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Abstract: The southern part of the Hebei Province is one of China’s major crop-producing regions. 
Due to the continuous decline in groundwater level, agricultural water use is facing significant 
challenges. Precision agricultural irrigation management is undoubtedly an effective way to solve 
this problem. Based on multisource data (time series soil moisture active passive (SMAP) data, 
Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index 
(NDVI) and evapotranspiration (ET), and meteorological station precipitation), the irrigation signal 
(frequency, timing and area) is detected in the southern part of the Hebei Province. The SMAP data 
was processed by the 5-point moving average method to reduce the error caused by the uncertainty 
of the microwave data derived SM. Irrigation signals can be detected by removing the precipitation 
effect and setting the SM change threshold. Based on the validation results, the overall accuracy of 
the irrigation signal detection is 77.08%. Simultaneously, considering the spatial resolution 
limitation of SMAP pixels, the SMAP irrigation area was downscaled using the winter wheat area 
extracted from MODIS NDVI. The analytical results of 55 winter wheat samples (5 samples in a 
group) showed that winter wheat covered by one SMAP pixel had an 82.72% growth consistency in 
surface water irrigation period, which can indicate a downscaling effectiveness. According to the 
above statistical analysis, this paper considers that although the spatial resolution of SMAP data is 
insufficient, it can reflect the change of SM more sensitively. In areas where the crop pattern is 
relatively uniform, the introduction of high-resolution crop pattern distribution can be used not 
only to detect irrigation signals but also to validate the effectiveness of irrigation signal detection by 
analyzing crop growth consistency. Therefore, the downscaling results can indicate the true winter 
wheat irrigation timing, area and frequency in the study area. 
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1. Introduction 

Winter wheat is the main crop in the North China Plain (NCP). Due to the high irrigation 
demand of winter wheat, more than 70% of the irrigated water resources are used for winter wheat 
irrigation every year [1]. The increasing population has led to a corresponding increase in the demand 
for agricultural, industrial and domestic water in the NCP. The surface water resources are 
insufficient, and groundwater has become the main source of water for the NCP [2]. In recent 
decades, the overexploitation of groundwater has led to a significant decline in groundwater levels, 
which increases not only environmental problems but also the pressure on agricultural food 
production [3,4]. Groundwater is the main source of water for NCP agriculture irrigation. Long-term 
dependence on groundwater for agricultural irrigation has resulted in groundwater over-
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exploitation, and agricultural water irrigation needs to be reduced; however, the sustainable of food 
crop production must also be ensured [5,6]. Timely and effective monitoring of irrigation water is of 
great significance for agricultural water management and water resources protection. The irrigation 
signal includes the time, frequency and area of irrigation. Irrigation time can be used to dynamically 
correct irrigation schedules, while irrigation frequency and area can be used for the estimation and 
dynamic monitoring of agricultural irrigation water use [7–10]. This study prepares to establish a 
model that can be used to detect irrigation signals and dynamically acquire irrigation information. 
The results of the irrigation signal will be used for the dynamic monitoring of agricultural irrigation 
water to achieve refined management of agricultural irrigation. 

With the continuous development of remote sensing technology, more remote sensing data can 
be used for irrigation information detection [11–15]. Compared with traditional agricultural statistical 
methods, remote sensing has a wide range of multifrequency, high spatial and temporal resolution 
advantages and has been widely used in agricultural management [16–18]. Representative data 
sources include Moderate Resolution Imaging Spectroradiometer (MODIS), which provides 250 m, 
500 m and 1 km resolution daily surface reflectance data. The richness of time series and 
improvement in remote sensing data spatial resolution has greatly improved the accuracy of irrigated 
area identification [19]. In recent research, the Normalized Difference Vegetation Index (NDVI) has 
been extensively used as an effective indicator for irrigated area recognition based on optical remote 
sensing data [19–21]. An analysis of the time-varying pattern of NDVI is the primary method for 
identifying irrigated and non-irrigated areas. In particular, wheat and maize are affected by 
irrigation, and their NDVIs will appear to be higher than other vegetation [20,22]. Although the 
identification method for irrigated areas has been comprehensive, this irrigated area extraction 
method based on optical remote sensing data is mostly used for long-term irrigated area monitoring 
to analyze trends in irrigated areas over multiple years. Chen et al. [23] proposed a method for 
detecting irrigation extent, timing and frequency based on MODIS and Landsat remote sensing data, 
which is an important irrigation property for understanding the sustainability of water resources in 
arid and semiarid regions. The irrigation signal detection method based on the visible vegetation 
index must model the daily scale data, and this method is more suitable for irrigation signal detection 
in regions with less cloud cover. Remote sensing images of areas with more clouds are likely to miss 
the critical period of irrigation signal detection due to cloud pollution. Moreover, in addition to the 
influence of image quality, the response of vegetation to irrigation is lagged, which increases the 
uncertainty of irrigation timing detection. 

In addition to the method of identifying the irrigated area by using vegetation index information, 
the change in the wetness index can also be used to identify the irrigation signal [24]. Based on the 
SM being higher in the irrigated area than in the non-irrigated area, some researchers have identified 
irrigated areas based on different principles. Based on the MODIS enhanced vegetation index (EVI) 
and land surface water index (LWSI) ratio method, Peng et al. [25] introduced the variable EVI/LWSI 
threshold function to improve the detection ability of this method in different rice crops under mixed 
rice crop patterns (single-season rice, early-season rice, and late-season rice). Abuzar et al. [26] used 
vegetation and thermal thresholds derived from Landsat and Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) data to detect the irrigated area in an Australian 
irrigation district based on the soil temperature in the irrigated area being lower than that in the non-
irrigated area. Although different researchers use SM information to detect irrigated area information 
from different aspects, they do not use SM indicators because optical and thermal infrared remote 
sensing data cannot directly obtain SM information. 

