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Abstract: Urban development status is closely related to the urban economy, environment, ecology,
and health. Spatial and socioeconomic processes are the two key aspects of urban development,
so the absence of any of them will affect the assessment of urban development status. In this study,
using both spatial and socioeconomic information from land cover data and nighttime light data,
respectively, we proposed an exponential model, Spatial–Socioeconomic Urban Development Curve
(SSUDC), to provide a quantitative expression of the relationship between the two key processes
of urban development and analyze urban development status. The SSUDC was calculated from
the artificial surface ratio at 1% intervals obtained from Globeland30 land cover data and the
corresponding average NPP-VIIRS nighttime light radiance data, using a nonlinear least-squares
method. We generated SSUDCs for 330 prefecture-level cities in Mainland China, 208 of which had
coefficients of determination (R2) greater than 0.6. Taking Ordos and Guiyang as two typical examples,
we analyzed the importance and advantages of SSUDC. The coefficients α and β of the exponential
SSUDC were shown to indicate the base intensity socioeconomic activity and the concentration of
socioeconomic activities, respectively, and can be used to reveal the urban socioeconomic development
status and functional type of cities. At the internal urban level, the residuals of SSUDC can imply
the demand for urban physical or economic construction in different areas of the city, and even
the urban growth type, together with the distribution of the artificial surface ratio. In summary,
the proposed SSUDC provides a simple way to combine the spatial and socioeconomic processes of
urban development, which is beneficial to the analysis of urban development at different scales and
a rewarding tool for urban planning.

Keywords: spatial–socioeconomic urban development curve; nighttime light; NPP-VIIRS;
urban development
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1. Introduction

The modern world is becoming rapidly urbanized, with over half of the world’s population
(54%) living in urban areas. Global urbanization is expected to continue so that, by 2050, the global
urban population is projected to reach 6.3 billion and account for 66% of the world’s population [1].
Urbanization is not only linked to the appearance of urban areas and population growth but is also
responsible for many economic, social, and environmental changes [2,3]. Previous research has proved
that cities with different development patterns, or in different stages of development, can have different
impacts on the economy, human health, and the environment [4,5]. Therefore, a correct and precise
understanding of the status of urban development is important for evaluating the urbanization process
and planning future urban development.

Urban development contains two main processes: spatial and socioeconomic [6]. The spatial
process refers to increasing urban area and population growth. Urban expansion is the main spatial
process [7–11]. The socioeconomic process, on the other hand, refers to changes in socioeconomic
activities as a result of people living in cities, such as economic growth, industrial structure adjustment,
and even lifestyle changes [12–15]. Both processes are key for assessing urban development status.
Considering only spatial features will lead to erroneous estimations if the city expands rapidly and has
a high house vacancy rate. Conversely, in the absence of spatial features, urban spatial development
information will be lost.

The level of urbanization is commonly defined from the demographic perspective and embodied
by urban populations [16,17]. The physical growth of urban areas can sometimes represent
urbanization, and city size is considered a measure of urban development status [18,19]. However,
these measurements of the urbanization level focus on either the socioeconomic or spatial process,
which suffers from the limitation mentioned above. Due to the differences in the definition and census
method of the urban population, the urbanization level of cities in different regions and countries lacks
comparability [20]. On this basis, some scholars have attempted to combine the features of both spatial
and socioeconomic processes to conduct a more comprehensive assessment of urban development
in small areas [21,22]; however, two challenges remain. First, socioeconomic indices are typically
derived from statistical data and lack spatial information; thus, they are problematic for the spatial
distribution analysis of urban development. Second, it is difficult to find a universal way to depict
the relationship between the two processes and analyze urban development status under various
circumstances, especially for a large area.

Remote sensing methods are one of the most effective and widely used measures for urban
mapping and analysis of urban development status from a spatial perspective [23]. Since the 1970s,
due to its advantages of broad coverage, high efficiency, and objectivity, remote sensing combined
with Geographic Information Systems (GIS) has provided enormous urban spatial information
and led to extensive research achievements in built-up area extraction [24–27], land-expansion
detection [7,8,11], land-use mapping [28–30], land cover change analysis [29,31], urban landscape
structure detection [32–34], and analysis of urban spatial structure [35–38]. Among these research
directions, urban built-up area evaluation using direct detection or land cover datasets is most
representative of urban spatial development.

