
 

Remote Sens. 2019, 11, 2409; doi:10.3390/rs11202409 www.mdpi.com/journal/remotesensing 

Article 

Joint Retrieval of Growing Season Corn Canopy LAI 
and Leaf Chlorophyll Content by Fusing Sentinel-2 
and MODIS Images 
Wei Su1, Zhongping Sun2, Wen-hua Chen3, Xiaodong Zhang1*, Chan Yao1, Jiayu Wu1,  
Jianxi Huang1 and Dehai Zhu1 

1 College of Land Science and Technology, China Agriculture University, Beijing 100083, China 
2 Satellite Environment Center, Ministry of Environmental Protection, Beijing 100094, China 
3 Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough,  

LE11 3TU, UK 
* Correspondence: zhangxd@cau.edu.cn; Tel.: +86 010-6273-7855 

Received: 28 August 2019; Accepted: 12 October 2019; Published: 17 October 2019 

Abstract: Continuous and accurate estimates of crop canopy leaf area index (LAI) and chlorophyll 
content are of great importance for crop growth monitoring. These estimates can be useful for 
precision agricultural management and agricultural planning. Our objectives were to investigate 
the joint retrieval of corn canopy LAI and chlorophyll content using filtered reflectances from 
Sentinel-2 and MODIS data acquired during the corn growing season, which, being generally hot 
and rainy, results in few cloud-free Sentinel-2 images. In addition, the retrieved time series of LAI 
and chlorophyll content results were used to monitor the corn growth behavior in the study area. 
Our results showed that: (1) the joint retrieval of LAI and chlorophyll content using the proposed 
joint probability distribution method improved the estimation accuracy of both corn canopy LAI 
and chlorophyll content. Corn canopy LAI and chlorophyll content were retrieved jointly and 
accurately using the PROSAIL model with fused Kalman filtered (KF) reflectance images. The 
relation between retrieved and field measured LAI and chlorophyll content of four corn-growing 
stages had a coefficient of determination (R2) of about 0.6, and root mean square errors (RMSEs) 
ranges of mainly 0.1–0.2 and 0.0–0.3, respectively. (2) Kalman filtering is a good way to produce 
continuous high-resolution reflectance images by synthesizing Sentinel-2 and MODIS reflectances. 
The correlation between fused KF and Sentinel-2 reflectances had an R2 value of 0.98 and RMSE of 
0.0133, and the correlation between KF and field-measured reflectances had an R2 value of 0.8598 
and RMSE of 0.0404. (3) The derived continuous KF reflectances captured the crop behavior well. 
Our analysis showed that the LAI increased from day of year (DOY) 181 (trefoil stage) to DOY 236 
(filling stage), and then increased continuously until harvest, while the chlorophyll content first also 
increased from DOY 181 to DOY 236, and then remained stable until harvest. These results revealed 
that the jointly retrieved continuous LAI and chlorophyll content could be used to monitor corn 
growth conditions. 

Keywords: joint retrieval; LAI; chlorophyll content; data fusion; Kalman filter 
 

1. Introduction 

Corn (Zea mays) is planted widely around the world, and is vital for food security both as food 
and fodder. Therefore, corn growth monitoring and yield prediction are very important for food 
security and sustainable development. Compared with yield prediction, crop growth monitoring can 
reveal problems such as nutrient deficiencies, water stress, or pest infestations in a timely way during 
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the growing season [1]. Furthermore, information about crop growth is vital for monitoring crop 
behavior and predicting crop yield. 

Remotely sensed spectral reflectances have already been shown to provide precise and timely 
information of corn plants status [2,3]. Available satellite images discriminate corn growth conditions 
by exploiting the spectral characteristic of reflected solar radiation. Leaf area index (LAI), defined as 
one-half of the total intercepting leaf area per unit, and the projected horizontal ground surface area 
for non-flat plant canopies [4–6], affects the photosynthesis of corn plants and carbon storage for light 
capture. Chlorophylls Chl a and Chl b are essential pigments for the conversion of light energy [7]. 
Remote sensing reflectance from the corn canopy is affected by corn canopy LAI and chlorophyll 
content [8–11], which gives an indirect estimate of nutrient status, plant stress, and productivity [12]. 
Therefore, both the LAI and chlorophyll content of corn are retrieved using the reflectance of remote 
sensing images in this study. 

Corn growth monitoring is often hampered by the lack of high temporal and high spatial 
resolutions satellite time series [13]. One reason is that the corn is growing in the hot rainy season. 
Consequently, there are usually only few cloud-free spectral images available for the entire corn-
growing season. Another reason is that high spatial resolution satellite images generally have a coarse 
temporal resolution [14]. Then, there are few images with both high spatial and temporal resolution 
during the corn-growing season. One promising solution for producing high spatial and temporal 
resolution images is fusing multi-source remote sensing images that may have different spatial and 
temporal resolutions. Existing image spatiotemporal fusion models can be classified into five major 
categories: (i) empirical; (ii) semi-empirical; (iii) spatial unmixing; (iv) machine learning; and (v) data 
assimilation [15,16]. 