Active and passive microwave satellites have proven to be effective tools for retrieving soil water 
variations at regional and global scales [27–29]. NASA’s Soil Moisture Active Passive (SMAP) 
satellite, launched on 31 January 2015, provides a new source of data for near-surface (0–5 cm) soil 
water monitoring on a global scale. Colliander et al. [30] validated the SMAP surface SM product 
through the core validation site. The results indicate that the SMAP radiometer-based SM data 
product meets the expected performance of 0.04 m3/m3 volumetric SM (unbiased root mean square 
error) and that the combined radar-radiometer product is close to its expected performance of 0.04 
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m3/m3. Chan et al. and Zhang et al. [11,31] evaluated the results of different SMAP products in 
different regions and obtained similar conclusions to those of Colliander. SMAP has more 
information improvements than previous SM satellites, which has raised interest in whether SMAP 
can improve irrigation monitoring [32]. Subsequently, Lawston et al. [33] explored the use of SMAP 
data in identifying irrigation areas and timing in the Sacramento Valley, San Luis Valley and 
Columbia River Valley. However, the study did not identify the irrigation timing in the irrigated 
area. Since the detection of the irrigated area is a combination of changes in SM over a period of time, 
the time scale is the entire period of the crop. Compared with optical/thermal infrared methods, 
SMAP’s method of detecting irrigated areas has unique advantages in terms of temporal resolution 
and ability to directly acquire SM [34]. The SMAP data spatial resolution is a major limiting factor 
that affects its use. 

Obtaining irrigation time, area and frequency will help estimate irrigation water volume and 
provide data support for agricultural irrigation management. Despite having the low spatial 
resolution, SMAP provides high temporal resolution SM products. To address the spatial resolution 
issues, this paper will be studied in the following three aspects: 1) Based on SMAP and meteorological 
data, the irrigation signal in the study area was detected, which solved the problem of optical data 
not being applicable in cloudy regions; 2) MODIS remote sensing data were used to downscale the 
detection results to solve the low spatial resolution problem of SMAP data; and 3) through an analysis 
of the consistency of winter wheat growth covered by SMAP pixels, the SMAP data effectiveness in 
downscaling the winter wheat irrigation results in this study area was evaluated. 

2. Study Area 

The region of interest in this paper is located in the southern part of the Hebei Province and 
belongs to the NCP. The boundaries of the study area are city administrative boundaries, including 
Shi Jiazhuang, Baoding, Langfang, Hengshui, Cangzhou, Xingtai and Handan, with a total area of 8.9 
× 104 km2 (as shown in Figure 1). Although precipitation in the study area is not scarce, the 
distribution of precipitation during the year is extremely uneven. The study area is dominated by a 
temperate monsoon climate with mean annual precipitation of 472.7–889.2 mm, and 70% of the 
annual precipitation occurs between June and September [35]. Under the irrigation conditions of the 
study area in recent years, the main crop pattern is the winter wheat-summer maize double crop 
rotation. Winter wheat and summer maize are also the main irrigated crops in this region [36]. The 
lower amount of precipitation in spring is not enough to provide sufficient water for winter wheat 
growth, and groundwater irrigation has been the main irrigation method for winter wheat and 
summer maize for a long time. Winter wheat is generally irrigated 4–5 times, and precipitation has 
little effect on the number of irrigations due to the severe shortage of precipitation during the winter 
wheat growing period. Summer maize is usually irrigated before planting, and if effective 
precipitation has occurred before planting and the soil moisture meets the sowing requirements, the 
crop will not be irrigated during the growing period. The Middle Route of the South-to-North Water 
Transfer Project (MSWTP) was launched at the end of 2014, and this project provided a new source 
of water for agricultural irrigation in the NCP [37]. 



Remote Sens. 2019, 11, 2390 4 of 21 

 

 
Figure 1. Study area and meteorological sites locations and the spatial distribution of SM stations. 

3. Materials and Methods 

The flow chart (shown in Figure 2) of this paper includes the processing of collected data (Section 
3.1), selection of samples (Section 3.2.1), the application of algorithms (Section 3.2.2) and validation 
of accuracy (Section 3.2.3). 

 
Figure 2. Flow chart for this study. Here, 5-point Mov Avg represents the 5-point moving average 
and Avg and Std represent the average and standard deviation, respectively. The irrigation Acc 
accumulates as a result of the irrigation signal. 

3.1. Data Collection and Pre-Processing 

3.1.1. SMAP 

SMAP is an orbiting observatory capable of measuring the amount of water in the top 5 cm of 
soil at global scales. To meet the various needs of soil moisture monitoring, the SMAP mission uses 
an L-band radar and an L-band radiometer for concurrent, coincident measurements integrated into 
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a single observational system and ultimately produce a variety of spatial and temporal resolution SM 
products [38]. Since the successful launch of SMAP in January 2015, it has provided SM products of 
many levels worldwide. After validating the accuracy of SMAP products, the SMAP products meet 
the mission requirements and can also be used to assess hydrologic processes [30,31,39]. In this study, 
considering the spatial and temporal resolution of the SMAP products required for the study area, 
SMAP enhanced L3 radiometer global daily 9 km EASE-grid soil moisture version 1 was used as the 
final data source [40]. The study used the SMAP SM datasets from the end of Feb to the end of May 
(2015–2018) corresponding to the winter wheat irrigation period in study area. Although the SMAP 
dataset can provide daily SM products, due to satellite orbits, SM products do not cover the spatial 
extent of the study area every day due to satellite orbits. To select the SMAP data that can completely 
cover the study area, 8 control points are used to filter the data that meet the requirements. The eight 
control points are evenly distributed at the vertices of the study area boundary, and the judgement 
equation is as follows: 𝑋௜ = ൜1,  0 < 𝑉௜ < 10, 𝑉௜ = 𝑛𝑢𝑙𝑙  (1)

