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Abstract: The southern part of the Hebei Province is one of China’s major crop-producing regions.
Due to the continuous decline in groundwater level, agricultural water use is facing significant
challenges. Precision agricultural irrigation management is undoubtedly an effective way to solve
this problem. Based on multisource data (time series soil moisture active passive (SMAP) data,
Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index
(NDVI) and evapotranspiration (ET), and meteorological station precipitation), the irrigation signal
(frequency, timing and area) is detected in the southern part of the Hebei Province. The SMAP data
was processed by the 5-point moving average method to reduce the error caused by the uncertainty
of the microwave data derived SM. Irrigation signals can be detected by removing the precipitation
effect and setting the SM change threshold. Based on the validation results, the overall accuracy of
the irrigation signal detection is 77.08%. Simultaneously, considering the spatial resolution limitation
of SMAP pixels, the SMAP irrigation area was downscaled using the winter wheat area extracted
from MODIS NDVI. The analytical results of 55 winter wheat samples (5 samples in a group) showed
that winter wheat covered by one SMAP pixel had an 82.72% growth consistency in surface water
irrigation period, which can indicate a downscaling effectiveness. According to the above statistical
analysis, this paper considers that although the spatial resolution of SMAP data is insufficient, it can
reflect the change of SM more sensitively. In areas where the crop pattern is relatively uniform, the
introduction of high-resolution crop pattern distribution can be used not only to detect irrigation
signals but also to validate the effectiveness of irrigation signal detection by analyzing crop growth
consistency. Therefore, the downscaling results can indicate the true winter wheat irrigation timing,
area and frequency in the study area.

Keywords: irrigation signal; SMAP; irrigation intensity; winter wheat

1. Introduction

Winter wheat is the main crop in the North China Plain (NCP). Due to the high irrigation
demand of winter wheat, more than 70% of the irrigated water resources are used for winter wheat
irrigation every year [1]. The increasing population has led to a corresponding increase in the
demand for agricultural, industrial and domestic water in the NCP. The surface water resources are
insufficient, and groundwater has become the main source of water for the NCP [2]. In recent decades,
the overexploitation of groundwater has led to a significant decline in groundwater levels, which
increases not only environmental problems but also the pressure on agricultural food production [3,4].
Groundwater is the main source of water for NCP agriculture irrigation. Long-term dependence on
groundwater for agricultural irrigation has resulted in groundwater over-exploitation, and agricultural
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water irrigation needs to be reduced; however, the sustainable of food crop production must also be
ensured [5,6]. Timely and effective monitoring of irrigation water is of great significance for agricultural
water management and water resources protection. The irrigation signal includes the time, frequency
and area of irrigation. Irrigation time can be used to dynamically correct irrigation schedules, while
irrigation frequency and area can be used for the estimation and dynamic monitoring of agricultural
irrigation water use [7–10]. This study prepares to establish a model that can be used to detect irrigation
signals and dynamically acquire irrigation information. The results of the irrigation signal will be
used for the dynamic monitoring of agricultural irrigation water to achieve refined management of
agricultural irrigation.

With the continuous development of remote sensing technology, more remote sensing data can be
used for irrigation information detection [11–15]. Compared with traditional agricultural statistical
methods, remote sensing has a wide range of multifrequency, high spatial and temporal resolution
advantages and has been widely used in agricultural management [16–18]. Representative data sources
include Moderate Resolution Imaging Spectroradiometer (MODIS), which provides 250 m, 500 m and
1 km resolution daily surface reflectance data. The richness of time series and improvement in remote
sensing data spatial resolution has greatly improved the accuracy of irrigated area identification [19].
In recent research, the Normalized Difference Vegetation Index (NDVI) has been extensively used
as an effective indicator for irrigated area recognition based on optical remote sensing data [19–21].
An analysis of the time-varying pattern of NDVI is the primary method for identifying irrigated and
non-irrigated areas. In particular, wheat and maize are affected by irrigation, and their NDVIs will
appear to be higher than other vegetation [20,22]. Although the identification method for irrigated
areas has been comprehensive, this irrigated area extraction method based on optical remote sensing
data is mostly used for long-term irrigated area monitoring to analyze trends in irrigated areas over
multiple years. Chen et al. [23] proposed a method for detecting irrigation extent, timing and frequency
based on MODIS and Landsat remote sensing data, which is an important irrigation property for
understanding the sustainability of water resources in arid and semiarid regions. The irrigation signal
detection method based on the visible vegetation index must model the daily scale data, and this
method is more suitable for irrigation signal detection in regions with less cloud cover. Remote sensing
images of areas with more clouds are likely to miss the critical period of irrigation signal detection due
to cloud pollution. Moreover, in addition to the influence of image quality, the response of vegetation
to irrigation is lagged, which increases the uncertainty of irrigation timing detection.

In addition to the method of identifying the irrigated area by using vegetation index information,
the change in the wetness index can also be used to identify the irrigation signal [24]. Based on the
SM being higher in the irrigated area than in the non-irrigated area, some researchers have identified
irrigated areas based on different principles. Based on the MODIS enhanced vegetation index (EVI)
and land surface water index (LWSI) ratio method, Peng et al. [25] introduced the variable EVI/LWSI
threshold function to improve the detection ability of this method in different rice crops under mixed
rice crop patterns (single-season rice, early-season rice, and late-season rice). Abuzar et al. [26] used
vegetation and thermal thresholds derived from Landsat and Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) data to detect the irrigated area in an Australian irrigation district
based on the soil temperature in the irrigated area being lower than that in the non-irrigated area.
Although different researchers use SM information to detect irrigated area information from different
aspects, they do not use SM indicators because optical and thermal infrared remote sensing data cannot
directly obtain SM information.