Nighttime light (NTL) remote sensing data, which record nighttime lights on the Earth’s
surface by sensors, can detect the artificial lights from cities, towns, and industrial areas [39,40]
and have shown good performance for human socioeconomic-activity detection [40]. The Defense
Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) data have been widely
used in remote sensing of NTL since the 1990s. In 2011, the Visible Infrared Imaging Radiometer
Suite (VIIRS) on satellite Suomi NPP was launched by the National Oceanic and Atmospheric
Administration (NOAA), constituting a new generation of nighttime light remote sensing data.
Compared with DMSP-OLS NTL data, NPP-VIIRS NTL data are greatly improved in terms of spatial
resolution, data magnitude, minimum detection radiance, calibration, and saturation [41]. These NTL
datasets have been used to estimate gross domestic product (GDP) [42–44], population [45,46],
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CO2 emission [47], electric power consumption [46,48], total freight traffic [49,50], house vacancy
rates [51], and poverty [52,53]. Undoubtedly, NTL data represent a significant proxy for socioeconomic
activities and even human development [54], and can also provide the corresponding spatial distribution
information. Combined with the socioeconomic data, NTL data have been used to comparatively
estimate urban development [55]; nevertheless, NTL data and urban spatial data have rarely been used
together to explore urban development status, especially for a wide range of cities.

Therefore, in this study, NTL data were treated as an index of the socioeconomic process of urban
development, while the artificial surface from a land cover dataset functioned as an index of the spatial
process. The goal of this research is to propose a universal way to depict the relationship between land
cover and NTL data within an administrative city and then develop a Spatial-Socioeconomic Urban
Development Curve to monitor urban development status.

The rest of this paper is organized as follows. Section 2 introduces the study area and data. Section 3
describes the details of the method used to create the SSUDC. The results, analyses, and discussion of
the SSUDCs for all study areas are presented in Sections 4 and 5. Finally, we present our conclusions in
Section 6.

2. Study Area and Data

2.1. Study Area

Due to rapid urbanization, cities in China have developed a rich diversity of development forms
and states, which provide a variety of examples for the study of urban development. In this study,
we focused on urban development within administrative cities, which involves not only urban areas
but also rural areas. In accordance with administrative boundaries, more than 330 prefecture-level
cities in Mainland China were chosen as study areas to explore urban development status; 13 cities were
removed due to poor quality NTL data in high-latitude zones. For further analysis of diverse urban
development status, four cities (Shanghai, Urumqi, Zhangjiakou, and Linfen) were selected that display
significant differences in economy, size, and location (Figure 1). Because of the important role of urban
agglomeration in modernization and urbanization in China [56], we also selected five super-urban
agglomerations (Beijing-Tianjin-Hebei, Yangtze River Delta, Pearl River Delta, Middle Yangtze Region,
and Chengdu-Chongqing) and three typical urban agglomerations (Harbin-Changchun, Central Plains,
and Beibu Gulf). Based on national core cities, the five super-urban agglomerations played momentous
roles in the national economic development and had global influences. The three typical urban
agglomerations were commonly viewed as the regional-level urban agglomerations and drove the
regional economic development. The administrative boundaries of cities that were parts of urban
agglomerations in Fang’s study [57] were regarded as the boundaries of the urban agglomerations,
as the urban development status within prefecture-level administrative cities is the focus of our
attention. Based on the socioeconomic development and geographical position, the Mainland of China
was divided into three regions (eastern region, central region, and western region), which is helpful for
the validation and the analysis of the results (Figure 1). The eastern region has flat and fertile plains,
good conditions for agriculture, and rich resources, such as petroleum, iron ore, and salt. Due to its
long history of development, this region plays a leading role in the national economic development
with the great industrial and agricultural foundation. The central region is located inland with plateaus,
hills, and plains, in which energy and mineral resources are abundant, and the heavy industry has
a good foundation. In the western region, the topography is varied, and most areas are cold and
water-deficient, which is not conducive to crops. The economic development in this region lags far
behind the central and eastern regions, but the large area and the plentiful mineral resources provide
great developmental potential.
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2.2. Data