𝐽 = ቊ 𝑅, ∑ 𝑋௜଼ ≥ 6𝐷, ∑ 𝑋௜଼ < 6  . (2)

where X is the judgement result of the SMAP pixel value (V) and null is no-data in this pixel, i is the 
number of the control point. If the value of the SMAP pixel is between 0 and 1, X = 1; and if the SMAP 
pixel value is null, then X = 0. J is the judgement result of whether the SMAP data are retained, and 
R and D represent the retention and deletion of SMAP data, respectively. If the sum of the 8-control 
point X ≥ 6, it indicates that SMAP data can cover a large area (more than 75% of the study area is 
covered) of the study area and this SMAP data is retained; if it less than 6, the data are deleted. The 
programming language for batch filtering, processing and extracting of SMAP data is python 2.7, and 
the arcpy function provided by ArcGIS 10.4 (Environmental Systems Research Institute in California) 
is also used. Regarding the extraction of pixel values in this paper, the “ExtractValuesToPoints” 
function in arcpy is used. 

3.1.2. MODIS 

MODIS provides researchers with stable, long time series global remote sensing data. Some 
global land use/land cover (LULC) datasets based on MODIS data have been generated [41,42]. 
MOD09GA and MOD16A2 provide daily surface reflectance with a spatial resolution of 500 m and 
evapotranspiration of 500 m every 8 days [43,44]. MOD09GA and MOD16A2 were used in this study 
for irrigated area downscaling, while the latter is based on 8-day synthetic data and does not require 
further processing. MOD09GA is daily surface reflectance data, and cloud pollution has a large 
impact on the use of data. First, the NDVI is calculated based on the MOD09GA dataset. 𝑁𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅𝐸𝐷𝑁𝐼𝑅 + 𝑅𝐸𝐷 (3)

where NIR and RED are the surface reflectance factors for the presented wavelengths. Second, the 8-
day maximum value composite (MVC) method was used for the daily NDVI time series dataset, and 
the method is to composite a new NDVI image by using the daily maximum value of NDVI within 8 
days of each pixel in the image as a valid pixel value [45]. This processing method reduces the impact 
of clouds on the dataset and keeps the time resolution of the two MODIS products consistent. The 
batch redefinition projection and raster attribute conversion of MODIS data are based on MRT 
(MODIS Reprojection Tool supported by NASA, referenced by Dwyer et al. [46]), and the maximum 
synthesis of the NDVI is based on MATLAB 2018b. 

3.1.3. Precipitation 

The National Meteorological Information Centre of China provides daily precipitation data 
(meteorology station) from 1961 to present [47]. There are 2472 meteorology stations in China, and 
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there are 7 meteorological stations in this study area. Daily precipitation data were collected from 
March 2015 to December 2018. Since precipitation data must be coordinated with SMAP data for 
irrigation information monitoring, the spatiotemporal resolution of the precipitation data must be 
processed. The daily precipitation data include statistical results for two periods (20:00–8:00 and 8:00–
20:00) in Beijing time. The current method for the L3_SM product is to use the nearest 6:00 AM local 
solar time criterion to perform Level 3 compositing [38]. The precipitation from 8:00–8:00 is summed 
as the daily precipitation, and the station data are interpolated into the grid data using the inverse 
distance weighting (IDW) method based on python 2.7. 

3.1.4. Irrigated Map 

A global irrigated area map (GIAM) and global rainfed, irrigated, and paddy cropland (GRIPC) 
were also collected in this study for irrigated area validation. Based on the unsupervised classification 
method, GIAM provides irrigated area recognition results with a spatial resolution of 1 km in the 
year 2000 [34]. GRIPC is the result of the decision tree method for the classification of MODIS data 
and the spatial resolution is 500 m in year 2005 [17]. 

3.1.5. In Situ SM Measurement Data and Irrigation Records 

There are 135 SM stations in the study area, and SM data are provided every 10 days (1st, 11th 
and 21st). The SM data measurement (oven-drying method) depths include 10 cm, 20 cm and 40 cm, 
and the measurement time is concentrated at 8:00 AM Beijing time. These sites also provide 
information on precipitation and irrigation times between measurements. The recorded irrigation 
data include areas of agricultural irrigation, irrigation crops, timing and volume. Although the 
recorded irrigation information is relatively abundant, the spatial scale is the agricultural irrigation 
region. The data collected in this study are shown in Table 1. Since this study only collected 
information on irrigation records in 2018, only the SM changes in 2018 were plotted during sample 
training and validation. 

Table 1. Datasets collected in this study. 

Data 
Source 

Temporal 
Resolution 

Spatial 
Resolution Time Period Data Access 

SMAP daily 9 km 
March 2015 to 
December 2018 

https://nsidc.org/data/SPL3SMP_
E/versions/2 

PRE daily site 
March 2015 to 
December 2018 

http://data.cma.cn/ 

MOD09GA daily 500 m 
March 2015 to 
December 2018 

https://ladsweb.modaps.eosdis.n
asa.gov/ 

MOD16A2 8-day 500 m March 2015 to 
December 2018 

https://ladsweb.modaps.eosdis.n
asa.gov/ 

Irrigated 
Map 

year 
1 km  
and 

500 m 

 
http://www.iwmi.cgiar.org/ 

https//dl.dropboxusercontent.co
m/u/12683052/GRIPCmap.zip 

Irrigation 
Records 

10-day site 
January 2018 to 
December 2018 

 

PRE: precipitation. 

