicates that, using Strategy-1, this method could be useful in separating glinted areas
from surrounding un-glinted water pixels. The method proposed by Goodman et al. [29] (Figure 3e(i))
also showed consistent sun glint patterns in the shallow-water pixels.

The corrected images also showed variations in the spatial distribution of overcorrection with
glint removal methods (Figures 3 and 4). Overcorrection was apparent in the near-shore and shallow
areas when all glint removal procedures were applied under Strategy-1, which effectively made the
underwater substrates more visible in the sun-spot regions (zoomed-in regions in Figure 3b–e(i)).
The method proposed by Goodman et al. [29] (Figure 3e(i)) smoothed out the higher amount of glint
areas showing a violet hue in the uncorrected image (Figure 3a(i)). The un-glinted regions in this image,
however, were comparable in tone to the glint regions that resulted in transect reflectance spectra being
almost flat (Figure 3e(ii)). The presence of white sun spots with less noise coming from underwater
substrates also shows that Strategy-2 (zoomed-in regions in Figure 4) was better than Strategy-1.

There was relatively more white noise in the northern parts of the images generated using
Strategy-1 compared to the images generated using Strategy-2 (Figure 4). Strategy-2 with the methods
proposed by Hedley et al. [28], Joyce [47], and Goodman et al. [29] generated similar results in terms of
tone (Figure 4c(i)–e(i)). Strategy-1 can be assumed to treat shallow-water pixels as glinted pixels near
Site-1′s north-eastern coast, while Strategy-2 (Figure 4b(i)–e(i)) was not impacted by the shallowness of
the water.

3.2. Spectral Analysis Using UAV Data

Spectral analysis was performed following two approaches: (1) extracting reflectance spectra
from small areas in every image with homogeneous bottom type and at a constant water depth, and
(2) comparing benthic spectra between uncorrected and corrected images at different depths.

For the first approach, a 10-m-long transect line was drawn over a homogeneous area (covering
coral rubble) with a depth of −1 m to examine spectral characteristics, collected from un-glinted to
glinted regions, extending from point A to point A’ (see the zoomed-in views in Figures 3 and 4).
The reflectance graph for uncorrected image (Figure 3a(ii)) showed an increasing trend from un-glinted
point A to glinted point A’, indicating an increase in reflectance spectra mainly due to glint intensity.
After applying the glint removal Strategy-1, the reflectance patterns were found to be uniform
(Figure 3b–e(ii)) across the transect, and the reflectance spectra collected from glinted areas were hardly
distinguishable from un-glinted areas. However, when Strategy-2 was applied (Figure 4), peaks and
sharp increases in reflectance spectra were noticeable near the midpoint of the transect. Since the glint
removal procedure using Strategy-2 was applied only to the glinted regions, the reflectance in glint
contamination-free areas (near point A in Figure 4b–e(ii)) and the uncorrected image (Figure 4a(ii))
gave nearly the same results.

In the sampled shallow water pixels (Figure 3c(ii),d(ii) and Figure 4c(ii),d(ii)), there was a good
match between the reflectance spectra obtained using the methods proposed by Hedley et al. [28] and
Joyce [47]. As expected from the visual inspection of RGB composite results, the method proposed by
Lyzenga et al. [35] using Strategy-2 provided a better image with less noise in near-shore areas, which
presented a more bluish tone than others (Figure 3b(ii) and Figure 4b(ii)). The reflectance obtained
by the uncorrected image was less than 0.2, while others using Strategy-1 had values greater than
0.58. The high correction factor proposed by Lyzenga et al. [35] may have caused relatively higher
reflectance spectra as illustrated in Figure 3b(ii) and Figure 4b(ii).
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Figure 5. Benthic reflectance spectra of Site-1 (Pantai Pasir Cina) UAV image before (uncorrected)
and after glint removal using four different methods proposed by Lyzenga et al. [35], Goodman et
al. [29], Hedley et al. [28], and Joyce [47], following two strategies: (a) Strategy-1 and (b) Strategy-2.
The benthic spectra were collected from an area with a water depth of approximately −1.5 m, present
in the reflectance graphs shown for (i) branching coral—Acropora (BC), (ii) tabulate coral—Acropora +
Montipora (TC), (iii) patch coral (PC), (iv) coral rubble (R), and (v) sand (S).