Active and passive microwave satellites have proven to be effective tools for retrieving soil water
variations at regional and global scales [27–29]. NASA’s Soil Moisture Active Passive (SMAP) satellite,
launched on 31 January 2015, provides a new source of data for near-surface (0–5 cm) soil water
monitoring on a global scale. Colliander et al. [30] validated the SMAP surface SM product through
the core validation site. The results indicate that the SMAP radiometer-based SM data product meets
the expected performance of 0.04 m3/m3 volumetric SM (unbiased root mean square error) and that the
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combined radar-radiometer product is close to its expected performance of 0.04 m3/m3. Chan et al. and
Zhang et al. [11,31] evaluated the results of different SMAP products in different regions and obtained
similar conclusions to those of Colliander. SMAP has more information improvements than previous
SM satellites, which has raised interest in whether SMAP can improve irrigation monitoring [32].
Subsequently, Lawston et al. [33] explored the use of SMAP data in identifying irrigation areas and
timing in the Sacramento Valley, San Luis Valley and Columbia River Valley. However, the study did
not identify the irrigation timing in the irrigated area. Since the detection of the irrigated area is a
combination of changes in SM over a period of time, the time scale is the entire period of the crop.
Compared with optical/thermal infrared methods, SMAP’s method of detecting irrigated areas has
unique advantages in terms of temporal resolution and ability to directly acquire SM [34]. The SMAP
data spatial resolution is a major limiting factor that affects its use.

Obtaining irrigation time, area and frequency will help estimate irrigation water volume and
provide data support for agricultural irrigation management. Despite having the low spatial resolution,
SMAP provides high temporal resolution SM products. To address the spatial resolution issues, this
paper will be studied in the following three aspects: 1) Based on SMAP and meteorological data, the
irrigation signal in the study area was detected, which solved the problem of optical data not being
applicable in cloudy regions; 2) MODIS remote sensing data were used to downscale the detection
results to solve the low spatial resolution problem of SMAP data; and 3) through an analysis of
the consistency of winter wheat growth covered by SMAP pixels, the SMAP data effectiveness in
downscaling the winter wheat irrigation results in this study area was evaluated.

2. Study Area

The region of interest in this paper is located in the southern part of the Hebei Province and
belongs to the NCP. The boundaries of the study area are city administrative boundaries, including
Shi Jiazhuang, Baoding, Langfang, Hengshui, Cangzhou, Xingtai and Handan, with a total area of
8.9 × 104 km2 (as shown in Figure 1). Although precipitation in the study area is not scarce, the
distribution of precipitation during the year is extremely uneven. The study area is dominated by a
temperate monsoon climate with mean annual precipitation of 472.7–889.2 mm, and 70% of the annual
precipitation occurs between June and September [35]. Under the irrigation conditions of the study
area in recent years, the main crop pattern is the winter wheat-summer maize double crop rotation.
Winter wheat and summer maize are also the main irrigated crops in this region [36]. The lower
amount of precipitation in spring is not enough to provide sufficient water for winter wheat growth,
and groundwater irrigation has been the main irrigation method for winter wheat and summer maize
for a long time. Winter wheat is generally irrigated 4–5 times, and precipitation has little effect on the
number of irrigations due to the severe shortage of precipitation during the winter wheat growing
period. Summer maize is usually irrigated before planting, and if effective precipitation has occurred
before planting and the soil moisture meets the sowing requirements, the crop will not be irrigated
during the growing period. The Middle Route of the South-to-North Water Transfer Project (MSWTP)
was launched at the end of 2014, and this project provided a new source of water for agricultural
irrigation in the NCP [37].
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Figure 1. Study area and meteorological sites locations and the spatial distribution of SM stations.

3. Materials and Methods

The flow chart (shown in Figure 2) of this paper includes the processing of collected data
(Section 3.1), selection of samples (Section 3.2.1), the application of algorithms (Section 3.2.2) and
validation of accuracy (Section 3.2.3).

Figure 2. Flow chart for this study. Here, 5-point Mov Avg represents the 5-point moving average and
Avg and Std represent the average and standard deviation, respectively. The irrigation Acc accumulates
as a result of the irrigation signal.

3.1. Data Collection and Pre-Processing

3.1.1. SMAP

SMAP is an orbiting observatory capable of measuring the amount of water in the top 5 cm of soil
at global scales. To meet the various needs of soil moisture monitoring, the SMAP mission uses an
L-band radar and an L-band radiometer for concurrent, coincident measurements integrated into a
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single observational system and ultimately produce a variety of spatial and temporal resolution SM
products [38]. Since the successful launch of SMAP in January 2015, it has provided SM products of
many levels worldwide. After validating the accuracy of SMAP products, the SMAP products meet
the mission requirements and can also be used to assess hydrologic processes [30,31,39]. In this study,
considering the spatial and temporal resolution of the SMAP products required for the study area,
SMAP enhanced L3 radiometer global daily 9 km EASE-grid soil moisture version 1 was used as the
final data source [40]. The study used the SMAP SM datasets from the end of Feb to the end of May
(2015–2018) corresponding to the winter wheat irrigation period in study area. Although the SMAP
dataset can provide daily SM products, due to satellite orbits, SM products do not cover the spatial
extent of the study area every day due to satellite orbits. To select the SMAP data that can completely
cover the study area, 8 control points are used to filter the data that meet the requirements. The eight
control points are evenly distributed at the vertices of the study area boundary, and the judgement
equation is as follows:

