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Abstract: Topography exerts strong control on microclimate, resulting in distinctive vegetation
patterns in areas of moderate to high relief. Using the Thornthwaite approach to account for
hydrologic cycle components, a GIS-based Water Balance Toolset is presented as a means to address
fine-scale species–site relationships. For each pixel within a study area, the toolset assesses inter-annual
variations in moisture demand (governed by temperature and radiation) and availability (precipitation,
soil storage). These in turn enable computation of climatic water deficit, the amount by which available
moisture fails to meet demand. Summer deficit computed by the model correlates highly with the
Standardized Precipitation–Evapotranspiration Index (SPEI) for drought at several sites across the
eastern U.S. Yet the strength of the approach is its ability to model fine-scale patterns. For a 25-ha
study site in central Indiana, individual tree locations were linked to summer deficit under different
historical conditions: using average monthly climatic variables for 1998–2017, and for the drought
year of 2012. In addition, future baseline and drought-year projections were modeled based on
downscaled GCM data for 2071–2100. Although small deficits are observed under average conditions
(historical or future), strong patterns linked to topography emerge during drought years. The modeled
moisture patterns capture vegetation distributions described for the region, with beech and maple
preferentially occurring in low-deficit settings, and oak and hickory dominating more xeric positions.
End-of-century projections suggest severe deficit, which should favor oak and hickory over more
mesic species. Pockets of smaller deficit persist on the landscape, but only when a fine-resolution Light
Detection and Ranging (LiDAR)-derived Digital Elevation Model (DEM) is used; a coarse-resolution
DEM masks fine-scale variability and compresses the range of observed values. Identification of
mesic habitat microrefugia has important implications for retreating species under altered climate.
Using readily available data to evaluate fine-scale patterns of moisture demand and availability, the
Water Balance Toolset provides a useful approach to explore species–environment linkages.

Keywords: water deficit; drought; species distribution modeling; forest ecology; landscape ecology;
Lilly–Dickey Woods; oak forests; eastern deciduous forest; mesophication; microrefugia

1. Introduction

Variation in available energy and moisture generate pattern in the abundance, growth, and
mortality of plant species, and these patterns manifest across all spatial scales [1]. For example,
in North America, deciduous forest occurs in locations with a lengthy growing season defined
by temperature, and abundant precipitation that meets the seasonal timing of moisture demand
throughout the year [2]. At finer spatial scales, other factors may assume increasing importance,
but available moisture and energy continue to influence the distribution of plant species. In upland
forested landscapes, topography can exert significant control over temperature and moisture conditions,
through its influence on drainage and radiation load. As a result, distinctive vegetation patterns
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often emerge in areas of moderate to high relief. Slopes with southerly aspects experience higher
moisture demand in the northern hemisphere midlatitudes, since they receive more direct insolation.
Despite occupying a range of habitats within the eastern deciduous forest, species such as white oak,
black oak, and pignut hickory often occur in higher abundance on south-facing aspects, whereas
“mesophytes” (species associated with equable moisture conditions) such as beech and sugar maple,
are more frequent on north-facing aspects [3–7]. Since these topographic patterns in vegetation are
driven by microclimatic variation, an understanding of their potential response to altered climate is of
especial interest. At a regional scale, altered patterns of tree species dominance are anticipated with
climate change within the next century [8]; less focus has been given to potential fine-scale shifts in
species distributions. In southeastern Ohio, shifts in topographic site affinities for individual species
have been observed over the past two centuries, with climate change a possible contributing factor [9].

A number of drought indices have been developed that incorporate temperature and
precipitation data, and can be used to assess climate change scenarios and the resulting vegetation
response. For example, the Palmer Drought Severity Index (PDSI) [10] and the Standardized
Precipitation–Evapotranspiration Index (SPEI) [11] both directly assess moisture demand and
availability of a place. However, these indices do not produce a continuous surface of moisture
relationships, and therefore do not capture topographic variation. With the development of
Geographic Information Systems and the availability of Digital Elevation Models (DEMs), a number
of topography-based indices have been developed that enable an assessment of moisture patterns
across a landscape; two notable examples are the Topographic Wetness Index (TWI) (or Topographic
Convergence Index, TCI) [12] and the Integrated Moisture Index (IMI) [13]. These indices focus on
drainage to characterize moisture patterns (e.g., TWI: local slope and contributing upslope area, IMI:
flow accumulation, curvature); the IMI also incorporates radiation (via “hillshade”) and optionally, soil
water-holding capacity. The IMI is scaled 0–100 (xeric–hydric), while the TWI is a relative index, with
larger numbers indicating pixels contributing more runoff. Both indices have been linked to spatial
variation in ecological attributes e.g., [14,15]. However, both moisture indices are static, in that they do
not incorporate precipitation. This limits their applicability to link changes in moisture conditions to
ecological attributes over time (e.g., growth rates, mortality), or to explore altered moisture patterns
under climate change scenarios.