The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [17], the Enhanced 
STARFM (ESTARFM) [18,19], the Non-Local Linear Regression (NL-LR) model [20] are all empirical 
fusion methods. The STARFM method can use the correlation among multi-source images to blend 
and minimize the system biases between different images acquired at the same time [18]. However, 
STARFM can’t handle the directional dependence of image reflectances, so Roy et al. developed a 
semi-physical fusion method to overcome this limitation [21]. The spatial unmixing method is more 
precise and derives fine spatial resolution information from interpreted fine spatial resolution 
satellite or aerial images or land-use databases [22]. Its limitation lies in requiring approximately 
simultaneous high spatial resolution images or thematic maps from a different source. Learning-
based fusion methods provide a promising approach for predicting both phenological and type 
changes [23,16]. Compared to the aforementioned methods, data-assimilation methods can optimally 
combine observation information and their respective uncertainties to minimize the residual errors 
[24,25]. Huang et al. fused Landsat Thematic Mapper (TM) LAI images derived empirically from the 
soil-adjusted vegetation index (SAVI) and normalized difference vegetation index (NDVI) with the 
four-day composite, 1-km spatial resolution, Moderate Resolution Imaging Spectroradiometer 
(MODIS) LAI product (MCD15A3) [15]. These vegetation indexes were produced by combining the 
red band and near-infrared (NIR) band for revealing the crop growth and change. Compared with 
an empirical estimation of LAI and chlorophyll content, which is based on the statistical regression 
with image spectral reflectance or vegetation indices (VIs) [26,27], physical process-based methods 
do not need a large amount of measured data, and aren’t affected by crop cultivars, growth stage, 
and environmental conditions once the model inputs are determined [28]. The PROSAIL model is a 
popular physical radiative transfer model for crop canopy LAI and chlorophyll content retrieval [29]. 
PROSAIL was developed by coupling the canopy-scale SAIL bidirectional canopy-reflectance model 
[30] with the leaf-scale PROSPECT model [31,32] in the 1990s. Many researchers have estimated 
canopy biophysical variables using the PROSAIL model for agricultural applications [33,34]. Botha 
et al. retrieved potato canopy leaf chlorophyll from a hyperspectral image using the PROSAIL model 
[35]. Darvishzadeh et al. retrieved rice canopy chlorophyll content using a lookup-table (LUT) [36]. 
Rivera et al. also improved the retrieval of leaf chlorophyll content and LAI using the PROSAIL 
model with multiple cost functions and regularization options[37]. Duan et al. [38] retrieved the LAI 
of maize, potato, and sunflower using the PROSAIL model from unmanned aerial vehicle (UAV) 
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hyperspectral images. Li et al. retrieved winter wheat canopy LAI and leaf chlorophyll content using 
the PROSAIL model by including prior agronomic knowledge [33]. In general, crop canopy LAI and 
chlorophyll content are correlated, and a closed corn canopy is never associated with low chlorophyll 
content (Baret, 2016). However, the aforementioned researches didn’t consider exploiting the 
correlation between crop canopy LAI and leaf chlorophyll content when retrieving these two 
parameters simultaneously. In this paper, we investigated the joint retrieval of corn canopy LAI and 
chlorophyll content using fused high spectral and spatial resolution images and taking into account 
the interactions of LAI with chlorophyll content. 

The specific objective of this study was to develop a framework for retrieving the corn canopy 
LAI and chlorophyll content jointly for continuous corn growth monitoring using the fused high 
spatial and temporal resolution images from Sentinel-2 image and MODIS images. Our overarching 
aim was to answer the following questions: 
1. Can the Kalman filter be used to fuse Sentinel-2 and MODIS reflectances for producing higher 

spatial and temporal resolutions images? 
2. Can the corn canopy LAI and chlorophyll content be retrieved jointly and accurately during the 
entire corn growing season? Which growing stages are retrieved better? 
3. Can the retrieved time series of LAI and chlorophyll content be used to monitor the corn growing 
behavior and how? 

2. Materials and Pre-Processing 

2.1. Study Area 

The study area spans three counties (Zhuozhou, Gaobeidian, and Dingxing) of Baoding City, 
Hebei Province, China, ranging from 115°29′, 39°5′ to 116°14′E, 39°35′N (Figure 1), which is the main 
corn-planting area in northern China. The region has a temperate continental monsoon climate with 
an annual average rainfall of 550 mm and an annual sunshine rate of about 60%. The corn-growing 
season temperature ranges from 7 °C to 39 °C. The soil is fertile, and the summer is hot and rainy. 
The fields are cultivated in a rotation with corn and winter wheat (Triticum aestivum), and soybean 
(Glycine max), cotton (Gossypium hirsutum), and sweet potato (Ipomoea batatas) are grown occasionally. 
Corn is generally sown at the beginning of June and harvested at the beginning of September, with a 
three-month growing period. Usually, corn is in the seedling stage in mid-June, the seven-leaf stage 
at the end of June, the jointing stage in early July, the anthesis-silking stage in the middle of August, 
the milking stage at the end of August, and the mature period in the middle of September. 

All the corn fields in study area were managed well for irrigation and fertilization by local 
farmers, and all the corn plants were healthy without disease/insect attacks and drought. There were 
12 in situ measured sites (Figure 1b) in the study area totally, and there were four to five samplings 
illustrated as Figure 1c in each site. These in situ measured data were used for validating the Kalman 
filtered (KF) reflectance, setting up the co-distribution between LAI and chlorophyll content, and 
validating the retrieving accuracy of LAI and chlorophyll content. 

2.2. Field Data Collection 

Field data were collected four times in 2017 for the assessment of the accuracy of the joint 
retrieval on the dates shown in Figure 2 and labeled as “ ”. The parameters collected included LAI, 
chlorophyll content of corn leaves, and spectra of corn canopy, corn leaves, and soil. There were 61 
in-situ measured samplings distributed in these three counties of Zhouzhou, Gaobeidian and 
Dingxing randomly and evenly. All the samplings were geolocated using a Huace i80 real-time 
kinematic (RTK) GPS receiver (Huace Ltd., Shanghai, China). Corn canopy LAI was measured using 
an LAI-2200 Plant Canopy Analyzer (LI-COR, Lincoln, NE, USA) with a 45° field angle to eliminate 
the effect of non-plant objects within the range of the sensor’s field of view. For each in situ LAI 
measurement, two repeats were done including one above canopy and four below canopy readings 
[39]. 
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(a) (b) (c) 

Figure 1. Location (a) of the study area (b) including sample plots, and schematic diagram of the 
sampling pattern in each plot (c). 