The key data used in this study include Globeland30-2010 land cover data, NPP-VIIRS NTL
monthly composite data from April 2012, and the administrative boundaries. Globeland30-2010,
produced by the National Geomatics Center of China (NGCC) (http://www.globeland30.com/), was the
first global land cover dataset at the 30 m resolution for 2010 [58]. Its classification system includes
10 land cover types, namely cultivated land, forest, grassland, shrubland, wetland, water bodies,
tundra, artificial surfaces, bare land, and permanent snow and ice, whose overall accuracy reaches
80.33% [31]. The type of artificial surface that indicates land modified by human activities (including
all types of habitation, industrial and mining areas, transportation facilities, interior urban green zones,
water bodies, etc.) was used to represent the spatial characteristics of urban development in this study.

NPP-VIIRS NTL composite data were obtained from the Earth Observation Group, National
Oceanic and Atmospheric Administration’s National Geophysical Data Center (NOAA/NGDC) [59].
This dataset is the annual or monthly average of VIIRS Day/Night Band data, excluding those impacted
by stray night, lightning, lunar illumination, and cloud cover. The version 1 monthly products span
the globe from 75◦N to 65◦S latitude and store radiance values with units in nano-Watts/cm2/sr in 15
arc-second (about 500 m) geographic grids from April 2012 to July 2019. Another file that records the
integer counts of the number of cloud-free observations in the average radiance image can also be
downloaded. Considering the year of Globeland30 data (2010) and the influence of snow and cloud
on data quality [60,61], we selected the first NPP-VIIRS NTL monthly composite data of April 2012,
which had rare snow and few cloudy days in China, to reveal the urban socioeconomic characteristics.
The largest number of cloud-free observations in April 2012 NPP-VIIRS NTL data is 21, and nearly
85 percent of the areas of Mainland China have more than 3 cloud-free observations. Despite this,
we excluded 13 cities from the study areas in Mainland China where the proportion of cloud-free
NPP-VIIRS NTL pixels was less than half (Figure 1).

http://www.globeland30.com/
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Administrative boundary data at the prefecture level were extracted from the GADM
dataset (Version 2.8, http://www.gadm.org/), which is a widely used spatial database of global
administrative boundaries.

3. Methodology

3.1. Spatial–Socioeconomic Urban Development Curve

Generally, the intensity of socioeconomic activities increases with increasing urban area
density [62,63]. In order to provide a quantitative expression of this relationship, we proposed
the Spatial–Socioeconomic Urban Development Curve (SSUDC). After it was compared with other
growth models, the exponential model performed the best in regard to calculating the SSUDC, where the
urban area density is the independent variable and the intensity of socioeconomic activities is the
dependent variable. In this study, the artificial surface ratio (ASR) and the average NTL radiance (ANR)
represent these two variables, respectively. The total area within an administrative city was overlaid
with square grids of 500 m, the same size as the NTL data pixel. Then, the ASR is the proportion of
artificial surfaces in a grid, and the ANR is the mean value of the NTL radiance of the grids with the
same ASR. The SSUDC can, therefore, be expressed as Equation (1):

ANR = αeβ·ASR (1)

where α and β are the coefficients in the equation. Figure 2 shows the SSUDC for Shanghai, China,
a global economic, financial, trade, and transportation center. In the following sections, we provide
details on the implementation procedures used to generate the SSUDC (Figure 3).
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3.2. Generating the SSUDC