3.2. Methods 

3.2.1. Established SMAP Training Samples for Winter Wheat and Rainfed Crops 

The selection of training samples is important before establishing a model of irrigation signal 
detection. Since the SMAP data have a low spatial resolution, the training samples should be selected 
to ensure that the surrounding crops are consistent. In this paper, samples were selected using a 
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combination of MODIS NDVI and MODIS ET. Since the winter wheat (WW) NDVI in the NCP was 
significantly higher than other crop in March, the spatial distribution of WW can be extracted based 
on the March NDVI data. However, this spatial distribution may include other vegetation with a 
higher NDVI (such as landscape forest), and ET is needed to improve the extraction accuracy of WW. 
Since March to April is the main irrigation period for WW, the cumulative ET value of WW is 
significantly higher than that of other vegetation during this period [48]. This indicates that the 
extraction accuracy of WW can be improved by adding ET as a limiting condition. Using these two 
features (NDVI and ET), the WW pixels can be extracted more accurately. WW and rainfed crop 
pixels were extracted by the decision tree model in Figure 3. 

 
Figure 3. Winter wheat and rainfed crops planting area extraction model. Where March NDVI and 
Mar-May ET represent the NDVI in March (May NDVI is similar to March NDVI) and cumulative 
amount of ET from March to May, respectively; DEM is the elevation information; and T is the 
threshold in different conditions. If the pixel value (such as NDVI and ET) satisfies the threshold, the 
pixel value is 1, and if it is not satisfied, the pixel value is 0. 

The selection of WW samples should be based on SM sites, and more irrigation information can 
be obtained. Rainfed crop samples should ensure that there are no irrigated crops nearby as much as 
possible, which can reduce the influence of surrounding crop irrigation on SM. Finally, 11 WW 
samples and 7 rainfed crop samples were established in the study area, 7 WW samples and 4 rainfed 
crop samples were used as training samples, and the remaining samples were used as validation 
samples. These samples are distributed from north to south and can reflect the difference in irrigation 
time of winter wheat under different latitude conditions. 

3.2.2. Irrigation Information Detection and Irrigated Area Downscaling 

Extracting the precipitation and SMAP time series data of the meteorological site spatial location 
can not only be used to evaluate the sensitivity of the SMAP data to the precipitation response but 
also to support the threshold setting of the irrigation signal detection. The irrigation signal detection 
is based on the SMAP SM variation. It can be assumed that if the SM of SMAP is increased and the 
grid has no significant precipitation, the increase in SMAP SM is caused by irrigation. Since the 
amplitude increase in the SMAP original SM signal is significant, it is difficult to detect irrigation by 
threshold segmentation and the original signal needs to be processed using the moving average 
method. In the original SMAP data, due to the existence of signal noise, the SM is may be suddenly 
reduced (previously without precipitation and irrigation), if this value is calculated with the SM at 
the latter time, the identified irrigation signal is invalid. SM Value in that time need to be corrected. 
To reduce the influence of SMAP SM data amplitude on the irrigation signal detection, a 5-point 
moving average method is used to process the SMAP SM original signal. The 5-point moving average 
not only ensures the amplitude of the original but also reduces the frequent fluctuations in the 
original signal. Sun et al. [49] compiled the water requirement for different growth stages of WW in 
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the NCP. In this paper, the daily precipitation of >4 mm was used as the threshold for effective 
precipitation (referenced by Sun et al.). In this study, the irrigation identification results of the grid 
were binarized (irrigation is 1, no irrigation is 0). 

By accumulating the binarized daily irrigation identification results, the frequency of irrigation 
in the WW planting region can be obtained. Notably, the irrigation frequency of a grid may be higher 
than 6 times because the grid (9 km×9 km) cannot be completed irrigated in one day. After integrating 
the spatial distribution of the irrigation intensity and the WW planting area, the irrigated area with 
the irrigation intensity identification was finally obtained. However, the accuracy of the irrigated area 
recognition results based on a single SMAP data source does not meet the general application 
requirements. By introducing the previously extracted WW spatial distribution, the downscaled 
results of irrigation intensity were obtained from the SMAP irrigation intensity results without the 
influence of non-irrigation pixels (such as rainfed crops and city). The mathematical expression of the 
method in this section is as follows: 𝐼𝑆௜,௝ = 𝑆𝑀௜,௝ > 𝑇଺ 𝑎𝑛𝑑 𝑃𝑟𝑒௜,௝ < 𝐸𝑃𝑟𝑒  (4)

𝐼𝐼௜,௝ = ∑ 𝐼𝑆௜,௝௧ଵmax൫∑ 𝐼𝑆௠,௡௧ଵ ൯ (5)

𝐼𝐼ௗ௢௪௡௦௖௔௟௘ = ൜𝐼𝐼௜,௝, 𝑊𝑊 = 10, 𝑊𝑊 = 0   (6)

where i and j represent the pixels of the ith row and jth column, respectively; IS is the irrigation signal; 
SM is the soil moisture derived from SMAP; T6 is the threshold for soil moisture increase; Pre and 
EPre represent precipitation and effective precipitation, respectively; II is the irrigation intensity; t is 
the total number of days in the study period; max൫∑ 𝐼𝑆௠,௡௧ଵ ൯ represents the maximum value of the 
accumulated value of the irrigation signal over the entire event range; and IIdownscale is the downscaled 
irrigation intensity. In equation 6, the WW spatial distribution and the irrigation intensity image need 
to be calculated. If the WW spatial distribution image pixel value is 1, the 𝐼𝐼ௗ௢௪௡௦௖௔௟௘ pixel value is 
assigned as the irrigation intensity value. The irrigated area is calculated as the area of the pixel where 
the irrigation intensity is greater than zero. The algorithm implementation in this section still needs 
to use the arcpy function based on python 2.7. 