Xi =

{
1, 0 < Vi < 1
0, Vi = null

(1)

J =
{

R,
∑8

i X ≥ 6
D,

∑8
i X < 6

. (2)

where X is the judgement result of the SMAP pixel value (V) and null is no-data in this pixel, i is the
number of the control point. If the value of the SMAP pixel is between 0 and 1, X = 1; and if the SMAP
pixel value is null, then X = 0. J is the judgement result of whether the SMAP data are retained, and
R and D represent the retention and deletion of SMAP data, respectively. If the sum of the 8-control
point X ≥ 6, it indicates that SMAP data can cover a large area (more than 75% of the study area is
covered) of the study area and this SMAP data is retained; if it less than 6, the data are deleted. The
programming language for batch filtering, processing and extracting of SMAP data is python 2.7, and
the arcpy function provided by ArcGIS 10.4 (Environmental Systems Research Institute in California) is
also used. Regarding the extraction of pixel values in this paper, the “ExtractValuesToPoints” function
in arcpy is used.

3.1.2. MODIS

MODIS provides researchers with stable, long time series global remote sensing data. Some
global land use/land cover (LULC) datasets based on MODIS data have been generated [41,42].
MOD09GA and MOD16A2 provide daily surface reflectance with a spatial resolution of 500 m and
evapotranspiration of 500 m every 8 days [43,44]. MOD09GA and MOD16A2 were used in this study
for irrigated area downscaling, while the latter is based on 8-day synthetic data and does not require
further processing. MOD09GA is daily surface reflectance data, and cloud pollution has a large impact
on the use of data. First, the NDVI is calculated based on the MOD09GA dataset.

NDVI =
NIR−RED
NIR + RED

(3)

where NIR and RED are the surface reflectance factors for the presented wavelengths. Second, the
8-day maximum value composite (MVC) method was used for the daily NDVI time series dataset, and
the method is to composite a new NDVI image by using the daily maximum value of NDVI within
8 days of each pixel in the image as a valid pixel value [45]. This processing method reduces the impact
of clouds on the dataset and keeps the time resolution of the two MODIS products consistent. The
batch redefinition projection and raster attribute conversion of MODIS data are based on MRT (MODIS
Reprojection Tool supported by NASA, referenced by Dwyer et al. [46]), and the maximum synthesis
of the NDVI is based on MATLAB 2018b.
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3.1.3. Precipitation

The National Meteorological Information Centre of China provides daily precipitation data
(meteorology station) from 1961 to present [47]. There are 2472 meteorology stations in China, and there
are 7 meteorological stations in this study area. Daily precipitation data were collected from March
2015 to December 2018. Since precipitation data must be coordinated with SMAP data for irrigation
information monitoring, the spatiotemporal resolution of the precipitation data must be processed.
The daily precipitation data include statistical results for two periods (20:00–8:00 and 8:00–20:00) in
Beijing time. The current method for the L3_SM product is to use the nearest 6:00 AM local solar
time criterion to perform Level 3 compositing [38]. The precipitation from 8:00–8:00 is summed as the
daily precipitation, and the station data are interpolated into the grid data using the inverse distance
weighting (IDW) method based on python 2.7.

3.1.4. Irrigated Map

A global irrigated area map (GIAM) and global rainfed, irrigated, and paddy cropland (GRIPC)
were also collected in this study for irrigated area validation. Based on the unsupervised classification
method, GIAM provides irrigated area recognition results with a spatial resolution of 1 km in the year
2000 [34]. GRIPC is the result of the decision tree method for the classification of MODIS data and the
spatial resolution is 500 m in year 2005 [17].

3.1.5. In Situ SM Measurement Data and Irrigation Records

There are 135 SM stations in the study area, and SM data are provided every 10 days (1st, 11th and
21st). The SM data measurement (oven-drying method) depths include 10 cm, 20 cm and 40 cm, and
the measurement time is concentrated at 8:00 AM Beijing time. These sites also provide information
on precipitation and irrigation times between measurements. The recorded irrigation data include
areas of agricultural irrigation, irrigation crops, timing and volume. Although the recorded irrigation
information is relatively abundant, the spatial scale is the agricultural irrigation region. The data
collected in this study are shown in Table 1. Since this study only collected information on irrigation
records in 2018, only the SM changes in 2018 were plotted during sample training and validation.

Table 1. Datasets collected in this study.

Data Source Temporal
Resolution

Spatial
Resolution Time Period Data Access

SMAP daily 9 km March 2015 to
December 2018

https:
//nsidc.org/data/SPL3SMP_E/versions/2

PRE daily site March 2015 to
December 2018 http://data.cma.cn/

MOD09GA daily 500 m March 2015 to
December 2018 https://ladsweb.modaps.eosdis.nasa.gov/

MOD16A2 8-day 500 m March 2015 to
December 2018 https://ladsweb.modaps.eosdis.nasa.gov/

Irrigated Map year
1 km
and

500 m

http://www.iwmi.cgiar.org/
https//dl.dropboxusercontent.com/u/

12683052/GRIPCmap.zip

Irrigation Records 10-day site January 2018 to
December 2018

PRE: precipitation.