3.2.1. Data Preprocessing

Although the NPP-VIIRS NTL data have excluded data impacted by stray light, lightning,
lunar illumination, and cloud cover, and we have also rejected areas with poor data quality in Mainland
China, there were also multiple lights from fires, gas flares, and other unknown sources [41]. To remove
the temporal lights and noise from NPP-VIIRS NTL data, we adopted the data correction method
developed by Shi et al. [43]. Four cities (Beijing, Shanghai, Guangzhou, and Shenzhen) were chosen
as the reference areas where we assumed that nighttime light values were higher than elsewhere
in Mainland China. Any pixel whose value is larger than 238.613, the maximum nighttime light
intensity of these four cities, was replaced with the maximum value from its eight neighboring pixels.
In addition, all negative values were set to 0, and the NPP-VIIRS NTL data were projected into the
Albers Conic Equal Area Projection with a central meridian of 105◦E and a spatial resolution of 500 m.
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Globeland30-2010 data were also projected into the Albers Conic Equal Area Projection. To fit the
500 m grid of NTL data, the nearest neighbor interpolation was used to resample the original 30 m data
to 10 m spatial resolution, without any change of pixel value. As water bodies can reflect nearby light,
which leads to some noise in NPP-VIIRS NTL data, we used water bodies from Globeland30-2010 data
to calculate the water area ratio in each NPP-VIIRS NTL pixel; NPP-VIIRS NTL pixels with more than
half covered by water were removed without further consideration.

3.2.2. Fitting the SSUDC

The SSUDC was calculated from the ASR and ANR according to Equation (1). To calculate the
ASR in each NPP-VIIRS NTL pixel, we overlaid the artificial surfaces with the NPP-VIIRS NTL data.
The pixels located on city boundaries were eliminated because they could be lit up by light sources
outside the city. Thus, the ASR of each NPP-VIIRS NTL pixel was calculated by dividing the number
of artificial surface pixels with the total number of pixels (Equation (2)):

ASR =
Na

Nt
(2)

where ASR is the artificial surface ratio for an NPP-VIIRS NTL pixel, Na is the number of artificial
surface pixels, and Nt indicates the total number of pixels. Then, we calculated the average NTL
radiance at 1 % ASR intervals (Equation (3)):

ANRi =

∑ni
j=1 NRi j

Ni
(3)

where i is the integer from 0 to 100. For all pixels where the ASR is between i % and (i + 1) %, ANRi is
the average NTL radiance of those pixels, Ni is the number of total pixels, j is from 1 to Ni, and NRij
is the NTL radiance of pixel j that belongs to those pixels with ASR from i % to (i + 1) %. Finally,
the nonlinear least-squares method was used to derive the SSUDCs of ASR and corresponding ANR
for all studied cities.

4. Results

4.1. Performance of SSUDC Fitting

To evaluate the goodness of fit, the coefficients of determination (R2) were calculated for 330
prefecture-level cities; 208 are greater than 0.6. Their spatial distribution in Mainland China is shown
in Figure 4. Most of the cities with R2 values below 0.6 are distributed in Western China, such as
Xinjiang, Tibet, and Qinghai, where there are large administrative areas, severe environments, and low
population densities, and urban areas are too small and sparse [64] to have enough pixels for SSUDC.
Figure 5 shows the numbers of pixels in each ASR interval for Lhasa, Urumqi, and Jinhua, whose R2

values are 0.2142, 0.6984, and 0.8858, respectively. Lhasa, as the capital city of Tibet, has few urban
areas. There are more urban pixels in Urumqi, the capital city of Xinjiang; thus, its R2 value is larger
than Lhasa’s. The small city of Jinhua, in the province of Zhejiang, has the most urban pixels and the
largest R2 value among the three. Our results reveal a positive correlation between urban pixels and R2

and that small urban areas affect the performance of SSUDC. In summary, we suggest that the SSUDC
results are acceptable and can effectively reflect the relationship between artificial surface ratio and
nighttime light radiance.
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4.2. Significance and Spatial Distribution of SSUDC Coefficients