3.2.3. Validation and Consistency Analysis 
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Figure 4. Sample maps. Red triangles and blue points are used to extract the SMAP SM time series 
signals from different crops; red points are used to extract the winter wheat NDVI time series signal 
and then compare the consistency of winter wheat growth covered by one SMAP pixel. 

The results of the irrigation signal detection have been validated, and the uncertainty in the 
irrigated area downscaling has also been analyzed. First, the detection results of the irrigation signal 
are based on the irrigation record. Since the SMAP SM time series data in this paper used the 5-point 
moving average method, if the detected WW irrigation signal is different from the irrigation record 
in three days, the result is correct. Simultaneously, if the non-WW planting area also detects the 
irrigation signal, it is necessary to reset the irrigation signal detection threshold according to the 
irrigation signal frequency. The equation for the validation of irrigation timing is as follows: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ൬ 𝐶𝐷𝑒𝑡𝐴𝐷𝑒𝑡 + 𝑊𝑅𝑒𝑐൰ ∗ 100% (7)

𝑂𝐴 = avgሺ𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦ଵ + 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦ଶ + ⋯ + 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦௟ሻ (8)

where Accuracy is the sample validation accuracy; OA is the overall accuracy and l indicates the total 
number of validation samples; CDet indicates the number of days that were correctly detected in the 
irrigation record; ADet represents the number of days for all irrigation detected results; and WRec is 
the number of days that have not been detected in the irrigation record. 

Second, when using the WW data extracted by MODIS to downscale the SMAP irrigation signal 
detection results, whether the growth of WW covered by one SMAP pixel is consistent must be 
considered. The selection strategy for the consistent analysis of WW growth is to establish samples 
in four corners and center points covered by one SMAP pixel as shown in Figure 4. The NDVI daily 
signal extracted from the samples was subjected to upper envelope processing [23], and the signal 
was divided according to the growth stage of WW and the change in SM. By counting the number of 
samples from the consistent growth of WW, the consistency analysis results of WW growth covered 
by one SMAP pixel were obtained. The consistency analysis results are calculated as follows: 𝑃 = ൬𝑅𝐺 + 𝐽10 ൰ ∗ 100% (9)

where P is the percentage of growth consistency of WW; RG and J are the number of consistent 
samples of WW growth in the returning green and jointing stages, respectively; and 10 is the number 
of samples for all these two stages. Five growth consistency samples can be obtained for each growth 
stage (corresponding to the red sample point), and 10 consistency analysis samples can be obtained 
for the two stages of the returning green and jointing stages. 

4. Results and Validation 

4.1. Irrigation Signal Detection 

Taking four meteorological stations as examples, the time series of NDVI (8-day maximum 
synthesis), ET (8-day), precipitation and SM from 2015 to 2017 were plotted in Figure 5. Comparing 
the time series data of the four meteorological stations, it was found that the vegetation coverage of 
the Baoding and Nangong stations were rainfed crops and those of the Botou and Raoyang stations 
were WW. An analysis of the time series changes of NDVI and ET showed that the meteorological 
stations with WW vegetation cover (Botou and Raoyang) not only had more NDVI peaks than rainfed 
crop stations (Baoding and Nangong) but also significantly higher ET from March to May. Time series 
changes of precipitation and SM provide an important basis for irrigation signal detection. During 
the main growth period of WW (March to May), Botou and Raoyang stations were affected by 
irrigation and still maintained high SM without precipitation. Simultaneously, the SM observed in 
the WW growing season was more stable and higher than that of the non-irrigated crops. 
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Figure 5. NDVI (8-day maximum synthesis), ET (8-day), precipitation (daily) and SM (daily) time 
series variations. (a) Nangong, (b) Baoding, (c) Botou and (d) Raoyang meteorological stations; and 
VSM means volume of soil moisture. The land cover at Nangong and Baoding stations was rainfed 
crops, and the land cover at Botou and Raoyang was winter wheat. 

Using the 5-point moving average method for statistical time series SM results, which can reduce 
the influence of abnormal points on the irrigation signal detection. The smoothed SM results are 
shown in Figure 6. Figure 6a Changes in SM (blue lines) and effective precipitation events (green 
lines) in WW samples, and the statistical WW irrigation time is also plotted (Triangle point). Figure 
6b Changes in SM and effective precipitation events for rainfed crops. The figure can reflect the 
response relationship between SM and precipitation, at the same time, by comparing the SM curves 
of different crops, it can be found that show the WW pixels have a more obvious SM increase than 
rainfed crop pixels. Comparing WW samples with rainfed crop samples, it was found that both had 
an increasing trend in SM before the first recorded irrigation. The slowly increasing trend in SM 
under no precipitation conditions may be caused by seasonal and vegetation water content changes 
[31]. However, the increasing trend in WW samples with different spatial locations was different 
before the first irrigation stage. Due to the difference in temperature, the irrigation time was different. 
The SM of the WW sample in the southern region increased significantly compared to the WW 
samples in the northern region (top line in Figure 6a is the southern region WW sample, and the 
bottom is the northern region). Both WW samples and rainfed crop samples have significant SM 
increase feedbacks under effective rainfall events. The difference is that irrigation events will also 
significantly increase SM without effective rainfall, which is shown in Figure 6. Setting the threshold 
for SM increase without an effective rainfall event can be used to detect irrigation signals in the WW 
region. 
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Figure 6. Training samples of irrigation signal detection. (a) Winter wheat training samples, and (b) 
rainfed crop training samples. The irrigation record is a summary of the irrigation records of the main 
irrigation region in the study area and used as a reference for the water supply time for winter wheat. 