In addition, leaf chlorophyll content was measured using an SPAD-502 leaf chlorophyll meter 
(Konica Minolta Corp., Solna, Sweden) nondestructively. The SPAD readings were unitless, which 
were highly correlated with foliage chlorophyll content (μg/cm2). The empirical calibration function 
developed by Darvishzadeh et al. [40] and Markwell et al. [41] was used to convert our SPAD 
readings to foliage chlorophyll content (μg/cm2) in this study. Five corn plants were selected 
randomly in each plot, and six leaves per plant were used to measure the chlorophyll content. For 
each corn plant, chlorophyll content was measured in the leaf tip, bottom, and middle. The average 
of these measurements was used to represent the chlorophyll content for each leaf, and the average 
for all leaves was used to represent the chlorophyll content in each plot. 

The spectra of corn canopy, corn leaves, and soil were measured using an SVC HR-1024 
spectrometer (Spectra Vista Corporation, Poughkeepsie, NY, USA). Each sample was measured five 
times and averaged to represent the spectra. 

2.3. Remote Sensing Images and Pre-Processing 

Thirteen cloud-free MODIS images at 250-m spatial resolution were acquired from the Terra 
Surface Reflectance product (MOD09GA) between 27 June (day of year, or DOY 178) and 23 
September (DOY 266), 2017 (see Figure 2 for the dates), covering the field-measured dates of the 
seventh leaf stage (DOY 193, 12 July), jointing stage (DOY 211, 30 July), filling stage (DOY 236, 24 
August), and milking stage (DOY 242, 30 August). In contrast, only five cloud-free Sentinel-2 images 
were available. All the MODIS imagery is made available free of charge by National Aeronautics and 
Space Administration (NASA) (http://reverb.echo.nasa.gov/reverb), while Sentinel-2 imagery is 
made available free of charge by European Space Agency (ESA) 
(https://scihub.copernicus.eu/dhus/#/home). 

The time-series of the MOD09GA images was pre-processed using the MODIS Reprojection Tool 
(MRT), and georeferenced to the UTM projection and WGS84 coordinate system with 250-m spatial 
resolution. The parameter settings were saved in the *.prm file, and batch pre-processing was 
conducted using this *.prm file. In a similar fashion, the five Sentinel-2 images were georeferenced to 
the same coordinate system using 21 field-measured ground control points. After geometric 
correction, the root mean square error (RMSE) of the calculated and measured locations was less than 
one pixel (10 m) for each Sentinel-2 image. Atmospheric correction was performed using the Sentinel 
Application Platform SNAP [42] to obtain the reflectance in each band [43]. 
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Figure 2. Calendar of remote sensing data acquisitions and field measurements, expressed in day of 
year (DOY). Notes: The top line shows the acquisition dates of five Sentinel-2 images (square symbol); 
the middle line indicates the acquisition dates of four field measurements (plus symbol); the bottom 
line represents the acquisition dates of 13 MOD09GA images (triangle symbol). 

3. Methods 

Our joint retrieval of growing season corn canopy LAI and chlorophyll content involved two 
steps: one was fusing Sentinel-2 and MODIS images to generate an improved time series of synthetic 
images using the Kalman filter algorithm, and the other was the joint retrieval of corn canopy LAI 
and chlorophyll content for the growing season from the generated time series of synthetic images. 
The generated time series of synthetic reflectances was matched with the reflectances in the LUT, and 
the weighted cost function was used to decide the optimal matching. LAI and chlorophyll content 
were retrieved jointly during this matching process. The workflow for fusing two kinds images and 
joint retrieval for LAI and chlorophyll content is as shown in Figure 3. 

 
Figure 3. The workflow for fusing two kinds images and joint retrieval for leaf area index (LAI) 
and chlorophyll content. 
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3.1. Fusing Sentinel-2 and MODIS Images for Time Series Synthetic Images 

The Kalman filter recursive algorithm [44] was used to fuse Sentinel-2 and MODIS images to 
generate a time series of synthetic reflectances with higher temporal and spatial resolution. Sedano 
et al. [25] and Huang et al. [15] fused Landsat TM images (30-m spatial resolution) and MODIS images 
(250-m spatial resolution) for generating a time series of synthetic NDVI/LAI values with a medium 
spatial resolution (30 m) at four-day intervals. In this study, we fused Sentinel-2 images (spatial 
resolution of 10 m) and MODIS images (spatial resolution of 250 m) to explore if this kind of spatial 
resolution difference (i.e., 250 m/10 m) could be fused with a higher accuracy. There are two 
submodels, including the state update model and measurement update model, which characterize 
the temporal dynamics and capture the relationship between two kinds of reflectance pixel values, 
respectively. These two updates are calculated as follows: 𝑥௞ = 𝐴𝑥௞ିଵ + 𝑤௞ିଵ, (1) 𝑧௞ = 𝐻𝑥௞ + 𝑣௞, (2) 

where 𝑥௞  and 𝑥௞ିଵ  are the estimated values for the present state k and previous state k−1, 
respectively. For image fusing in this study, 𝑥௞ and 𝑥௞ିଵ are the MODIS reflectances at time k and 
k−1, respectively (Figure 4). The connection between time k and k−1 is done by the state-transition 
matrix A, and the observed value 𝑧௞ is linearly related to the current state estimation 𝑥௞. In addition, 
H is a measurement sensitivity matrix. The variables 𝑤௞ିଵ, 𝑣௞ are process noise and measurement 
noise, respectively. The time update is as follows: 𝑥ො௞ି = 𝑎 ∗ 𝑥ො௞ିଵ + 𝑏, (3) 𝑃௞ି = 𝐴𝑃௞ିଵି 𝐴் + 𝑤௞ିଵ, (4) 