Each city has its own SSUDC with different coefficients (α and β), which indicate the urban
development status. In this study, the real average NTL radiances in the non-artificial surface area are
very low and derived from the overflow of neighboring pixels and light from non-artificial surfaces,
such as cropland. Coefficient α actually is the intercept of SSUDC and indicates the night light radiance
in areas with the lowest ASR, so we suggest that α implies the base intensity of socioeconomic activity
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in a city. In general, the more developed the city, the higher the base intensity of socioeconomic
activity. To validate the significance of α, we collected the statistical gross domestic product (GDP)
per capita of all cities and conducted a correlation analysis between α and GDP per capita in the
eastern region, central region, and western region, respectively. Figure 6 shows that α and GDP per
capita have the positive linear correlations in the western region, central region, and eastern region,
and the correlation coefficients (R) are 0.1737, 0.6656, and 0.5558. The T-test was used to test the
significance of R. The P-values of eastern and central regions are both less than 0.01. In the western
region, the correlation between α and GDP per capita is not as strong as in the eastern and central
regions, but the P-value is still less than 0.05. Therefore, the coefficient α can reflect the base intensity
of socioeconomic activity in a city.
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Coefficient β, as the growth rate of SSUDC, represents how fast the nighttime light radiance
increases with ASR growth in a city. Analogizing with the Lorenz curve [65], the exponential model
indicates the aggregation of the dependent variable in the high-value range of the independent variable.
The lager the β, the steeper the curve, the greater concentration of the dependent variable. Therefore,
coefficient β can be used to measuring the concentration of nighttime light radiance in the high ASR
urban areas. In other words, β indicates the concentration of socioeconomic activities. The larger the β,
the greater the concentration in areas with high ASR, the more socioeconomic imbalances between
the areas with low and high ASR. Furthermore, through SSUDC, we can quantify the socioeconomic
activity intensity that a city can support at any ASR.

Figure 7 shows the distributions of coefficients α and β in Mainland China. Two coefficients
obviously have different characteristics in spatial distribution. The regional agglomerations of these
two coefficients appear in different urban agglomerations. In general, cities with large α are typically
located in developed regions (Figure 7a); i.e., the southeast coast and middle Yangtze region of
China. After years of development, these regions have laid a good economic foundation. It is
noteworthy that some cities in the southwestern region of China with a low GDP also have large α.
This phenomenon can be attributed to the terrain of these cities. For example, Guiyang is the capital
city of the province of Guizhou and lies in the hilly area of Yunnan Guizhou Plateau, so its spatial
development is confined by hills as its socioeconomic activity intensity increases. We explain more
details of Guiyang’s urban development analysis in Section 5.4. All five super-urban agglomerations
have relatively large α, especially the cities in their core regions, which corroborated the achievement
of the urban agglomeration policy.
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As shown in Figure 7b, most cities with large β are located in underdeveloped and developing
areas, such as Central and Northwest China, and under the rapid development with economic vitalities
that benefit from the growth strategy of Central China and western development. In these cities,
the rises of socioeconomic activities are sharper in the urban area than the rural area, which results
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in a great concentration of socioeconomic activities in the areas with high ASR. Three typical urban
agglomerations, Harbin-Changchun, Central Plains, and Beibu Gulf, have developed relatively rapidly
in the first ten years of the 21st century and have relatively large β. Harbin-Changchun urban
agglomeration was an important industrial center in the mid-20th century and declined in the late
20th century. After 2000, Harbin-Changchun began to accelerate its development again, relying on
the reconstruction strategy. Central Plains and Beibu Gulf urban agglomerations were proved by the
State Council in 2016 and 2017, respectively. The large β in these two new urban agglomerations
demonstrates that they were already in the period of rapid development in 2010.

To further explore the relationship betweenα andβ, we created a scatter plot (Figure 8), which shows
that βdecreases with increasingα. A power function was used to fit the scatter, revealing a determination
coefficient (R2) of fitting of up to 0.79. Naturally, there is a conflict between the base intensity and
concentration of socioeconomic activity. In different stages of development, the α and β cannot be
large at the same time. Cities with large α and small β are generally well developed and have sound
economic bases evenly distributed throughout the urban area, so the concentrations of socioeconomic
activities in these cities are lower than in developing cities. As shown in Figure 8, cities with adequate
development in their region, such as Shenzhen, Chengdu, Xiamen, Shanghai, and Beijing, belong to
this category. It should be noted that the coefficients α of Beijing and Shanghai are smaller than those
of the other cities. For megacities, the development of the urban core area has a vital impact on the
economy, and the base intensity of the socioeconomic activities is low compared with the development
status. Conversely, cities with small α and large β, such as Bortala, Songyuan, Bayan Nur, Fuyang,
and Bengbu, usually have poor socioeconomic bases and are under rapid development. These are
prominent cities in underdeveloped or developing regions. Naturally, for most cities, both coefficients
are not large, which implies that urban development in China is steady.
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5. Discussion