The irrigation signal detection results of WW and rainfed crops are shown in Figure 7a,b, 
respectively. By setting the SM change threshold, the time when the SM was significantly increased 
without effective precipitation is detected as the irrigation time (square point in Figure 7). In the 
rainfed crop region, only one irrigation signal was detected in this region due to the setting of the SM 
increase threshold. By comparing the SM trend of WW and rainfed crops, the SM trend in the WW 
region was more obvious, and there was also a significant increase (it is affected by irrigation) in SM 
when there was no precipitation. The SM trend in the rainfed crop region is more stable. Under the 
same precipitation conditions, the SM increase in the rainfed crop region is lower than that in the 
WW region. According to the results of WW irrigation signal detection, the irrigation frequency was 
higher from mid-February to mid-March. Due to the high frequency of precipitation in April and 
May, the irrigation frequency is lower than in February and March. Additionally, in the early WW 
growth stage (turning green and jointing), the main irrigation water source in the study area is surface 
water, and the amount of irrigation water will be more than that in the middle and late growth stages 
of WW. For different study areas, the setting of effective precipitation can be stricter, which may 
reduce the false detection of irrigation signals. Notably, the results of irrigation signal detection in 
this paper were large-scale surface water irrigation signals. Due to the small amount of irrigation 
water and the dispersion of irrigation areas, SMAP pixels do not easily reflect changes in SM 
amplitude caused by groundwater irrigation. 
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Figure 7. Irrigation signal detection results. (a) WW sample detection result and (b) RF samples 
detection result. The time corresponding to the square mark is the irrigation time, and the time 
corresponding to the circle mark is the effective rain time. 

4.2. WW Extraction Results and Irrigated Area 

In this paper, irrigation signal detection training samples must refer to both WW and rainfed 
crops. Figure 8a,b were obtained by daily NDVI using an 8-day maximum synthesis process, and 
Figure 8c was the cumulative ET from early March to early May. According to the crop growth 
phenology of the study area, only the WW crop in the study area showed obvious vegetation 
characteristics in March and early April. Therefore, most of the green areas in Figure 8a characterize 
the spatial distribution of WW. Since WW is already irrigated, the cumulative ET is significantly 
higher than that of other crops. Combined with the cumulative ET in Figure 8c, WW pixels with 
higher precision can be extracted. The vegetation characteristics of rainfed crop pixels appeared later 
than that of WW, and the cumulative ET was significantly lower than that of WW. 
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Figure 8. Sample selection based on MODIS NDVI and ET: (a) MODIS NDVI of DOY (day of year) 
89-97, (b) MODIS NDVI of DOY 116-124, (c) MODIS ET accumulate from DOY 65-129. 

The normalized results of the cumulative irrigation detection signal are downscaled as shown 
in Figure 9a, wherein all blue areas indicate the spatial distribution of irrigated WW and blue shades 
indicate the intensity of irrigation. Downscaling normalization results eliminates the effects of non-
irrigated pixels and directly expresses the spatial distribution of WW. Figure 9b,c are the results of 
the irrigated area provided by GIAM and GRIPC, respectively. The largest irrigated area is shown in 
Figure 9c because the data are classified into only four categories for agricultural areas, and the 
irrigation area cannot be effectively distinguished, whereas the irrigation area of the two crop 
rotations is shown in Figure 9b, which is close to the irrigation area identified in this paper. In recent 
years, due to the problem of overexploitation of groundwater in the NCP, many regions no longer 
plant high-water-consumption crops, such as WW, which results in Figure 9a irrigated areas being 
less than that of the GIAM data. Compared with the traditional irrigated area identification results, 
the proposed method can also reflect the irrigation intensity of the study area. 

 
Figure 9. Irrigated area distribution in the study area. (a) shows the downscaled irrigated area and 
irrigation intensity results, (b) shows the irrigated area from GIAM, and (c) shows the irrigated area 
from GRIPC. 

4.3. Validation and Growth Consistency Analysis 
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The detection results of irrigation signals in this paper will be validated from two aspects: 1) 
Validate the time of irrigation according to irrigation record; 2) count the consistent samples of WW 
growth and validate the effectiveness of the irrigation signal detection result. 

Table 2. Overall accuracy of the irrigation timing detection results. 
 WW 1 WW 2 WW 3 WW 4 RF 1 RF 2 RF 3 
 Rec Det Rec Det Rec Det Rec Det Rec Det Rec Det Rec Det 

Dates 

 2/26 
2/24 

2/23  2/26 
2/26 

2/26 / 3/3 / / / / 

3/13 3/13 2/25 3/13 3/14 2/27 / / / / / / 
3/14 2/27 4/15 4/16  3/3 / / / / / / 

3/26 3/27 
3/12 

3/12 5/10 5/10 3/14 3/14 / / / / / / 
 3/31 3/13   4/10 4/10 / / / / / / 

4/10  3/14   5/10 5/10 / / / / / / 
  5/11 5/12     / / / / / / 

Accuracy 50.00% 100.00% 75.00% 83.33%    

Overall accuracy 77.08% 

Det: irrigation detection result. Rec: irrigation records. Units marked in green indicate that the 
detected irrigation date matches the recorded irrigation date, and units marked in orange indicate the 
detection irrigation date does not match the recorded irrigation date. 