3.2. Methods

3.2.1. Established SMAP Training Samples for Winter Wheat and Rainfed Crops

The selection of training samples is important before establishing a model of irrigation signal
detection. Since the SMAP data have a low spatial resolution, the training samples should be selected
to ensure that the surrounding crops are consistent. In this paper, samples were selected using a

https://nsidc.org/data/SPL3SMP_E/versions/2
https://nsidc.org/data/SPL3SMP_E/versions/2
http://data.cma.cn/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
http://www.iwmi.cgiar.org/
https//dl.dropboxusercontent.com/u/12683052/GRIPCmap.zip
https//dl.dropboxusercontent.com/u/12683052/GRIPCmap.zip
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combination of MODIS NDVI and MODIS ET. Since the winter wheat (WW) NDVI in the NCP was
significantly higher than other crop in March, the spatial distribution of WW can be extracted based on
the March NDVI data. However, this spatial distribution may include other vegetation with a higher
NDVI (such as landscape forest), and ET is needed to improve the extraction accuracy of WW. Since
March to April is the main irrigation period for WW, the cumulative ET value of WW is significantly
higher than that of other vegetation during this period [48]. This indicates that the extraction accuracy
of WW can be improved by adding ET as a limiting condition. Using these two features (NDVI and
ET), the WW pixels can be extracted more accurately. WW and rainfed crop pixels were extracted by
the decision tree model in Figure 3.

Figure 3. Winter wheat and rainfed crops planting area extraction model. Where March NDVI and
Mar-May ET represent the NDVI in March (May NDVI is similar to March NDVI) and cumulative
amount of ET from March to May, respectively; DEM is the elevation information; and T is the threshold
in different conditions. If the pixel value (such as NDVI and ET) satisfies the threshold, the pixel value
is 1, and if it is not satisfied, the pixel value is 0.

The selection of WW samples should be based on SM sites, and more irrigation information can
be obtained. Rainfed crop samples should ensure that there are no irrigated crops nearby as much as
possible, which can reduce the influence of surrounding crop irrigation on SM. Finally, 11 WW samples
and 7 rainfed crop samples were established in the study area, 7 WW samples and 4 rainfed crop
samples were used as training samples, and the remaining samples were used as validation samples.
These samples are distributed from north to south and can reflect the difference in irrigation time of
winter wheat under different latitude conditions.

3.2.2. Irrigation Information Detection and Irrigated Area Downscaling

Extracting the precipitation and SMAP time series data of the meteorological site spatial location
can not only be used to evaluate the sensitivity of the SMAP data to the precipitation response but
also to support the threshold setting of the irrigation signal detection. The irrigation signal detection
is based on the SMAP SM variation. It can be assumed that if the SM of SMAP is increased and
the grid has no significant precipitation, the increase in SMAP SM is caused by irrigation. Since the
amplitude increase in the SMAP original SM signal is significant, it is difficult to detect irrigation
by threshold segmentation and the original signal needs to be processed using the moving average
method. In the original SMAP data, due to the existence of signal noise, the SM is may be suddenly
reduced (previously without precipitation and irrigation), if this value is calculated with the SM at
the latter time, the identified irrigation signal is invalid. SM Value in that time need to be corrected.
To reduce the influence of SMAP SM data amplitude on the irrigation signal detection, a 5-point
moving average method is used to process the SMAP SM original signal. The 5-point moving average
not only ensures the amplitude of the original but also reduces the frequent fluctuations in the original
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signal. Sun et al. [49] compiled the water requirement for different growth stages of WW in the NCP.
In this paper, the daily precipitation of >4 mm was used as the threshold for effective precipitation
(referenced by Sun et al.). In this study, the irrigation identification results of the grid were binarized
(irrigation is 1, no irrigation is 0).

By accumulating the binarized daily irrigation identification results, the frequency of irrigation in
the WW planting region can be obtained. Notably, the irrigation frequency of a grid may be higher
than 6 times because the grid (9 km × 9 km) cannot be completed irrigated in one day. After integrating
the spatial distribution of the irrigation intensity and the WW planting area, the irrigated area with
the irrigation intensity identification was finally obtained. However, the accuracy of the irrigated
area recognition results based on a single SMAP data source does not meet the general application
requirements. By introducing the previously extracted WW spatial distribution, the downscaled results
of irrigation intensity were obtained from the SMAP irrigation intensity results without the influence
of non-irrigation pixels (such as rainfed crops and city). The mathematical expression of the method in
this section is as follows:

ISi, j = SMi, j > T6 and Prei, j < EPre (4)

IIi, j =

∑t
1 ISi, j

max
(∑t

1 ISm,n
) (5)

IIdownscale =

{
IIi, j, WW = 1
0, WW = 0

(6)

where i and j represent the pixels of the ith row and jth column, respectively; IS is the irrigation signal;
SM is the soil moisture derived from SMAP; T6 is the threshold for soil moisture increase; Pre and EPre
represent precipitation and effective precipitation, respectively; II is the irrigation intensity; t is the total
number of days in the study period; max

(∑t
1 ISm,n

)
represents the maximum value of the accumulated

value of the irrigation signal over the entire event range; and IIdownscale is the downscaled irrigation
intensity. In equation 6, the WW spatial distribution and the irrigation intensity image need to be
calculated. If the WW spatial distribution image pixel value is 1, the IIdownscale pixel value is assigned
as the irrigation intensity value. The irrigated area is calculated as the area of the pixel where the
irrigation intensity is greater than zero. The algorithm implementation in this section still needs to use
the arcpy function based on python 2.7.