In contrast, a topographically based water-balance approach that incorporates moisture demand
and availability can explicitly account for moisture patterns both spatially and temporally. In a
water balance approach, moisture demand is typically defined for a uniform vegetated surface that
experiences no lack of water [16]. This moisture demand, or potential evapotranspiration, is expressed
as an amount of water, and is especially dependent on temperature and radiation. Depending on the
amount of precipitation and soil storage, water may be limiting at the site, and actual evapotranspiration
may be less than potential evapotranspiration. The climatic water deficit is the difference between
potential and actual evapotranspiration—the demand not met by available water; deficit is therefore
a measure of drought stress experienced by plants [17]. A water balance approach simultaneously
assesses available energy and moisture at a site. Interactive effects between moisture demand and
availability are an important consideration for exploring climatic warming scenarios, and have
explained counter-intuitive responses observed in mountainous areas, with vegetation distributions
shifting downslope instead of upslope [18,19].

In this paper, a water-balance approach is presented that integrates remotely sensed elevation data,
ancillary soils and climatic data, and GIS-based geoprocessing to produce a high-resolution assessment
of moisture demand and stress across a landscape. First, the ability of the model to capture a drought
signal is assessed. For a number of sites across the eastern U.S., similarity between the SPEI drought
index and the model’s average estimates of summer moisture stress will be evaluated. Whereas a
single SPEI value is computed for each location, the water balance model produces a continuous
surface of moisture relations, by modelling radiation load across a DEM. Therefore, a second goal of
the study is a comparison between two elevation grids of the study area: fine resolution LiDAR (Light
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Detection and Ranging) and coarse resolution SRTM (NASA Shuttle Radar Topography Mission).
This application on a study site in central Indiana demonstrates the tool’s utility in quantifying
vegetation-site relationships under current climate conditions. Finally, its potential for modeling future
scenarios is also demonstrated by simulating the water balance using a climate projection for 2071–2100.

2. Materials and Methods

2.1. Model Overview

A water balance (or water budget) approach assesses inter-annual variations in moisture
relationships. The Water Balance Toolset presented here employs the Thornthwaite approach [16] to
account for components of the hydrologic cycle for a specific location; all components are represented
as amounts of water. An initial computation is potential evapotranspiration, representing moisture
demand; it is the expected evaporative water loss from a vegetated surface in which water is not
a limiting factor. The FAO recommended the Penman–Monteith equation [20] as the standard
method for estimating evapotranspiration from a well-watered reference surface, since it incorporates
physical and physiological factors governing the evapotranspiration process [21]. Since all required
input data (air temperature, relative humidity, solar radiation, wind speed, soil heat flux) are
not readily available in many locations, numerous empirical methods have been developed to
compute evapotranspiration using more readily available climatic input data. For this application, a
radiation-based method was sought, since a primary motivation was to examine topographic variation
in moisture demand; topography exerts strong control over radiation load within the landscape [22].
The Water Balance Toolset uses the Turc equation [23] for computing potential evapotranspiration,
which the American Society of Civil Engineers ranked second behind Penman–Monteith in its ability
to predict evapotranspiration at lysimeter sites in different climates [24]. The Turc method requires
only monthly temperature and radiation:

PET = 0.013×
[

T
(T + 15)

]
× (R + 50) (1)

where PET is monthly potential evapotranspiration (mm), T is average monthly temperature (◦C), and
R is total monthly solar radiation received at the earth’s surface on a horizontal plane (cal cm−2). If
average monthly temperature ≤ 0 ◦C, then PET = 0 mm. If monthly relative humidity is <50% (i.e., in
non-humid climates), an adjustment factor using relative humidity can be implemented [24]:

PET = 0.013×
[

T
(T + 15)

]
× (R + 50) ×

[
1 +

(
(50−RH)

70

)]
(2)

where RH is average monthly relative humidity (%). As temperature and radiation increase, so too
does the demand for moisture. Temperature does not vary pixel-by-pixel in the Water Balance Toolset;
a single monthly value can be used for the entire study area, or different values can be used within a
gridded framework within the study area. In contrast, since it employs Solar Radiation analysis tools
in ArcGIS, the Toolset does compute radiation load for each pixel of the DEM. This in turn allows PET
to be computed for each pixel.