In Table 2, the timing of the irrigation signal detection is compared to the timing of the irrigation 
records. The irrigation detection accuracy of the WW samples WW 1, WW 2, WW 3, and WW 4 used 
for validation were 50.00%, 100.00%, 75.00%, and 83.33%, respectively. It should be noted this 
irrigation record corresponds to two detection dates, with the irrigation record recorded for two days 
to calculate the single sample accuracy validation. Irrigation signals were also detected in the rainfed 
crop samples, which were added as errors to the calculation of the overall irrigation signal detection 
accuracy. The overall accuracy of the irrigation timing detection in this paper was 77.08%. The 
calculation of overall accuracy must consider the detection error of the rainfed crop region. 

Since WW presents significant NDVI changes in the returning green and jointing stages and less 
precipitation during this period, little effect on WW growth is observed. Therefore, the returning 
green and jointing stages of WW are selected as the key period of growth consistency analysis. WW 
showed more significant growth consistency in the early stage of returning green and jointing than 
in other growing stages. The irrigation records show that the irrigation water used in the returning 
green and jointing stages is surface water, and the irrigation water in other growth stages is irrigated 
groundwater. Surface water irrigation is a unified supply for water resource management 
departments, and groundwater irrigation is privately accessible to farmers. Different irrigation times 
are the main reason for the inconsistency in WW growth. WW is irrigated by surface water during 
these two growth stages, and surface water irrigation can cover a wide range of WW regions. 
Irrigation caused an increase in the SMAP pixel value (SM), which was used to identify an irrigation 
pixel. Due to the low spatial resolution of SMAP data, the consistency of WW growth under the 
coverage of one SMAP pixel in this study area must be discussed. If most of the WW covered by one 
SMAP pixel shows a consistent increase in the NDVI, then the spatial distribution of WW is effective 
for downscaling the irrigation signal. Conversely, if the increase in the NDVI for most WW (covered 
by one SMAP pixel) is inconsistent, then the irrigation signal identified by the SMAP pixel cannot 
effectively express WW growth. In Figure 10, SM, NDVI changes (after upper envelop) and irrigation 
time for different SMAP samples were plotted. Figure 10 a–d correspond to Validate WW1, Validate 
WW2, Validate WW3 and Validate WW4 in Figure 7a, respectively. 
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Figure 10. SM, NDVI changes (after upper envelop) and irrigation time for different SMAP samples. 

According to the NDVI variation treatment method shown in Figure 10, 55 NDVI samples 
covered by 11 SMAP WW samples were validated for WW growth consistency. The number of 
samples with same increase trend of WW NDVI in the returning green and jointing stages was 
counted separately. For example, at the time of the returning green stage, the simultaneous increase 
in the NDVI indicates consistency among the WW growth samples, and vice versa. By counting the 
number of consistent WW samples covered by different SMAP pixels, the percentage of WW growth 
consistency covered by SMAP pixels can be calculated, and the results are shown in Table 3. In Table 
3, the ratio of the consistent growth of WW covered by SMAP pixels is greater 70%, and in some 
regions, it can reach 100%. The overall consistency result reached 83%, and the results show that the 
irrigated area after downscaling can effectively express the true WW irrigation situation. 

Table 3. Statistical results of the winter wheat sample consistencies. 
 WW1 WW2 WW3 WW4 WW5 WW6 WW7 WW8 WW9 WW10 WW11 

RG 3 5 4 2 3 5 5 4 3 5 4 
J 4 4 4 5 5 5 5 4 4 3 5 
P 70.00% 90.00% 80.00% 70.00% 80.00% 100.00% 100.00% 80.00% 70.00% 80.00% 90.00% 

OA 82.72% 

RG: returning green stage; J: jointing stage; P: percentage; OA: overall accuracy. 

5. Discussion 

5.1. Comparison with Other Studies 

Lawston et al. [33] proposed a method for detecting irrigation signals based on SMAP data. In 
this method, dates are first selected during the crop growing season and then the characteristics of 
SM are compared at irrigated and non-irrigated points. Finally, the method uses time integrated and 
SM normalized metrics of SM and precipitation to detect irrigation signals. According to the method, 
the precipitation and SM processing results are obtained, as shown in Figure 11a,b. Since this method 
does not deduct the effect of precipitation from the SM changes, in the southern part of the study 
area, sufficient precipitation affects the detection of irrigation signals. Simultaneously, the detection 
results of the proposed method are normalized, which is more conducive to the comparison of the 
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two methods. In Figure 11, the amplitude change in (c) is more obvious than (d), and some obvious 
regions in the calculation results are marked. Region 1 contains two large reservoirs adjacent to the 
Taihang Mountains. Region 2 is the southern part of Beijing. Region 4 is a large wetland named 
Baiyangdian. The type of underlying surface may affect the monitoring of time series SM changes. 
Notably, region 3 is the main irrigation area in the southern part of the Hebei Province. However, the 
irrigation signal for this irrigated area is not significant in (d). Therefore, the method proposed in this 
paper is more suitable for irrigation signal detection in the study area. 

 
Figure 11. Comparison of the method proposed in this paper with the time-integrated and SM 
normalized irrigation signal detection methods. (a) Accumulated PRE and normalized result, (b) 
accumulated SM and normalized result, (c) irrigation intensity calculated by this paper proposed 
method, and (d) time-integrated and SM normalized irrigation signal detection methods. Both 
normalized results and irrigation intensity are dimensionless variables. 