3.2.3. Validation and Consistency Analysis

The results of the irrigation signal detection have been validated, and the uncertainty in the
irrigated area downscaling has also been analyzed. First, the detection results of the irrigation signal
are based on the irrigation record. Since the SMAP SM time series data in this paper used the 5-point
moving average method, if the detected WW irrigation signal is different from the irrigation record in
three days, the result is correct. Simultaneously, if the non-WW planting area also detects the irrigation
signal, it is necessary to reset the irrigation signal detection threshold according to the irrigation signal
frequency. The equation for the validation of irrigation timing is as follows:

Accuracy =
( CDet

ADet + WRec

)
∗ 100% (7)

OA = avg(Accuracy1 + Accuracy2 + . . .+ Accuracyl) (8)

where Accuracy is the sample validation accuracy; OA is the overall accuracy and l indicates the total
number of validation samples; CDet indicates the number of days that were correctly detected in the
irrigation record; ADet represents the number of days for all irrigation detected results; and WRec is
the number of days that have not been detected in the irrigation record.
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Second, when using the WW data extracted by MODIS to downscale the SMAP irrigation signal
detection results, whether the growth of WW covered by one SMAP pixel is consistent must be
considered. The selection strategy for the consistent analysis of WW growth is to establish samples
in four corners and center points covered by one SMAP pixel as shown in Figure 4. The NDVI daily
signal extracted from the samples was subjected to upper envelope processing [23], and the signal
was divided according to the growth stage of WW and the change in SM. By counting the number of
samples from the consistent growth of WW, the consistency analysis results of WW growth covered by
one SMAP pixel were obtained. The consistency analysis results are calculated as follows:

P =
(RG + J

10

)
∗ 100% (9)

where P is the percentage of growth consistency of WW; RG and J are the number of consistent samples
of WW growth in the returning green and jointing stages, respectively; and 10 is the number of samples
for all these two stages. Five growth consistency samples can be obtained for each growth stage
(corresponding to the red sample point), and 10 consistency analysis samples can be obtained for the
two stages of the returning green and jointing stages.

Figure 4. Sample maps. Red triangles and blue points are used to extract the SMAP SM time series
signals from different crops; red points are used to extract the winter wheat NDVI time series signal
and then compare the consistency of winter wheat growth covered by one SMAP pixel.

4. Results and Validation

4.1. Irrigation Signal Detection

Taking four meteorological stations as examples, the time series of NDVI (8-day maximum
synthesis), ET (8-day), precipitation and SM from 2015 to 2017 were plotted in Figure 5. Comparing
the time series data of the four meteorological stations, it was found that the vegetation coverage of
the Baoding and Nangong stations were rainfed crops and those of the Botou and Raoyang stations
were WW. An analysis of the time series changes of NDVI and ET showed that the meteorological
stations with WW vegetation cover (Botou and Raoyang) not only had more NDVI peaks than rainfed
crop stations (Baoding and Nangong) but also significantly higher ET from March to May. Time series
changes of precipitation and SM provide an important basis for irrigation signal detection. During the
main growth period of WW (March to May), Botou and Raoyang stations were affected by irrigation
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and still maintained high SM without precipitation. Simultaneously, the SM observed in the WW
growing season was more stable and higher than that of the non-irrigated crops.

Figure 5. NDVI (8-day maximum synthesis), ET (8-day), precipitation (daily) and SM (daily) time
series variations. (a) Nangong, (b) Baoding, (c) Botou and (d) Raoyang meteorological stations; and
VSM means volume of soil moisture. The land cover at Nangong and Baoding stations was rainfed
crops, and the land cover at Botou and Raoyang was winter wheat.

Using the 5-point moving average method for statistical time series SM results, which can reduce
the influence of abnormal points on the irrigation signal detection. The smoothed SM results are shown
in Figure 6. Figure 6a Changes in SM (blue lines) and effective precipitation events (green lines) in WW
samples, and the statistical WW irrigation time is also plotted (Triangle point). Figure 6b Changes in
SM and effective precipitation events for rainfed crops. The figure can reflect the response relationship
between SM and precipitation, at the same time, by comparing the SM curves of different crops, it can be
found that show the WW pixels have a more obvious SM increase than rainfed crop pixels. Comparing
WW samples with rainfed crop samples, it was found that both had an increasing trend in SM before
the first recorded irrigation. The slowly increasing trend in SM under no precipitation conditions may
be caused by seasonal and vegetation water content changes [31]. However, the increasing trend in
WW samples with different spatial locations was different before the first irrigation stage. Due to
the difference in temperature, the irrigation time was different. The SM of the WW sample in the
southern region increased significantly compared to the WW samples in the northern region (top
line in Figure 6a is the southern region WW sample, and the bottom is the northern region). Both
WW samples and rainfed crop samples have significant SM increase feedbacks under effective rainfall
events. The difference is that irrigation events will also significantly increase SM without effective
rainfall, which is shown in Figure 6. Setting the threshold for SM increase without an effective rainfall
event can be used to detect irrigation signals in the WW region.
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Figure 6. Training samples of irrigation signal detection. (a) Winter wheat training samples, and
(b) rainfed crop training samples. The irrigation record is a summary of the irrigation records of
the main irrigation region in the study area and used as a reference for the water supply time for
winter wheat.