In many areas, water may become a limiting factor during the year, such that actual
evapotranspiration is less than potential evapotranspiration. Water deficit is this difference, and
is related to the magnitude and length of moisture stress experienced by plants [17]. Deficit can be due
to inadequate precipitation relative to demand, and/or low soil water-holding capacity. In contrast,
precipitation in excess of demand represents surplus; after recharging soil storage, surplus leaves a
site through runoff or subsurface flow. The amount of storage for a particular site, its available water
capacity (AWC), is dependent on the depth, structure, and texture of the soil.
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Compared to an early application with a GIS-based water balance approach [25], the Water Balance
Toolset described here is fully automated, contains numerous improvements, and is more user-friendly.
Data needs to run the model are few: a digital elevation model, soil available water capacity, and
monthly temperature, precipitation, and radiation; in non-humid climates, monthly relative humidity
should also be included.

2.2. Running the Model

The Water Balance Toolset consists of a suite of ArcGIS Toolboxes that generate all monthly
water balance grids for a study site. It can be run for a single year, or any number of consecutive
years (provided climate and radiation data are available). All tools include a simple user interface
for selecting input data. Users can run individual tools independently, or run an automated tool
that sequentially executes the different steps. The Water Balance Toolset is compatible with ArcGIS v.
10.2 and later, and is available along with a User Manual in Supplementary Materials. Both are also
available from the author’s web page (https://people.ohio.edu/dyer/).

Users can provide all input grids, but the Water Balance Toolset provides the option for automatic
acquisition of input data, geared to U.S. study sites. These include a 1/3 arc-second DEM from the
U.S. Geological Survey’s National Map (https://viewer.nationalmap.gov/basic/), soil available water
capacity from Natural Resource Conservation Service’s Web Soil Survey (https://websoilsurvey.sc.
egov.usda.gov/), monthly mean temperature and precipitation from PRISM Climate Group (http:
//www.prism.oregonstate.edu/), and global horizontal irradiance (and relative humidity) from the
National Solar Radiation Database (NSRDB) (https://maps.nrel.gov/nsrdb-viewer/). Both PRISM and
NSRDB data are provided at 4 km resolution. If the study area overlaps multiple PRISM cells, a
weighted average is computed. For NSRDB, the value of the grid point closest to the study area centroid
is used. (If the study area spans >1◦ of latitude, it should be subdivided.) Soil AWC is determined
for the top 100 cm, since in temperate deciduous forests, 95% of roots occur within this depth [26,27].
At this depth, there is also likely to be little topographic control on soil moisture patterns [1,28,29].
User Manual instructions are provided for altering default values of the input data (e.g., 1/9 arc-second
DEM, soil AWC from upper 50 cm). Automated routines also enable the user to input tabular data
(monthly climate or radiation). All input grids are clipped, projected, and aligned to the study area
boundary. The resolution of the DEM defines the resolution of all other grids.

In the present study, results are compared using both a fine-resolution LiDAR DEM, and a
coarse-resolution SRTM DEM. Each DEM is a representation of the study area’s topography, and
its spatial resolution controls the “grain” of analysis in all subsequent steps. Slope and aspect are
important controls on radiation load, and a finer-resolution DEM will be more representative of actual
topography. For a given study area however, a finer-resolution DEM also increases processing time.
Thus, there is the familiar “grain vs. extent” trade-off that users will need to make.