For the second spectral analysis approach, field point data (see Table S2, Supplementary Materials)
on benthic cover classes were used to collect the reflectance spectra at a water depth of about −1.5 m.
The high reflectance values obtained using the method proposed by Lyzenga et al. [35] in the red band
(R) (see Figure 5a,b) may explain why some parts of the corrected RGB composites appeared strongly
red in Figures 3b and 4b. The uncorrected reflectance spectra were used to investigate the over- or
undercorrection due to the glint removal procedure. A near-one reflectance spectrum is an indication
of overcorrection. Comparing reflectance spectra collected using Strategy-2 in BC (Figure 5b(i)) and TC
(Figure 5b(ii)) shows that those generated with the methods proposed by Lyzenga et al. [35], Hedley
et al. [28], Goodman et al. [29], and Joyce [47] and the uncorrected one gave almost similarly shaped
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reflectance profiles. Therefore, we may conclude that there was a good match between the spectral
patterns acquired using those methods in waters exceeding −1.5 m depth.

3.3. Benthic Habitat Classification Performance

The spectral fidelity of glint-corrected pixel values was tested based on five habitat-specific classes
of corals—TC, BC, PC, R, and S for Site-1. Figures 6 and 7 show benthic habitat maps when the
pre-processing techniques of Strategy-1 and Strategy-2 were applied, respectively.Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 26 
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Figure 6. Benthic habitat classification maps of Site-1 (Pantai Pasir Cina) produced by supervised
support vector machine (SVM) classification of UAV data. Strategy-1 was used to pre-process data.
(a) Uncorrected image; images corrected using the methods proposed by (b) Lyzenga et al. [35],
(c) Joyce [47], (d) Hedley et al. [28], and (e) Goodman et al. [29].
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Figure 7. Benthic habitat classification maps of Site-1 (Pantai Pasir Cina) produced by supervised SVM
classification of UAV data. Strategy-2 was used to pre-process data. (a) Uncorrected image; images
corrected using the methods proposed by (b) Lyzenga et al. [35], (c) Joyce [47], (d) Hedley et al. [28],
and (e) Goodman et al. [29].

In general, Site-1 was characterized by near-shore areas dominated by the “R” and “S” classes;
the “PC”, “TC”, and “BC” classes were in the middle, and the “R” and “S” classes were in >−7 m
deep water. A comparison of the two strategies showed that, in near-shore areas where “TC” and
“S” classes are present, Strategy-2 performed better than Strategy-1. The higher glint-covered areas
were misclassified as class “S” (sand) in both uncorrected and inadequately glint-corrected images
(zoomed-in regions marked by a red square in Figures 6 and 7). The overestimation of class “S” was
obviously evident in images glint-corrected using the method proposed by Lyzenga et al. [35] under
Strategy-1 (zoomed-in view in Figure 6b) compared with other techniques. Strategy-2 with the method
proposed by Lyzenga et al. [35], however, performed better (Figure 7b), as pixels of class “S” were
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correctly identified in the same region. The glint removal procedure suggested by Lyzenga et al. [35]
used in this study under Strategy-2 offered satisfactory, comparatively practical results, and provided
better-quality coral habitat maps (Figure 7b).

The same pre-processing procedure, Strategy-2, with four glint removal algorithms, was
implemented on an external validation site (Site-2) prior to generating benthic habitat maps (Figure 8).
The site was dominated by PC in areas of >−7 m water depth, with an assemblage of “TC” and “BC”
classes in the middle and an assemblage of “S” and “R” classes in the near-shore areas (eastern part of
the site). Figure 8 (in zoomed-in regions) shows obviously that the methods proposed by Lyzenga et
al. [35], Hedley et al. [28], and Joyce [47] treated near-shore shallow water pixels around the north
side of the site as dominated by “S”, whereas the method proposed by Goodman et al. [29] was not
disturbed by shallow water depth, and correctly identified those areas as dominated by the “R” class.Remote Sens. 2019, 11, x FOR PEER REVIEW 19 of 26 
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Figure 8. Benthic habitat classification maps of Site-2 (Pantai Vietnam) produced by supervised SVM
classification of UAV data. Strategy-2 was used to pre-process data. (a) Uncorrected image; images
corrected using the methods proposed by (b) Lyzenga et al. [35], (c) Joyce [47], (d) Hedley et al. [28],
and (e) Goodman et al. [29].

The classification maps were further subjected to accuracy assessment using user’s accuracy (UA),
producer’s accuracy (PA), overall accuracy (OA), and Kappa coefficient of agreement (k). Table 3
shows that Strategy-2 produced a higher overall classification accuracy compared to Strategy-1 for
Site-1. When the glint removal procedures were applied, OA and k increased by more than 13%
compared to the uncorrected image. OA and k measures of classification accuracies showed that the
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method proposed by Lyzenga et al. [35] under Strategy-2 had the best potential (OA = 87.4%, k = 0.831),
followed by Strategy-1 with the same glint removal method (OA = 86.0%, k = 0.812) and Strategy-2
with Joyce [47] (OA = 85.5%, k = 0.805) for discrimination of corals from non-corals.