The irrigation signal detection results of WW and rainfed crops are shown in Figure 7a,b,
respectively. By setting the SM change threshold, the time when the SM was significantly increased
without effective precipitation is detected as the irrigation time (square point in Figure 7). In the
rainfed crop region, only one irrigation signal was detected in this region due to the setting of the SM
increase threshold. By comparing the SM trend of WW and rainfed crops, the SM trend in the WW
region was more obvious, and there was also a significant increase (it is affected by irrigation) in SM
when there was no precipitation. The SM trend in the rainfed crop region is more stable. Under the
same precipitation conditions, the SM increase in the rainfed crop region is lower than that in the WW
region. According to the results of WW irrigation signal detection, the irrigation frequency was higher
from mid-February to mid-March. Due to the high frequency of precipitation in April and May, the
irrigation frequency is lower than in February and March. Additionally, in the early WW growth stage
(turning green and jointing), the main irrigation water source in the study area is surface water, and
the amount of irrigation water will be more than that in the middle and late growth stages of WW.
For different study areas, the setting of effective precipitation can be stricter, which may reduce the
false detection of irrigation signals. Notably, the results of irrigation signal detection in this paper
were large-scale surface water irrigation signals. Due to the small amount of irrigation water and the
dispersion of irrigation areas, SMAP pixels do not easily reflect changes in SM amplitude caused by
groundwater irrigation.
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Figure 7. Irrigation signal detection results. (a) WW sample detection result and (b) RF samples
detection result. The time corresponding to the square mark is the irrigation time, and the time
corresponding to the circle mark is the effective rain time.

4.2. WW Extraction Results and Irrigated Area

In this paper, irrigation signal detection training samples must refer to both WW and rainfed crops.
Figure 8a,b were obtained by daily NDVI using an 8-day maximum synthesis process, and Figure 8c
was the cumulative ET from early March to early May. According to the crop growth phenology
of the study area, only the WW crop in the study area showed obvious vegetation characteristics
in March and early April. Therefore, most of the green areas in Figure 8a characterize the spatial
distribution of WW. Since WW is already irrigated, the cumulative ET is significantly higher than that
of other crops. Combined with the cumulative ET in Figure 8c, WW pixels with higher precision can
be extracted. The vegetation characteristics of rainfed crop pixels appeared later than that of WW, and
the cumulative ET was significantly lower than that of WW.

The normalized results of the cumulative irrigation detection signal are downscaled as shown in
Figure 9a, wherein all blue areas indicate the spatial distribution of irrigated WW and blue shades
indicate the intensity of irrigation. Downscaling normalization results eliminates the effects of
non-irrigated pixels and directly expresses the spatial distribution of WW. Figure 9b,c are the results of
the irrigated area provided by GIAM and GRIPC, respectively. The largest irrigated area is shown
in Figure 9c because the data are classified into only four categories for agricultural areas, and the
irrigation area cannot be effectively distinguished, whereas the irrigation area of the two crop rotations
is shown in Figure 9b, which is close to the irrigation area identified in this paper. In recent years,
due to the problem of overexploitation of groundwater in the NCP, many regions no longer plant
high-water-consumption crops, such as WW, which results in Figure 9a irrigated areas being less than
that of the GIAM data. Compared with the traditional irrigated area identification results, the proposed
method can also reflect the irrigation intensity of the study area.
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Figure 8. Sample selection based on MODIS NDVI and ET: (a) MODIS NDVI of DOY (day of year)
89-97, (b) MODIS NDVI of DOY 116-124, (c) MODIS ET accumulate from DOY 65-129.

Figure 9. Irrigated area distribution in the study area. (a) shows the downscaled irrigated area and
irrigation intensity results, (b) shows the irrigated area from GIAM, and (c) shows the irrigated area
from GRIPC.

4.3. Validation and Growth Consistency Analysis

The detection results of irrigation signals in this paper will be validated from two aspects:
1) Validate the time of irrigation according to irrigation record; 2) count the consistent samples of WW
growth and validate the effectiveness of the irrigation signal detection result.

In Table 2, the timing of the irrigation signal detection is compared to the timing of the irrigation
records. The irrigation detection accuracy of the WW samples WW 1, WW 2, WW 3, and WW 4
used for validation were 50.00%, 100.00%, 75.00%, and 83.33%, respectively. It should be noted this
irrigation record corresponds to two detection dates, with the irrigation record recorded for two
days to calculate the single sample accuracy validation. Irrigation signals were also detected in the
rainfed crop samples, which were added as errors to the calculation of the overall irrigation signal
detection accuracy. The overall accuracy of the irrigation timing detection in this paper was 77.08%.
The calculation of overall accuracy must consider the detection error of the rainfed crop region.