The Water Balance Toolset relies on the Solar Radiation tools in ArcGIS to compute monthly
values of total radiation for each pixel in a DEM using the Standard Overcast Sky model, based on
slope, aspect, topographic shading, latitude, and time of year. The user must specify two atmospheric
parameters: the diffuse proportion of global radiation, and transmissivity (the proportion of solar
radiation at the top of the atmosphere (averaged over all wavelengths) reaching the earth’s surface
with the sun at zenith). Since additional factors may affect radiation at a site, the Water Balance Toolset
adopts the approach of adjusting the two values to best approximate an established radiation value.
Since these values are usually reported for flat-plate collectors (“Global Horizontal Irradiance”), the
Solar Radiation Tool is executed for a flat site, utilizing all possible combinations of values (0.1–0.9) for
diffuse proportion and transmissivity (“transmittivity” in ArcGIS Solar Radiation). For each month,
these radiation estimates are compared to the established radiation value, measured or estimated for
the site. The combination of diffuse proportion and transmissivity values that produce a monthly
radiation value that most closely matches the established radiation value (usually with <2% error) are

https://people.ohio.edu/dyer/
https://viewer.nationalmap.gov/basic/
https://websoilsurvey.sc.egov.usda.gov/
https://websoilsurvey.sc.egov.usda.gov/
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then used to generate monthly radiation grids for the entire DEM. Units are converted from Wh m−2 to
cal cm−2 by multiplying by 0.08598.

Once monthly radiation grids are created, potential evapotranspiration grids are computed
according to the Turc method (Equation (1)), using previously created monthly temperature grids.
The Water Balance Toolset then computes soil storage by comparing moisture demand (potential
evapotranspiration) with moisture availability (precipitation, soil storage). Soil moisture utilization
occurs when precipitation is less than demand (i.e., precipitation—potential evapotranspiration is
negative), but the percentage of moisture demand that plants can extract is assumed to decrease linearly
as storage is reduced [16] (p. 12, Curve C):

SMU =

∣∣∣∣∣(P− PET) ×
( St

AWC

)∣∣∣∣∣ (3)

where SMU is soil moisture utilization, P is precipitation, PET is potential evapotranspiration, St is
soil storage, and AWC is available water capacity; all units are in mm. At each time step, storage
is reduced by the amount of soil moisture utilization. To model the decreasing availability of soil
moisture over the course of the month, the storage routine executes with a daily time step by dividing
monthly values of precipitation and potential evapotranspiration by the number of days in the month.
Final output for monthly storage represents the last day of the month. When (P—PET) is positive, the
excess precipitation replenishes storage to field capacity. When storage is full, excess precipitation
becomes surplus (runoff or subsurface flow).

2.3. Study Area and Application of the Model

The focus of this study is a Forest Global Earth Observatory (ForestGEO) site in central Indiana,
USA. The 25-ha plot (39.2359◦ N, 86.2181◦ W) in Brown County is situated within Indiana University’s
Lilly–Dickey Woods Teaching and Research Preserve. ForestGEO is a global network of research sites
for studying long-term forest dynamics (https://forestgeo.si.edu/). Climatically, Lilly–Dickey Woods is
situated at the northern limit of the Humid Subtropical zone, characterized by a pronounced seasonal
pattern in temperature, with precipitation relatively evenly distributed throughout the year under
normal conditions. Surface soil texture on the plot is primarily channery silt loam, with some silt loam;
there is minimal variation in soil water-holding capacity as mapped across the plot [30]. Topography
in this unglaciated region is hilly, with local relief on the order of 30–50 m. The study area is mature
second-growth forest, with earliest air photos from 1939 revealing a closed canopy. Maxwell and
Harley [31] sought the oldest trees in Lilly–Dickey Woods as part of a regional dendroclimatological
study, and noted earliest establishment dates in the 1860s.

Lilly–Dickey Woods is situated in the Hills Section along the periphery of Braun’s [32] Western
Mesophytic forest region, a region she characterized as transitional between the species-diverse
Mixed Mesophytic region to the east, and the drier Oak–Hickory region to the west. Braun notes
strong microclimatic variation in the vegetation of the Hills Section, with mesophytic vegetation in
the ravines and northerly slopes; higher proportions of beech and sugar maple reflect the section’s
transitional nature to the adjacent Beech–Maple region to the immediate north. In contrast, drier
ridges and southerly slopes are characterized by oak or oak–hickory dominance, reflecting the section’s
transitional nature to the Oak–Hickory region to the immediate west. Homoya et al. [33] report this
same topographic control on vegetation patterns in this deeply dissected region, with chestnut oak a
dominant species of the uplands, and beech, northern red oak, sugar maple, and white ash common in
the ravines.