The method proposed in this paper can acquire daily irrigation signal detection result, so the 
research can describe the irrigated information in the study area in more detail. In order to display 
the irrigation details more abundantly, the monthly irrigation signals were accumulated to acquire a 
monthly distribution of WW irrigation (as shown in Figure 12). At the end of February, the southern 
part of the study area warmed up, and the irrigated area of WW was mainly concentrated in the 
southern part. In March, a wide range of WW was irrigated, and irrigation in April and May was 
concentrated in the central and western regions. Compared with existing studies, Chen et al. 
statistically analyzed the climate distribution characteristics of WW growing season in the NCP for 
many years, which is consistent with the monthly spatial distribution of irrigation in this paper [50]. 
Yang et al. collected information on crop planting and irrigated area in the NCP for many years, and 
acquired crop and irrigation spatial distribution characteristics in this region [51]; the results of 
Yang’s study are similar to the results acquired in this paper, but due to the change of crop pattern 
in the eastern region, inconsistencies have been caused. Overall, the results of this paper are 
consistent with existing research findings. 
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Figure 12. Spatial distribution of winter wheat irrigated area. 

In the study of irrigated area extraction without considering SM changes, most of the research 
extraction methods are based on time series vegetation index changes and supervised classification 
to identify irrigated areas [13,34,41]. These methods for identifying irrigated areas through optical 
remote sensing datasets were based on identifying the type of crop to distinguish whether the area is 
irrigated [52]. The common advantage of these methods is that they can obtain a high resolution crop 
spatial distribution, and the accuracy can be increased as the spatial resolution of remote sensing 
images increases, and validated in many areas [16]. Based on the SMAP data extraction irrigation 
signal, the spatial distribution of crops with high spatial resolution is was introduced as irrigation 
reference area, which not only maintain irrigation time and frequency information, but also increases 
precision of SMAP data recognition irrigated area. 

5.2. A Rational Discussion of the Irrigation Signal Detection Model 

The establishment of the irrigation signal detection model in this paper was based on irrigation 
records and SMAP SM data. Since the SM change data in the irrigation record is measured every 10 
days, the data does not express time-continuous SM variations, so the SMAP SM data is not compared 
with the in-situ data. However, validation of SMAP SM data and irrigation-induced SM increase 
researches can demonstrate that variations in SMAP SM data can be used to establish irrigation signal 
detection models. A validation study of SMAP SM data has been described in the first section, and 
this section will discuss the relationship between irrigation and SM variation. 

Chen et al. [23] analyzed the continuous variation of SM before using the MODIS Greenness 
Index to detect irrigation signals in Gansu Province. Combined with irrigation and precipitation 
records, it was found that the sudden increase of SM generally originated from irrigation and 
effective precipitation. At the same time, the irrigation time was estimated using the continuous SM 
variation data in year 2016. Under the condition of no in-situ SM data, Lawston et al. [33] obtained 
the SMAP SM variation of different crop types based on the location information of irrigation and 
rainfed crops, and according this, they extracted the irrigated area of many regions in the United 
States. Is the phenomenon of SM sudden increase caused by irrigation also obvious in the NCP 
region? Some studies based on the effects of different irrigation patterns on WW yield provide a 
reliable basis. Wang et al. [53] collected SM variation in different irrigation patterns of winter wheat. 
The data show that although the SM (soil depth 0–80 cm) covered by WW in drip irrigation is slightly 
lower than level-basin, there is obvious SM increase after WW irrigation. Zia et al. [54] collected more 
detailed time series SM variation data (soil depth 10 cm and 40 cm); at the soil depth of 10 cm, 
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irrigation will cause significant SM increase, while at 40cm, irrigation will maintain a higher level of 
SM, and the sudden increase is not significant. In this study, when the in-situ SM data is insufficient, 
the SMAP SM data can be used to analyze the SM variation characteristics of WW and rainfed crops. 
Referring to number of studies on the relationship between irrigation and SM response, this paper 
suggests that irrigation records and SM increase can be used to detect irrigation signals in agricultural 
areas. 

It should be noted that the thresholds in the irrigation signal detection model proposed in this 
paper are not universal. For example, in the study area of this paper, there are significant differences 
in SM increase caused by different irrigation patterns. In areas with more complicated irrigation 
patterns, the irrigation pattern of sample points needs to be considered. In addition, the SMAP SM 
data of 9 km resolution is acquired by 36 km data downscaling, and the uncertainty of scale 
conversion may also affect the application of the model. If necessary, consider using multiple filtering 
methods for data optimization. 

6. Conclusions 

Based on multisource remote sensing data, including SMAP, MODIS, and an irrigation map, the 
5-point moving average method was used to detect irrigation signals in southern Hebei. Then, 
irrigation record data were used to validate the accuracy of the irrigation signal detection results. The 
accuracies of the four WW samples used for validation are 50.00%, 100.00%, 75.00%, and 83.33%, and 
the overall accuracy is 77.08%. The consistency analysis of 55 WW growth samples showed that the 
growth consistency of WW reached 82.72% in two large-scale surface water irrigation areas. Based 
on a consistency analysis, the downscaling method can be used to downscale the WW irrigation 
signal detected by the SMAP data. The proposed irrigation signal detection and downscaling method 
are more suitable for the detection of large-scale surface water irrigation signals. Limited by the 
spatial resolution of SMAP data and continuous in situ measured SM data, small-scale groundwater 
irrigation signal detection is difficult to establish. In future research, small-scale groundwater 
irrigation signal detection will be further studied. 
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