where 𝑥ො௞ି  is the prior estimate of the present (k) state; 𝑥ො௞ିଵ is the posterior estimate of the variable 
in the previous (k-1) state; 𝑃௞ି  is the prior uncertainty at the present (k) state; and 𝑃௞ିଵି  is the prior 
uncertainty in the previous (k-1) state. T represents the matrix transposition operation. During the 
observation updating, the prior estimates (Equation (5)) and their uncertainties (Equation (6)) are 
updated with new observations. 𝐾ഥ௞ is Kalman gain, which effectively weights the prior state and the 
measurements by their respective uncertainties.  𝑃௞ is the uncertainties of the previous state and the 
present observation [25,15,45]. 
 𝑥ො௞ = 𝑥௞ି + 𝐾ഥ௞ሾ𝑧௞ − 𝐻௞𝑥௞ି ሿ, (5) 𝐾ഥ௞ = 𝑃௞ି 𝐻௞்ൣ𝐻௞𝑃௞ି 𝐻௞் + 𝑅௞൧ିଵ, (6) 𝑃௞ = (1 − 𝐾ഥ௞𝐻௞)𝑃௞ି , (7) 

 
Figure 4. Flowchart for fusing Sentinel-2 and MODIS images. For each time-step, A is the transition 
model for the time update of 𝑥௞ି  and 𝑥௞ାଵି , 𝑧௞ is a Sentinel-2 observation, and 𝑥ො௞  is the final 
estimate in this state. The final estimates would be smoothed by forward and backward modes 
(Sedano et al., 2014). 
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Figure 4 illustrates the scheme of the KF approach for fusing Sentinel-2 and time-series MODIS 
images. During the fusing process, the available Sentinel-2 images were used as observations, and 
the time-series MODIS images were used for capturing the phenological trajectories of corn canopy 
reflectance over time. 

3.2. Joint Retrieval of Growing Season Corn Canopy LAI and Chlorophyll Content 

The relationship between corn canopy LAI and chlorophyll content was exploited for the joint 
retrieval of two variables in this study. Some researchers observed that a closed corn canopy was 
never related to low chlorophyll content [46,47]. Therefore, we proposed to set up the co-
contributions by restricting the chlorophyll content range as a function of the corn canopy LAI in 
different growing stages. Figure 5 shows the scheme of the co-distribution for corn canopy LAI and 
chlorophyll content in the filling stage. The maximum/minimum LAI values and the 
maximum/minimum chlorophyll content values were determined by field-measured data where 
15,000 random numbers were generated using the range of LAI and chlorophyll content listed in 
Table 1. The maximum and minimum values of chlorophyll content corresponding to the given LAI 
values were used to set up the co-contributions by assuming they satisfy the Gaussian distribution. 
Furthermore, the co-contributions of corn canopy LAI and chlorophyll content were calculated with 
the formula in Equation (8) (Weiss and Baret, 2016). Theoretically, Equation (8) normalizes the LAI 
and chlorophyll content values. The left portion of the equation is the normalization of the 
chlorophyll content (VCab) corresponding to the minimum value of LAI, whereas the right portion is 
the normalization of a given chlorophyll content (𝑉஼௔௕∗) with a given LAI value. The 𝑉஼௔௕∗ is the corn 
canopy chlorophyll content after linking its co-distribution to LAI. The values defining the co-
distributions between corn canopy LAI and chlorophyll content are specified in Table 1. They were 
derived empirically based on the collected field data, assuming that large values of LAI correspond 
to a restricted range of chlorophyll content. 

 
Figure 5. Scheme of co-distribution between LAI and chlorophyll content in the filling stage (Stage 3). 
There are 15,000 random numbers; the LAI range is used to restrict the chlorophyll content range. 
Referenced from reference (Weiss and Baret, 2016). 

௏಴ೌ್ି௏ౣ౟౤൫ైఽ౅೘೔೙൯௏ౣ౗౮൫ైఽ౅೘೔೙൯ି௏ౣ౟౤൫ైఽ౅೘೔೙൯ = ௏಴ೌ್∗ି௏ౣ౟౤(ైఽ౅)௏ౣ౗౮(ైఽ౅)ି௏ౣ౟౤(ైఽ౅), (8) 

The minimum and maximum values are defined as: 𝑉௠௜௡(LAI) = 𝑉௠௜௡(LAI௠௜௡) + LAI ×൫𝑉௠௜௡(𝐿𝐴𝐼௠௔௫) − 𝑉௠௜௡(LAI௠௜௡)൯  and 𝑉௠௔௫(LAI) = 𝑉௠௔௫(LAI௠௜௡) + LAI × ൫𝑉௠௔௫(𝐿𝐴𝐼௠௔௫) −𝑉௠௔௫(LAI௠௜௡)൯. 
Here, 𝑉஼௔௕  is the random value of chlorophyll content and 𝑉஼௔௕∗  is the random value of 

chlorophyll content that considers the joint probability distributions between corn canopy LAI and 
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chlorophyll content. Through the co-distributions between corn canopy LAI and chlorophyll content, 
the small values of chlorophyll content corresponding to the largest LAI values were deleted, which 
can alleviate the ill-posed problem. The co-distribution provides a reasonable set of values for the 
joint retrieval of LAI and chlorophyll content, and optimizes the PROSAIL model inputs. 