Since WW presents significant NDVI changes in the returning green and jointing stages and less
precipitation during this period, little effect on WW growth is observed. Therefore, the returning
green and jointing stages of WW are selected as the key period of growth consistency analysis. WW
showed more significant growth consistency in the early stage of returning green and jointing than
in other growing stages. The irrigation records show that the irrigation water used in the returning
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green and jointing stages is surface water, and the irrigation water in other growth stages is irrigated
groundwater. Surface water irrigation is a unified supply for water resource management departments,
and groundwater irrigation is privately accessible to farmers. Different irrigation times are the main
reason for the inconsistency in WW growth. WW is irrigated by surface water during these two growth
stages, and surface water irrigation can cover a wide range of WW regions. Irrigation caused an
increase in the SMAP pixel value (SM), which was used to identify an irrigation pixel. Due to the low
spatial resolution of SMAP data, the consistency of WW growth under the coverage of one SMAP
pixel in this study area must be discussed. If most of the WW covered by one SMAP pixel shows a
consistent increase in the NDVI, then the spatial distribution of WW is effective for downscaling the
irrigation signal. Conversely, if the increase in the NDVI for most WW (covered by one SMAP pixel) is
inconsistent, then the irrigation signal identified by the SMAP pixel cannot effectively express WW
growth. In Figure 10, SM, NDVI changes (after upper envelop) and irrigation time for different SMAP
samples were plotted. Figure 10a–d correspond to Validate WW1, Validate WW2, Validate WW3 and
Validate WW4 in Figure 7a, respectively.

Table 2. Overall accuracy of the irrigation timing detection results.

WW 1 WW 2 WW 3 WW 4 RF 1 RF 2 RF 3
Rec Det Rec Det Rec Det Rec Det Rec Det Rec Det Rec Det

Dates

2/26 2/23 2/26 2/26 / 3/3 / / / /
3/13 2/25 3/13 3/14 2/26 2/27 / / / / / /

3/13 3/14
2/24

2/27 4/15 4/16 3/3 / / / / / /
3/26 3/27 3/12 5/10 5/10 3/14 3/14 / / / / / /

3/31 3/13 4/10 4/10 / / / / / /
4/10

3/12
3/14 5/10 5/10 / / / / / /

5/11 5/12 / / / / / /

Accuracy 50.00% 100.00% 75.00% 83.33%

Overall accuracy 77.08%

Det: irrigation detection result. Rec: irrigation records. Units marked in green indicate that the detected irrigation
date matches the recorded irrigation date, and units marked in orange indicate the detection irrigation date does not
match the recorded irrigation date.

Figure 10. SM, NDVI changes (after upper envelop) and irrigation time for different SMAP samples.

According to the NDVI variation treatment method shown in Figure 10, 55 NDVI samples covered
by 11 SMAP WW samples were validated for WW growth consistency. The number of samples with
same increase trend of WW NDVI in the returning green and jointing stages was counted separately.
For example, at the time of the returning green stage, the simultaneous increase in the NDVI indicates
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consistency among the WW growth samples, and vice versa. By counting the number of consistent
WW samples covered by different SMAP pixels, the percentage of WW growth consistency covered
by SMAP pixels can be calculated, and the results are shown in Table 3. In Table 3, the ratio of the
consistent growth of WW covered by SMAP pixels is greater 70%, and in some regions, it can reach
100%. The overall consistency result reached 83%, and the results show that the irrigated area after
downscaling can effectively express the true WW irrigation situation.

Table 3. Statistical results of the winter wheat sample consistencies.

WW1 WW2 WW3 WW4 WW5 WW6 WW7 WW8 WW9 WW10 WW11

RG 3 5 4 2 3 5 5 4 3 5 4
J 4 4 4 5 5 5 5 4 4 3 5
P 70.00% 90.00% 80.00% 70.00% 80.00% 100.00% 100.00% 80.00% 70.00% 80.00% 90.00%

OA 82.72%

RG: returning green stage; J: jointing stage; P: percentage; OA: overall accuracy.

5. Discussion

5.1. Comparison with Other Studies

Lawston et al. [33] proposed a method for detecting irrigation signals based on SMAP data. In this
method, dates are first selected during the crop growing season and then the characteristics of SM
are compared at irrigated and non-irrigated points. Finally, the method uses time integrated and SM
normalized metrics of SM and precipitation to detect irrigation signals. According to the method, the
precipitation and SM processing results are obtained, as shown in Figure 11a,b. Since this method
does not deduct the effect of precipitation from the SM changes, in the southern part of the study
area, sufficient precipitation affects the detection of irrigation signals. Simultaneously, the detection
results of the proposed method are normalized, which is more conducive to the comparison of the two
methods. In Figure 11, the amplitude change in (c) is more obvious than (d), and some obvious regions
in the calculation results are marked. Region 1 contains two large reservoirs adjacent to the Taihang
Mountains. Region 2 is the southern part of Beijing. Region 4 is a large wetland named Baiyangdian.
The type of underlying surface may affect the monitoring of time series SM changes. Notably, region 3
is the main irrigation area in the southern part of the Hebei Province. However, the irrigation signal
for this irrigated area is not significant in (d). Therefore, the method proposed in this paper is more
suitable for irrigation signal detection in the study area.