5.1. Urban Socioeconomic Development Status

As mentioned in Section 2, Shanghai, Urumqi, Linfen, and Zhangjiakou, which have diverse
urban development status, were selected for SSUDC evaluation, and this is depicted in Figure 9. It is
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clear that Shanghai, the economic and technological center of China, has a large α and a small β because
the economy is almost fully developed in Shanghai and the socioeconomic activities difference between
low and high ASR areas is relatively small. As the capital city of the province of Xinjiang, Urumqi
does not have small coefficients, even though it is located in Northwest China, which is in a state
of underdevelopment. It is noteworthy that the β value for Urumqi is larger than that of Shanghai,
which means that the distribution of socioeconomic activities in Urumqi is more unequal than in
Shanghai. Linfen and Zhangjiakou are cities in the provinces of Shanxi and Hebei, respectively, and both
exhibit a comparatively low GDP for 2012 (113605.73 and 111861 million CNY, respectively [66]).
It follows that the α values for these two cities are both small. However, the β value of Zhangjiakou is
larger, even than Shanghai and Urumqi. The main cause of this phenomenon is the establishment of
an industrial cluster in Zhangjiakou in 2010, which resulted in vigorous economic development. As for
Linfen, the optimization of industrial structure in order to move away from a coal-based economy has
placed this city in a transitional period, which leads to a small value of β.
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5.2. Urban Internal Development Status and Spatial Structure

By considering both spatial and socioeconomic processes of urban development, further
information on urban development status within cities can be provided by the residual of SSUDC,
in addition to its coefficients. A positive residual signifies a surplus of socioeconomic activity,
and a negative residual corresponds to a surplus of urban spatial construction. A residual of close to 0
represents an ideal development status. Combined with the distribution of ASR, residual analysis can
provide further information on urban internal development status and spatial structure.

For example, the spatial distribution of the artificial surface ratio in Shanghai is illustrated in
Figure 10. When the ASR is less than 30% in Shanghai, as shown in Figure 10a by the dashed line,
the total residual of SSUDC is 16.3815. This means that the real intensity of socioeconomic activity
is higher than that calculated by SSUDC. As we can see in Figure 10c, most regions with an ASR of
less than 30% are suburban areas, so the focus of urban development is likely to be on urban physical
construction rather than on economic construction. In contrast, the total residual is −13.8947 when
ASR is between 30% and 70%. These regions are typically scattered between urban and suburban areas.
The negative residual indicates that the socioeconomic process of urban development lags behind
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the spatial process, and urban sprawl is occurring; thus, more economic activities can be supported,
and the economic vitality should be enhanced. The areas with an ASR of more than 70% are almost
all developed regions in Shanghai, where the total residual is 0.9915, which indicates an appropriate
urban development status. When all ASR spatial distributions are summarized in Shanghai, the areas
with high and low ASR have more socioeconomic activities than those with medium ASR. This implies
that the urban growth type of Shanghai is mainly outlying, and multiple nuclei will probably typify
its development model. In fact, Shanghai is a typical polycentric structure city in China, in which
a polycentric development strategy was designed and implemented [35,67].
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Wuhan, as the most populous city in Central China, has a different residual and ASR distribution
from Shanghai (in Figure 10b,d). Located far from the downtown in Wuhan, the areas with an ASR of
less than 20% have a residual of –38.7003. Therefore, those areas are lacking in socioeconomic activities.
The main urban area of Wuhan with an ASR of more than 80% also has a negative residual of –14.2256,
which indicates that either there is space remaining for socioeconomic development in the main city
or socioeconomic activities have been decreasing. The positive residual appears in areas with ASR
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values between 20% and 80% and reaches 41.9130. This suggests that socioeconomic processes are
more advanced than spatial processes in these areas, and edge-expansion is the main urban growth
type in Wuhan. Other cities that are not as complicated as Shanghai and Wuhan may only be split into
two parts, according to the residual; however, this method is also applicable to these cities.