Using the co-distributions, the PROSAIL model inputs for the entire corn-growing season were 
optimized based on in situ measured corn canopy LAI and chlorophyll content. The optimized inputs 
are listed in Table 1. The LAI and chlorophyll content followed Gaussian distributions during this 
optimization process, which can be seen from Figure 6. Figure 6a is the scatter plot between LAI and 
chlorophyll content; Figure 6b and Figure 6c are statistical retrievals of LAI and chlorophyll content 
with an optimized parameter range, parameter range, and mathematical Gaussian distribution. The 
blue areas correspond to the values with a Gaussian distribution, the green areas are the restricted 
values with the maximum and minimum values of measured LAI and chlorophyll content, and the 
yellow areas are the joint probability distributions of corn canopy LAI and chlorophyll content. We 
can see that the invalid, ambiguous values are removed step by step through each restriction 
operation. 

Table 1. Optimized inputs of PROSAIL for the different growing season stages of corn using the co-
distributions. 

Stage 𝑳𝑨𝑰𝒎𝒊𝒏   𝑪𝒂𝒃𝒎𝒊𝒏(𝑳𝑨𝑰𝒎𝒊𝒏)   𝑪𝒂𝒃𝒎𝒂𝒙(𝑳𝑨𝑰𝒎𝒊𝒏)   𝑳𝑨𝑰𝒎𝒂𝒙   𝑪𝒂𝒃𝒎𝒊𝒏(𝑳𝑨𝑰𝒎𝒂𝒙)   𝑪𝒂𝒃𝒎𝒂𝒙(𝑳𝑨𝑰𝒎𝒂𝒙)  
1 0.100  30.249  54.100  3.590  42.623  59.919  
2 0.570  34.039  63.823  5.851  47.358  70.469  
3 1.621  32.227  65.973  6.491  48.557  73.932  
4 1.991  40.212  69.956  6.580  52.002  75.979  
5 1.341  44.960  69.690  6.111  56.924  75.728  

Notes: Stage 1 is from 27 June to 12 July, Stage 2 is from 13 July to 3 August, Stage 3 is from 4 August to 15 
August, Stage 4 is from 16 August to 1 September, and Stage 5 is from 2 September to 15 September in the study 
area. 

 
Figure 6. The restriction and optimization process using joint probability distributions. (a) is the 
scatter plot between LAI and chlorophyll content, (b) and (c) are the statistical estimates of LAI and 
chlorophyll content (μg/cm2) with an optimized parameter range, parameter range, and mathematical 
Gaussian distribution, respectively. 

After the restriction and optimization of the LAI and chlorophyll content values, the LUT was 
generated, and the cost function was used to find the best matching values between the simulated 
and observed reflectances in multiple bands. There are four kinds of inputs of the PROSAIL model 
for retrieving: leaf optical properties, canopy structure, background soil reflectance, and sun-view 
geometry [48]. Considering the sensitivity of PROSAIL inputs, the LAI and Cab inputs were set using 
the former restriction conditions in Table 1 and Figure 5, and the other inputs were set in line with 
the setting in our previous work [48]. 

Cost functions using the RMSE between simulated and observed reflectances in multiple bands 
are often used for vegetation parameters retrieval [49,50]. A weighted RMSE was used in this study, 
which is expressed as follows: 𝐷(𝑃, 𝑄) = ∑ 𝑤௜൫𝑝(𝜆௜) − 𝑞(𝜆௜)൯ଶఒ೙ఒ೔ୀଵ , (9) 
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where 𝐷(𝑃, 𝑄) is the cost function, 𝜆௜ is the ith bands, 𝑝(𝜆௜) is the reflectance in band 𝜆௜, 𝑞(𝜆௜) is 
the simulated reflectance in band 𝜆௜, n is the number of bands, and 𝑤௜ is the weight of band 𝜆௜, 
which is the reciprocal of the reflectance in band 𝜆௜. The retrieved LAI and chlorophyll content are 
found by minimizing the RMSE. 

4. Results and Analysis 

4.1. Spatial Distribution of the Synthetic KF Reflectance 

Figure 7 shows a subset of the reflectance images in four bands (blue, green, red, and near 
infrared (NIR)) at DOY 193 for MODIS, Sentinel-2, synthetic KF images, and the scatter plots of the 
Sentinel-2 and the KF reflectances. The spatial variations in both MODIS and Sentinel-2 reflectances 
had the same structure as the KF reflectance. The subset image included areas of cropland, roads, 
river, forest, and buildings. The boundaries between land objects and the spatial structure can be 
clearly identified in both Sentinel-2 and KF images. The spatial variations of the MODIS images are 
similar to those of the Sentinel-2 and KF images; however, the details in the MODIS images are 
unclear because of their coarse spatial resolution. In order to assess the similarity between the KF and 
Sentinel-2 images, we analyzed the scatter plots between the Sentinel-2 and the KF reflectances. 
Figure 7d,h,l,p display the scatter plots between the Sentinel-2 and KF reflectances in the blue, green, 
red, and NIR, respectively, showing that, aside from a small deviation, they are close to the 1:1 line 
for the three visible bands. A similar trend can also be seen for the NIR band, except that there is a 
bias on the Y-axis, which indicates that the Sentinel-2 reflectance is systematically higher than the KF 
reflectance. This deviation occurs because the KF reflectance is the compromise between Sentinel-2 
reflectance and MODIS reflectance, and the MODIS pixels were mostly all mixed pixels. 