Table 3. Summary of confusion matrices for Site-1 (Pantai Pasir Cina) benthic habitat maps using the
sun glint uncorrected dataset, and sun glint-corrected datasets (applying Strategy-1 and Strategy-2).
The mapped class abbreviations are as described in Table S2 (Supplementary Materials); BC = branching
coral- Acropora; TC = tabulate coral – Acropora + Montipora; PC = patch coral; R = coral rubble; S = sand.
UA (%) = user’s accuracy as a percentage; PA (%) = producer’s accuracy as a percentage; OA = overall
accuracy; Correctly mapped = number of correctly mapped classes over the total validation data; k =

Kappa coefficient of agreement.

Site-1: Strategy-1

Mapped
class Uncorrected Lyzenga et al. [35] Joyce [47] Hedley et al. [28] Goodman et al. [29]

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)
BC 70.5 70.5 90.9 82.0 90.9 82.0 90.9 82.0 92.3% 78.7
TC 62.3 62.3 95.3 88.4 95.3 88.4 95.3 88.4 95.5% 91.3
PC 65.0 76.1 83.9 88.9 75.7 90.6 75.5 89.7 72.9% 89.7
R 83.8 67.9 80.9 95.6 82.9 95.6 81.9 95.6 82.9% 95.6
S 55.8 64.9 100.0 43.2 100.0 10.8 100.0 8.1 100.0% 2.7

Correctly
mapped 292/421 362/421 352/421 350/421 348/421

OA 69.4% 86.0% 83.6% 83.1% 82.7%
k 0.600 0.812 0.779 0.772 0.765

Site-1: Strategy-2

Mapped
class Lyzenga et al. [35] Joyce [47] Hedley et al. [28] Goodman et al. [29]

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)
BC 89.7 85.2 92.6 82.0 89.3 82.0 90.3 91.8
TC 100.0 91.3 100.0 85.5 100.0 87.0 100.0 68.1
PC 91.1 87.2 84.7 89.7 86.8 89.7 82.7 98.3
R 78.4 97.8 77.5 95.6 74.9 95.6 76.2 95.6
S 100.0 45.9 100.0 40.5 100.0 24.3 100.0 2.7

Correctly
mapped 368/421 360/421 355/421 350/421

OA 87.4% 85.5% 84.3% 83.1%
k 0.831 0.805 0.788 0.771

To test the robustness of Strategy-2, the benthic habitat classification was applied to an external
validation site, i.e., Site-2 (Table 4). The detailed confusion matrices for all glint correction methods
for both sites are given in the Supplementary Materials (Tables S3–S16). Strategy-2 improved the
classification accuracy from a low of 65.3% OA (k = 0.551) in the uncorrected image to 80–87% OA for
corrected images—an increase of more than 15%. Table 4 shows that Strategy-2 with glint removal
using the method proposed by Lyzenga et al. [35] produced the highest OA and k (OA = 86.9%,
k = 0.827) compared to other methods. The method proposed by Goodman et al. [29] provided the most
unsatisfactory benthic habitat classification results compared with all other glint removal techniques
for both sites. Therefore, in order to achieve a greater accuracy in coral classifications, glint removal
using the method proposed by Lyzenga et al. [35] following Strategy-2 is suggested.
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Table 4. Summary of confusion matrices for the external validation site (Site-2 Pantai Vietnam) benthic habitat maps using the sun glint uncorrected dataset, and sun
glint-corrected datasets (applying Strategy-2). The mapped classes abbreviations are as described in Table S2 (Supplementary Materials); BC = branching coral -
Acropora; TC = tabulate coral – Acropora + Montipora; PC = patch coral; R = coral rubble; S = sand. UA (%) = user’s accuracy as a percentage; PA (%) = producer’s
accuracy as a percentage; OA = overall accuracy; Correctly mapped = number of correctly mapped classes over the total validation data; k = Kappa coefficient
of agreement.

Site-2: Strategy-2

Mapped class Uncorrected Lyzenga et al. [35] Joyce [47] Hedley et al. [28] Goodman et al. [29]

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)
BC 55.9 82.6 76.1 73.9 75.7 81.2 82.4 81.2 83.3 79.7
TC 47.9 61.6 89.6 82.2 84.2 87.7 83.1 94.5 70.8 63.0
PC 76.3 71.0 92.8 90.0 91.1 92.0 90.6 87.0 83.3 80.0
R 87.0 67.6 89.7 93.9 89.8 89.2 89.1 82.4 83.5 92.6
S 22.7 13.9 75.0 83.3 67.9 52.8 52.4 61.1 68.6 66.7

Correctly
mapped 278/426 370/426 363/426 356/426 342/426

OA 65.3% 86.9% 85.2% 83.6% 80.3%
k 0.551 0.827 0.805 0.786 0.739
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4. Discussion