5.3. Urban Functional Type

It is acknowledged that cities differ in function, and the functional type of a city depends on
its role in the country or region [68]. Not only the socioeconomic but also the spatial features can
affect the functional generation of cities [69]. Therefore, we selected 27 cities with three different
functional types according to the functional classification system of Chinese cities by Xu [70] to test
the SSUDC’s ability to identify the urban functional type. A scatter plot of coefficients α and β is
depicted in Figure 11, which indicates that the urban development information obtained from the
SSUDC can partly reveal the functional type of a city through the coefficients α and β. Given that
mining cities have single economic structures and weak economic foundations, they typically have
small α. However, after optimization of the industrial structure, more economic development potential
in high ASR urban areas was stimulated, contributing to the relatively large β. As for industrial
cities, good economic bases formed as a result of China’s industrial boom, so that the α values of
industrial cities are unusually large. With the implementation of the sustainable development strategy,
the development style of industrial cities is changing. Consequently, industrial cities have relatively
slow economic growth and comparatively small β values. The characteristics of tourist cities are not
obvious, however, and additional auxiliary information besides the SSUDC coefficients is required in
order to identify the urban functional type.
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5.4. Advantages of SSUDC by Considering both Spatial and Socioeconomic Processes

Considering either spatial or socioeconomic processes leads to an inaccurate assessment of the
urban development status. Two typical cities, Ordos and Guiyang, were selected to find out the benefits
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of analyzing with SSUDC, whose results are shown in Figure 12. Ordos has been a famous “ghost city”
in China since its pictures were reported by Time magazine in 2010 [71]. Mining is the main industry
of Ordos. The α and β of Ordos’s SSUDC are 1.04 and 2.29, respectively, which conform to the mining
city’s coefficients, as seen in Figure 11. Guiyang is the capital city of Guizhou, which is one of the most
underdeveloped provinces in China.
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If using only the spatial information to analyze the urban development status in Ordos and
Guiyang, we find that the Ordos is expanding to the southwest and Guiyang’s built-up area has
little change. These results will mislead us into the biased conclusion that Ordos is under the fast
urbanization and Guiyang’s urban development has stopped. Using only the socioeconomic indices to
evaluate the urban development status can help us grasp the overall situation of urban socioeconomic
development, but cannot reveal the development details and the imbalances of different areas within
the city.

Facts are far from the conclusion of either spatial or socioeconomic analysis. At the beginning of
the 21st century, the government of Ordos planned to build a new district, Kangbashi, to settle the
increasing population with the urban development and then move the downtown to this new district.
However, the population migration cannot catch up with the construction of the new district, so a large
number of apartments were vacant. Using only land cover data to monitor the urban area expansion can
miss this vacancy issue and get a biased urbanization evaluation. However, in Figure 12a, the SSUDC
of Ordos clearly reflects the house vacancy situation. The total residual of SSUDC is –20.02 when the
ASR is between 60% and 90%. The large negative residual indicates that the intensity of socioeconomic
activities is much lower than urban construction, and the probability of house vacancy is high in those
areas. Areas with ASR between 60% and 90% are depicted in blue in Figure 12a. The blue areas next to
the old downtown area are the results of the natural urban expansion. But in the Kangbashi District,
there are some isolated blue areas representing the high house vacancy rate.

As for Guiyang, with the continuous improvement of the railway network in this mountainous
province, Guizhou’s GDP has grown rapidly, at a rate of more than 10 percent per year since 2003 [72,73].
Owing to the poor basic economic and high-speed development, cities similar to Guiyang in Western
China usually have low base intensities and great concentrations of socioeconomic activities, so the
α should be small and the β should be large in these cities. But in Guiyang’s SSUDC in Figure 12b,
the coefficients α and β are 7.37 and 1.35, respectively, and different from those rapidly developing
cities, even though Guiyang’s GDP is 170,030 million CNY that is ranked 90th in 330 prefecture-level
cities, which is only about half of that in Ordos (365680 million CNY, ranked 36th) [66]. Mountainous
areas limit the extent of the human activities in Guiyang. Therefore, the intensities of human activities
throughout the Guiyang increase with the soaring economy and cannot be concentrated in the areas
with high urban density, which is characterized by the large α and small β in the SSUDC. Furthermore,
SSUDC’s total residual of –1.26 indicates a balanced status between urban physical construction and
socioeconomic activities in Guiyang. As shown in ASR spatial distribution in Figure 12b, only a few
areas where ASR is between 20% and 40% have relatively weak socioeconomic activities. In conclusion,
the analysis of SSUDC can reflect the urban development status comprehensively and objectively.