4.2 Time Series of Synthetic KF Reflectance and NDVI, EVI 

The plots of the time series of the reflectance and vegetation indexes are shown in Figure 7, 
which were derived from the mean of the selected sampling of Figure 6. The five Sentinel-2 images 
were acquired on 7 July (DOY 188), 12 July (DOY 193), and 6 August (DOY 218), respectively. Figure 
8a,b,c show downward trends from 25 June (DOY 177) to 24 August (DOY 236) in the blue, green, 
and red bands, besides the slightly rising or unchanging from 7 July (DOY 188) to 12 July (DOY 193). 
Comparatively speaking, there was no distinct regularity for the changing on the NIR band, and there 
were two fluctuations from 25 June (DOY 177) to 24 August (DOY 236), respectively. Moreover, the 
time-series vegetation indexes including NDVI (Figure 8e) and EVI (Figure 8f) were used to 
characterize corn-growing change. In comparison to the NDVI plot, there was a big fluctuation in the 
EVI from 4 August (DOY 216) to 30 August (DOY 242). For both vegetation indexes, the KF images 
were similar to the Sentinel-2 ones; the MODIS EVI was lower than the Sentinel-2 EVI and the fused 
KF EVI during the entire growing season, while the MODIS NDVI was higher than the Sentinel-2 
NDVI and fused KF NDVI before 30 July (DOY 211), and lower from 30 July (DOY 211) to 20 
September (DOY 263). Generally speaking, the Kalman-filtered image reflectances agree better with 
Sentinel-2 reflectances than MODIS reflectances for all four spectral bands and two vegetation 
indexes. 

In addition, Figure 8 shows that the KF reflectances approach the Sentinel-2 reflectances, and the 
changing footprint of the time-series KF reflectances was similar to the changing of MODIS 
reflectances. This result is ascribed to the principle of Kalman filter that the spatial specifics of KF 
images originate from Sentinel-2 images, and the temporal changes originate from MODIS images. 
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Figure 7. Subsets of MODIS, Sentinel-2, and Kalman filtered (KF) images in four spectral bands at day 
of year (DOY) 193. (a), (e), (i) and (m) are MODIS reflectances on blue, green, red and NIR bands 
respectively; (b), (f), (j) and (n) are Sentinel-2 reflectances on blue, green, red and NIR bands 
respectively; (c), (g), (k) and (o) are KF reflectances on blue, green, red and NIR bands respectively; 
(d), (h), (l) and (p) are the scatter plots of Sentinel-2 and KF reflectances on blue, green, red and NIR 
bands respectively. 
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Figure 8. Time-series reflectances for blue (a), green (b), red (c), near infrared (NIR) (d) bands, and 
normalized difference vegetation index (NDVI) (e) and Enhanced Vegetation Index (EVI) (f) 
vegetation indexes. The purple lines are MODIS reflectances, the blue lines are KF reflectances, and 
the orange triangles are Sentinel-2 reflectances. 

4.3. Accuracy Assessment of Synthetic KF Reflectance using Field-Measured Reflectance 

The accuracy of the synthetic KF reflectances was assessed using the field-measured reflectances. 
Figure 9 shows the comparison of the synthetic KF and the measured reflectances within the blue, 
green, red, and NIR bands on DOY 193 (a), DOY 236 (b), and DOY 242 (c), respectively. The best 
accuracy is obtained for DOY 236, as shown in Figure 9b, when the synthetic KF reflectances were 
almost the same as the in situ measured reflectance in all bands. The synthetic KF reflectances were 
very close to the Sentinel-2 reflectances, and they were all higher than the measured reflectances in 
the blue, green, and red bands on DOY 193 (Figure 9a). However, the synthetic KF reflectances are 
lower than the Sentinel-2 reflectances and the measured reflectances on DOY 193 (Figure 9a). On 
DOY 242, neither Sentinel-2 nor MODIS data were available, so there were only the synthetic KF and 
the measured reflectances (Figure 9c). Similarly to the synthetic results of Figure 9a, the synthetic KF 
reflectance matched the measured reflectances in the blue, green, and red bands quite well, and was 
slightly higher than the measured reflectances for the NIR band on DOY 242 (Figure 9c). 
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Figure 9. Comparison of KF and field-measured reflectance on DOY 193 (a), DOY 236 (b), 
and DOY 242 (c). The dotted lines are Sentinel-2 reflectances, the dashed lines are KF 
reflectances, and the solid lines are in situ measured reflectances. 

To further assess the accuracy of the synthetic KF reflectance, we investigated the correlations 
between the KF reflectances with the Sentinel-2 and the field measured reflectance samplings on DOY 
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193. Figure 10a shows the scatter plots of the KF reflectance with the in situ measured reflectance 
with an R2 value of 0.8616 and RMSE of 0.0401. Figure 10b shows that the coefficient of determination 
(R2) between the KF and the Sentinel-2 reflectances was 0.98 and the RMSE was 0.0133, which implies 
that the image details of the KF results were mainly contributed by the Sentinel-2 images. Figure 10c 
shows that the R2 between Sentinel-2 and the in situ measured reflectance was 0.8598, and the RMSE 
was 0.0404. 

  
(a) (b) 

 
(c) 

Figure 10. Relation between KF and Sentinel-2 reflectance with field reflectance measured on DOY 
193. (a) is the correlation between KF and in-situ measured reflectance, (b) is the correlation between 
KF and Sentinel-2 reflectance, (c) is the correlation between Sentinel-2 and in-situ measured 
reflectance. 

4.4 Accuracy Assessment of Joint Retrieval of LAI and Chlorophyll Content Using Field-Measured Data 

The RMSE, bias, and estimate accuracy (EA) were used to assess the accuracy of the joint 
retrieval of LAI and chlorophyll content. Table 2 shows the accuracy assessment results of the joint 
retrieval for corn canopy LAI and chlorophyll content. The R2 had a p-value < 0.01 and 99.99% 
reliability for both the retrieved LAI and chlorophyll content. These results indicated that both the 
retrieved LAI and chlorophyll content were significantly correlated to the field-measured values. 