UAV images was widely used in benthic habitat studies because of their flexible and rapidly
affordable platform, with control over flying height and time, making them suitable for mapping
coral communities [59]. The effect of sun glint that reduces the number of suitable (useful) images
is a concern for satellite imagery, including UAV users [10]. Attempting to minimize sun glint by
restricting flying time would obviously limit coral remote sensing because acquisition of satellite
images during the lowest low tide time is preferred to avoid the confounding effect of water columns
in optical remote sensing [14]. Some suggested a certain degree of tilting to minimize glint, while many
satellite platforms such as MODIS (Moderate-Resolution Imaging Spectroradiometer) and MERIS
(Medium-Resolution Imaging Spectrometer) do not have such capability [60]. Therefore, instead of
avoiding sun glint, it is necessary to investigate how to tackle sun glint problem. Although many glint
removal algorithms (Table S1, Supplementary Materials) were suggested for shallow-water remote
sensing applications, the level of accuracy in applications for coral mapping still needs to be validated.
Unlike other terrestrial mapping applications, submerged aquatic vegetation analyses from satellite
imagery are exposed to different confounding factors including water depth and quality [4]. It is
crucial to assess the properties of reflectance spectra of glint-removed products and propose suitable
techniques for coral habitat mapping, because improving the retrieval of water-leaving radiance
determines the level of classification accuracy.

Commonly, Strategy-1 is suggested as a tool to remove glint, which involves reconstructing
the whole glint-contaminated image [22]. On the other hand, it is possible to employ glint removal
algorithm in glint-contaminated areas only; thus, Strategy-2 would be a better idea than Strategy-1 for
classification and distribution mapping of coral habitats. In this context, glint removal using Strategy-2
was demonstrated to be effective in removing surface glint from UAV imagery. The spectral artefacts
of high water-leaving reflectance were greatly reduced using the method proposed by Lyzenga et
al. [35] (Figure 4b(ii) and Figure 5), providing satisfactory results for both shallow-water (near-shore)
and deep-water pixels (Figure 7). Lyzenga et al. [35] reported that their method could generate
better-quality images where water is shallow and vegetation is emerging. Similarly, this study showed
that glint-corrected images using the method proposed by Lyzenga et al. [35] can yield more accurate
maps of coral distribution than the other three methods of glint correction.

With respect to overcorrection, all methods except for that proposed by Lyzenga et al. [35] showed
a tendency to overestimate class “S” coverage, especially in the shallow near-shore areas (Figures 6
and 7). The major weakness of currently used glint removal procedures in some circumstances and
the causes of overcorrection were previously documented [27,28]. Once submerged vegetation such
as seagrass reaches the water surface during low tide, cyanobacteria in the water or the existence of
scum may cause overcorrection due to high reflectance spectra in NIR and short-wave infrared (SWIR)
regions. This violates the zero NIR (and SWIR) assumption in the glint correction algorithm. In the
case of this study, potential sources of overcorrection could be the coincidental existence of class “S”
(and class “R”) and sun glint events in shallow areas, as these substrates often reach near to or above
the water surface.

Kay et al. [22] suggested that the relative magnitude and the shape of reflectance profiles are
more crucial than the absolute radiometric accuracy. Glint and noise can both change the spectral
signature and lead to image misclassification. The best glint correction method should reduce the
noise to a minimum, as well as the glint. Strategy-1 exhibited nearly flat spectral profiles, resulting
in a reduced performance in the classification of benthic habitats. The lowest reflectance spectra
using the method proposed by Lyzenga et al. [35] with Strategy-2 (Figure 5b) illustrated adequate
glint correction. Therefore, image pre-processing using Strategy-2 and the glint correction method
suggested by Lyzenga et al. [35] could be considered as a robust approach prior to implementing image
classification techniques from the spectral analysis point of view.
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5. Conclusions

Sun glint correction is an essential image pre-processing step of satellite image analysis,
which enables improved retrieval of water-leaving radiance in the case of aquatic remote sensing.
A comparison of four glint correction algorithms when applied to high-resolution UAV imagery
following whole-image (Strategy-1) and glint-impacted (Strategy-2) strategies showed that images
pre-processed with Strategy-2 using the method proposed by Lyzenga et al. [35] performed better than
the other methods, resulting in reliable maps of corals. The proposed glint removal approach was
effective in a limited complex coral environment where there was a great possibility of overestimation
of underwater substrates, particularly for class “S”. Near-shore areas, including mudflats, contain
ecologically important coral communities; the suggested glint removal method can allow the separation
of pixels with and without class “S” in the de-glinted images. Preserving underwater reflectance
from overcorrection after glint correction will allow studying spatiotemporal changes in water quality.
In order to increase the applicability of glint-contaminated imagery, further research is needed to test
glint removal methods with combinations of UAV images acquired during different tide conditions
and seasons.
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