5.5. Limitations and Future Perspectives

In this study, we proposed an SSUDC to analyze urban development status in Mainland China.
In order to consider both spatial and socioeconomic processes of urban development, NTL data and
land cover data were used as the respective proxies for the two processes. Unfortunately, Globeland30
data are only available for 2000 and 2010, and NPP-VIIRS NTL data start from 2012. Therefore,
we selected Globeland30-2010 data and the first NPP-VIIRS NTL data from April 2012 to minimize the
influence of temporal inconsistencies. Nonetheless, there is a two-year lag between the two datasets
used in this study; therefore, the urban physical properties do not fully correspond to the socioeconomic
properties, especially in those areas under rapid development. This is one of the reasons for the poor
fitting results in the western region. Although reliable SSUDCs for most cities in Mainland China were
generated in this study, the results can be improved by employing data from the same time period.
Meanwhile, the seasonal change [60,74] and the anisotropic characteristic [73] of NPP-VIIRS data can
also affect the urban development assessment.

In addition, small urban areas can also lead to errors in SSUDC fitting. In some regions of China,
such as West Inner Mongolia, Xinjiang, and Tibet, the urban administrative region covers an area many
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times larger than the urban areas, most of which are secluded and in harsh environments. Therefore,
we do not have enough samples to train a good regression model, and the performance of SSUDC with
NPP-VIIRS NTL data and Globeland30 data is not satisfactory in these regions, which strongly limit
the method. Employing remote sensing data with higher spatial resolution could be a good way to
improve these results.

It is worth noting that analyzing the relationship between the two main processes of urban
development in such a simple way is a simplification and generalization of the urban development
process. In other words, SSUDC assesses the urban development status without considering the impact
of the factors beyond the natural development, e.g., environmental policies. The interventions
of environmental policies on the nighttime light brightness or artificial surfaces can lead to
inaccurate SSUDCs.

In conclusion, SSUDC is a reliable method for urban development status analysis. However,
data temporal inconsistencies and insufficient samples in some regions limited its performance.
If cooperative finer spatial resolution and time-series data of the urban area can be found, improved
results and a long time-series analysis, which is significant for urban planning, are foreseeable.
Furthermore, introducing the policy factors into the model will be helpful to improve the performance
of SSUDC in the cities with more policy interventions.

6. Conclusions

This study proposed a Spatial–Socioeconomic Urban Development Curve that represents the
exponential relationship between the spatial (refers to Globeland30 land cover data) and socioeconomic
(refers to NPP-VIIRS NTL data) processes of urban development to improve the analysis of urban
development status, by compiling SSUDCs for 330 prefecture-level cities in Mainland China, of which
208 have R2 values greater than 0.6. Most of the cities with R2 values below 0.6 are distributed in
Western China.

The SSUDC can be a new remote sensing solution to the assessment of urban development
status, urban functions, and urban spatial structure at different scales. Given the spatial attributes
of NPP-VIIRS NTL data, the coefficients of SSUDC can reveal more socioeconomic information than
census data regarding the urban development status. Compared with GDP data, coefficient α indicates
the base intensity of socioeconomic activity for a city, and coefficient β represents the concentration
of socioeconomic activities in a city. An analysis of their spatial patterns in China shows that not
only cities in developed areas but also those in mountainous regions of Southwest China have high
socioeconomic intensities compared to their urban spatial development. Areas with large β are typically
located in developing areas in Central and Western China because of vigorous economic development
as a result of the growth strategy of central China and western development. Furthermore, SSUDC is
helpful to identify the urban functional type, especially the industrial type, owing to the sensibility of
SSUDC coefficients for the urban function. The residuals of SSUDC can indicate the demand for urban
physical and economic construction in different areas of the city. Moreover, combining the distribution
of artificial surface ratio with the corresponding residual can provide further information on the urban
spatial structure.
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