RMSE is a measure of the differences between a model and a reference dataset. The RMSEs listed 
in Table 2 implied that the accuracy of retrieved LAI and chlorophyll content was high and with a 
low level of dispersion. The EA confirmed that the jointly retrieved LAI and chlorophyll content were 
accurate. More specifically, the retrieval accuracy of LAI and chlorophyll content on DOY 193 was 
lower than in the other three stages. Corn was in the seventh leaf stage on DOY 193, and the 
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reflectance in the images included both corn canopy and soil. This resulted in the lower retrieval 
accuracy on DOY 193. EA is calculated as shown in Equation (10): 𝐸𝐴 = ൬1 − 𝑅𝑀𝑆𝐸𝑀𝑒𝑎𝑛 ൰ × 100%, (10) 

Table 2. Accuracy assessment result of joint retrieval of corn canopy LAI and chlorophyll content. 

 LAI  Cab (μg/cm2)  
DOY Correlation R2 RMSE Bias EA (%) SD Correlation R2 RMSE Bias EA (%) SD 
193 y = 1.74x − 1.66 0.62 0.30 0.60 63.90 0.21 y = 4.86x − 226.76 0.49  3.18  11.59  92.78  0.62 
211 y = 0.74x + 1.04 0.53 0.30 0.36 90.56 0.42 y = 0.74x − 2.70 0.59  0.77  19.69  98.31  1.21 
236 y = 0.76x + 0.81 0.62 0.36 0.38 91.67 0.60 y = 1.38x − 41.38 0.63  1.07  13.51  98.19  0.99 
242 y = 0.65x + 1.41 0.60 0.30 0.29 92.55 0.56 y = 4.24x − 255.36 0.66  3.05  21.25  94.01 0.98 

Notes: y is retrieved LAI or chlorophyll content (Cab), x is the in situ measured LAI or chlorophyll content (Cab). 

4.5 Comparison of Retrieval of LAI and Chlorophyll Content Using Synthetic KF and Sentinel-2 Images 

The relative error was used to assess the accuracy for retrieving LAI and chlorophyll content 
using the synthetic KF images and the Sentinel-2 images, respectively. Figure 11a shows that the 
relative error of LAI retrieval was mainly distributed in the range of 0.1–0.2 on DOY 188 and DOY 
193. Instead, the relative error of LAI retrieval was mainly distributed in the range of 0.4–0.6 on DOY 
218. It can be observed in Figure 7 that the error between the synthetic and the Sentinel-2 reflectances 
on DOY 218 was larger than on DOY 193, DOY 236, and DOY 242. This could be explained by a larger 
LAI retrieval error on DOY 218 than in the other days. Figure 11b shows that the relative error of 
chlorophyll content retrieval is mainly distributed in the range of 0.0–0.3 μg/cm2 on DOY 188 and 
DOY 193. However, on DOY 218, the relative error of LAI retrieval was distributed across a larger 
range, from 0.3 to 1.2 μg/cm2. 
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Figure 11. The relative error of retrieval of LAI (a) and chlorophyll content (b) using synthetic KF and 
Sentinel-2 images 

4.6 Monitoring the Corn Growth Behavior by Retrieved Time Series of LAI and Chlorophyll Content 

Monitoring the changes in LAI and chlorophyll content during the growing season of corn is 
very important for achieving optimal crop productivity. We analyzed the corn growth behavior using 
the retrieved time series of LAI and chlorophyll content generated from this study. Figure 12 shows 
the time series of retrieved LAI and chlorophyll content during the growing season of corn in our 
study area, labeling the maximum estimate, minimum estimate, 1/4 quantiles, median, and 3/4 
quantiles for this time series. The maximum and minimum are the ranging of estimated values, and 
the area between the 1/4 quantiles and the 3/4 quantiles to the median represent the dispersion of the 
retrieved LAI and chlorophyll content values. For the growing changing trend, Figure 12a indicates 
that LAI increased from DOY 181 to DOY 236 and decreased from DOY 236 to the end of the growing 
season, and the maximum LAI value was recorded on DOY 236. As shown in Figure 12b, chlorophyll 
content also peaked on DOY 236, rising steadily from DOY 181 to DOY 236 and falling steadily from 
DOY 236. For the spatial variation, the 1/4 quantiles and the 3/4 quantiles in Figure 12 illustrated that 
there was more variation for estimated LAI values than that of the estimated chlorophyll content 
values. 
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(a) 

 
(b) 

Figure 12. Time series of retrieved LAI (a) and chlorophyll content (b) using synthetic KF images 
during the growing season of corn of 2017. 

Figure 13 and Figure 14 show the maps of the retrieved LAI and chlorophyll content during the 
corn-growing season of 2017. It can be observed that the LAI increased from DOY 181 to DOY 218 
and decreased from DOY 218 to DOY 261. In addition, the spatial and temporal heterogeneities of the 
chlorophyll content were higher than those of the LAI. More specifically, the LAI increased from a 
range of 0–0.5 on DOY 181 to 5.0–6.0 on DOY 236, and then decreased from a range of 5.0–6.0 on DOY 
236 to 2.0–2.5 on DOY 261, which can be seen clearly from Figure 13. There was an obvious spatial 
heterogeneity in the LAI from DOY 236 to DOY 261, ranging from 2.0 to 6.0. Comparably, the 
chlorophyll content was stabilized at around 60 μg/cm2 from DOY 211 to DOY 261 (Figure 14), except 
for DOY 181 to DOY 193, when they briefly increased. 
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Figure 13. Study area LAI maps for the corn-growing season of 2017. 
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Figure 14. Study area chlorophyll content maps for the corn-growing season of 2017. 