The method proposed in this paper can acquire daily irrigation signal detection result, so the
research can describe the irrigated information in the study area in more detail. In order to display
the irrigation details more abundantly, the monthly irrigation signals were accumulated to acquire a
monthly distribution of WW irrigation (as shown in Figure 12). At the end of February, the southern
part of the study area warmed up, and the irrigated area of WW was mainly concentrated in the
southern part. In March, a wide range of WW was irrigated, and irrigation in April and May was
concentrated in the central and western regions. Compared with existing studies, Chen et al. statistically
analyzed the climate distribution characteristics of WW growing season in the NCP for many years,
which is consistent with the monthly spatial distribution of irrigation in this paper [50]. Yang et al.
collected information on crop planting and irrigated area in the NCP for many years, and acquired
crop and irrigation spatial distribution characteristics in this region [51]; the results of Yang’s study
are similar to the results acquired in this paper, but due to the change of crop pattern in the eastern
region, inconsistencies have been caused. Overall, the results of this paper are consistent with existing
research findings.



Remote Sens. 2019, 11, 2390 16 of 20

Figure 11. Comparison of the method proposed in this paper with the time-integrated and SM
normalized irrigation signal detection methods. (a) Accumulated PRE and normalized result,
(b) accumulated SM and normalized result, (c) irrigation intensity calculated by this paper proposed
method, and (d) time-integrated and SM normalized irrigation signal detection methods. Both
normalized results and irrigation intensity are dimensionless variables.

Figure 12. Spatial distribution of winter wheat irrigated area.

In the study of irrigated area extraction without considering SM changes, most of the research
extraction methods are based on time series vegetation index changes and supervised classification
to identify irrigated areas [13,34,41]. These methods for identifying irrigated areas through optical
remote sensing datasets were based on identifying the type of crop to distinguish whether the area
is irrigated [52]. The common advantage of these methods is that they can obtain a high resolution
crop spatial distribution, and the accuracy can be increased as the spatial resolution of remote sensing
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images increases, and validated in many areas [16]. Based on the SMAP data extraction irrigation
signal, the spatial distribution of crops with high spatial resolution is was introduced as irrigation
reference area, which not only maintain irrigation time and frequency information, but also increases
precision of SMAP data recognition irrigated area.

5.2. A Rational Discussion of the Irrigation Signal Detection Model

The establishment of the irrigation signal detection model in this paper was based on irrigation
records and SMAP SM data. Since the SM change data in the irrigation record is measured every
10 days, the data does not express time-continuous SM variations, so the SMAP SM data is not
compared with the in-situ data. However, validation of SMAP SM data and irrigation-induced SM
increase researches can demonstrate that variations in SMAP SM data can be used to establish irrigation
signal detection models. A validation study of SMAP SM data has been described in the first section,
and this section will discuss the relationship between irrigation and SM variation.

Chen et al. [23] analyzed the continuous variation of SM before using the MODIS Greenness
Index to detect irrigation signals in Gansu Province. Combined with irrigation and precipitation
records, it was found that the sudden increase of SM generally originated from irrigation and effective
precipitation. At the same time, the irrigation time was estimated using the continuous SM variation
data in year 2016. Under the condition of no in-situ SM data, Lawston et al. [33] obtained the SMAP
SM variation of different crop types based on the location information of irrigation and rainfed crops,
and according this, they extracted the irrigated area of many regions in the United States. Is the
phenomenon of SM sudden increase caused by irrigation also obvious in the NCP region? Some studies
based on the effects of different irrigation patterns on WW yield provide a reliable basis. Wang et al. [53]
collected SM variation in different irrigation patterns of winter wheat. The data show that although
the SM (soil depth 0–80 cm) covered by WW in drip irrigation is slightly lower than level-basin, there
is obvious SM increase after WW irrigation. Zia et al. [54] collected more detailed time series SM
variation data (soil depth 10 cm and 40 cm); at the soil depth of 10 cm, irrigation will cause significant
SM increase, while at 40cm, irrigation will maintain a higher level of SM, and the sudden increase is
not significant. In this study, when the in-situ SM data is insufficient, the SMAP SM data can be used
to analyze the SM variation characteristics of WW and rainfed crops. Referring to number of studies
on the relationship between irrigation and SM response, this paper suggests that irrigation records and
SM increase can be used to detect irrigation signals in agricultural areas.

It should be noted that the thresholds in the irrigation signal detection model proposed in this
paper are not universal. For example, in the study area of this paper, there are significant differences in
SM increase caused by different irrigation patterns. In areas with more complicated irrigation patterns,
the irrigation pattern of sample points needs to be considered. In addition, the SMAP SM data of
9 km resolution is acquired by 36 km data downscaling, and the uncertainty of scale conversion may
also affect the application of the model. If necessary, consider using multiple filtering methods for
data optimization.

6. Conclusions

Based on multisource remote sensing data, including SMAP, MODIS, and an irrigation map,
the 5-point moving average method was used to detect irrigation signals in southern Hebei. Then,
irrigation record data were used to validate the accuracy of the irrigation signal detection results.
The accuracies of the four WW samples used for validation are 50.00%, 100.00%, 75.00%, and 83.33%,
and the overall accuracy is 77.08%. The consistency analysis of 55 WW growth samples showed that
the growth consistency of WW reached 82.72% in two large-scale surface water irrigation areas. Based
on a consistency analysis, the downscaling method can be used to downscale the WW irrigation signal
detected by the SMAP data. The proposed irrigation signal detection and downscaling method are
more suitable for the detection of large-scale surface water irrigation signals. Limited by the spatial
resolution of SMAP data and continuous in situ measured SM data, small-scale groundwater irrigation
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signal detection is difficult to establish. In future research, small-scale groundwater irrigation signal
detection will be further studied.
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