5. Discussions 

5.1. Remote Sensing Image Fusing by Kalman Filter 

The 10-m spatial resolution of Sentinel-2 images allows for an improved representation of the 
spatial structure of corn planted areas. Unfortunately, the growing season of corn in the study area 
corresponds to rainy and hot climatic conditions, with frequent cloud cover, which result in few 
available Sentinel-2 images. For example, in our study, there were only five Sentinel-2 images for the 
growing season of 2017 (as seen in Figure 2), despite their five-day revisit period. The Kalman filter 
was used to solve this problem and synthetically increase the frequency of the images in this study. 
The fused remote sensing images with 10-m spatial resolution and daily temporal resolution are 
produced using our Kalman filter processing in this study. The comparative analysis in Section 4.3 
revealed that there was high correlation between the fused image reflectance with Sentinel-2 image 
reflectance and in situ measured reflectance. There were still two issues that should be pointed out 
in this study. Firstly, there is big difference in the ground sampling distance (GSD) between MODIS 
image reflectance and Sentinel-2 image reflectance. Therefore, only the selected pure pixels of a corn 
planted area in a large homogeneous area were used for the state update and measurement update 
in Kalman filter. In the future, researchers should fuse the Sentinel-2 and Landsat images, or fuse the 
Sentinel-2 and Sentinel-3 images, which have a smaller spatial difference. Secondly, for the Kalman 
filter algorithm, the measurement update was done using the spatial information from high spatial 
resolution image (i.e., Sentinel-2 image in this study) reflectance. Unfortunately, there is generally 
insufficient measurement information for the remote sensing deficiency resulting from cloud, smog, 
rain, etc. [45]. This issue can be studied further in future. 
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5.2. Joint Retrieval of Corn Canopy LAI and Leaf Chlorophyll Using Co-Distributions 

Canopy LAI and chlorophyll content are two very important parameters for corn growth 
monitoring. Generally speaking, a closed corn canopy is associated with high chlorophyll content 
commonly. In other words, corn canopy LAI and chlorophyll content are correlated. This correlation 
is mined to retrieve corn canopy LAI and chlorophyll content jointly in this study. For describing this 
correlation, Xu et al. [51] built up the matrices of VI pairs. For their selected VI pairs, one is sensitive 
to canopy LAI, and the other is sensitive to chlorophyll content. Referencing from the existent 
outstanding studies, we set up the co-distributions for joint retrieval in the whole corn-growing 
season. The co-distributions were built up in line with the in-situ measured LAI and chlorophyll 
content. The retrieved results indicated that both the retrieved LAI and chlorophyll content could be 
retrieved jointly and accurately. This joint retrieving method can be used to retrieve more crop 
parameters, such as LAI, chlorophyll content, equivalent water thickness (EWT), etc. Furthermore, 
this method can be extended to retrieve vegetation parameters efficiently in regional areas. 

6. Conclusions 

This study proposed a joint retrieval method for growing season corn canopy LAI and 
chlorophyll content by fusing the reflectances retrieved by Sentinel-2 and MODIS. This approach 
addresses the problem of missing Sentinel-2 images during vital crop growth stages caused by cloud 
occlusion. We applied a Kalman filter to produce a time series of high spatial resolution images for 
corn growth monitoring by taking advantage of the fine spatial structure of Sentinel-2 images while 
preserving the temporal resolution of MODIS images. In addition, the time series of images produced 
by the Kalman filtering technique was used to jointly retrieve LAI and chlorophyll content using their 
joint probability distributions as the inputs to the PROSAIL model. Furthermore, the retrieved time 
series of LAI and chlorophyll content were used to monitor the corn-growing behavior. Our results 
can be summarized as follows: 
1. The joint retrieval of LAI and chlorophyll content using the proposed joint probability 
distribution method demonstrated a good performance when compared with ground data. The R2 
value between the retrieved and measured parameters for four growth stages was about 0.6 for both 
LAI and chlorophyll content. Furthermore, the retrieval accuracy of the synthetic KF images was also 
assessed. The relative error between the retrieved and measured LAI and chlorophyll content were 
mainly distributed within the range of 0.1–0.2 μg/cm2 and 0.0–0.3 μg/cm2, respectively. 
2. Kalman filtering appeared to be a viable technique for producing continuous high-resolution 
reflectance images from synthesizing Sentinel-2 and MODIS reflectances. There was a significant 
correlation between the synthetic KF and the Sentinel-2 images both in the spatial structure and in 
their time series. There was almost no land cover structure difference between the Sentinel-2 and 
synthetic KF images, which could be confirmed by the fact that the points in the scatter plots for the 
blue, green, and red bands were close to the 1:1 line, while there was a bias on the scatter plot of the 
NIR band. In addition, the time series of synthetic blue, green, red, and NIR reflectances, NDVI, and 
EVI were all very similar to those of MODIS. 
3. Continuous KF reflectances were useful for monitoring the corn growth behavior during the 
entire growing season. Our analysis demonstrated that the LAI increased from DOY 181 (trefoil stage) 
to DOY 236 (filling stage), and then increased until the corn was harvested. Additionally, the results 
showed that chlorophyll content also increased from DOY 181 to DOY 236, and then remained stable 
until harvest. Compared with LAI, the chlorophyll content remained relatively stable during the 
growing season, ranging from 50 to 70 μg/cm2. 

In conclusion, the high temporal and spatial resolutions of synthetic remote sensing images 
produced through the Kalman filtering method proposed in this paper was able to capture the rapid 
LAI and chlorophyll content changes during the corn growing season. The study results are very 
promising, and could find applications in a number of areas, including crop growth monitoring, crop 
stress monitoring, crop yield forecast, and crop intervention. With the availability of Sentinel-1, 
Sentinel-2, Sentinel-3, and other new satellite remote sensing images, our approach can facilitate the 
fusion of all these satellite remote sensing data sources for the generation of synthetic time series 
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images and for the joint retrieval of relevant crop canopy parameters. This will lead to improved high 
temporal and spatial resolution crop monitoring information to enable near real-time precision crop 
intervention and management. Our future efforts will be focused on the joint retrieval of other crop 
canopy parameters and apply the proposed method to other crops and other planted area of crops. 
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