The strong topographic control on vegetation in Lilly–Dickey Woods provides an excellent
opportunity to explore water-balance relationships. In accordance with ForestGEO protocols, every
tree ≥1 cm diameter at breast height (DBH, 1.35 m) in the 500 m × 500 m plot was mapped and
identified to species in 2012. The detailed data set “ties trees to pixels,” enabling an examination of the
links between water balance and species distribution. In this study I focus on live trees ≥30 cm DBH

https://forestgeo.si.edu/
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(n = 3137), which occupy a dominant position in the forest canopy. For trees with multiple trunks, the
DBH of the largest was used to assign its size-class.

At the time when the analysis was performed, NSRDB radiation data for the Lilly–Dickey Woods
site were available 1998–2017. I downloaded average monthly global horizontal radiation values for
this time period [34], as well as PRISM average monthly temperature and precipitation [35]. Soil
AWC was obtained from NRCS, and a LiDAR-derived DEM (1.5 m resolution) downloaded from
Indiana University’s Indiana Spatial Data Portal (https://gis.iu.edu/datasetInfo/statewide/in_2011.php)
as a county mosaic in ERDAS IMAGINE format; data were acquired in 2011 as part of a statewide
mapping project using U.S. Geological Survey-compliant LiDAR data at 1.5 meter nominal pulse
spacing. I ran the Water Balance Toolset using the 1998–2017 average values to establish “baseline”
conditions. I made the assumption that deficit during the growing season would be the water balance
variable most strongly influencing tree species distributions. In a dendroclimatological study in
southern Indiana, Maxwell and Harley [31] found summer drought (June–August (JJA) PDSI) to be the
climatic variable most strongly correlated to growth. (PDSI is a relative dryness index based on a water
balance approach, typically using the Thornthwaite method of estimating potential evapotranspiration.)
Summer drought has also been linked to species-specific mortality patterns, and summer moisture
levels influence species-specific recruitment patterns in the eastern deciduous forest [36,37]. During
the period 1998–2018, the lowest growing-season PDSI occurred in 2012 (lowest value since 1988,
12th lowest value since 1895; see Figure 1) [38]. I therefore ran the Water Balance Toolset for 2012,
to compare species distribution patterns with summer deficit during an extremely dry year. To examine
the influence of DEM resolution on the 2012 water balance run, analysis was repeated with a 27.3 m
resolution SRTM 1 arc-second DEM [https://earthexplorer.usgs.gov/].
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Figure 1. Climate diagram for Lilly–Dickey Woods. Bars represent precipitation and lines represent
temperature, for average conditions observed 1998–2017, the drought year 2012, and projected for
2071–2100. Annual precipitation was 949 mm in 2012, but averaged 1296 mm during 1998–2017; average
annual precipitation was projected to increase to 1416 mm during 2071–2100. Recent climate data from
PRISM data sets, which were projected for future conditions [39] as described in text.

Hamlet et al. [39] present statewide estimates of climate change for Indiana, based upon statistically
downscaled simulations from an ensemble of 10 global climate models; the 10 GCMs were selected
to capture the range of results from a larger pool of 31 models. For each GCM, their Hybrid Delta
downscaling approach produces daily time series of temperature and precipitation with the same
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day-to-day variability as gridded station observations (but shifted according to the GCM’s simulation of
future climate relative to a 1971–2000 baseline). Daily temperature and precipitation values were used
to derive monthly means for each GCM. A single monthly average for each GCM was then determined
for three time periods, and for two Representative Concentration Pathways [40]. To assess alteration in
water balance patterns due to climate change, I applied the results of their RCP8.5 projection for the
2080s (i.e., average of 2071–2100). As of 2019, observed global greenhouse forcing has been closely
tracking the RCP8.5 trajectory [41]. After computing an ensemble average, projected changes relative
to their 1971–2000 baseline for monthly precipitation (%) and temperature (◦C) were applied to my
baseline values for 1998–2017 (Figure 1). I similarly applied projected changes to my baseline radiation
values, using statistically downscaled values [42] averaged for five of the 10 GCMs used by Hamlet et
al. [39]. Although not intended to suggest probable conditions, these same change estimates were also
applied to my 2012 values, to model the water balance under a future drought condition.

As a means to evaluate deficit calculations by the Water Balance Toolset as an indicator of
drought, comparisons were made with an established drought index, the SPEI, which incorporates
both precipitation and potential evapotranspiration. The SPEI overcomes two main limitations of the
PDSI: its fixed time scale (9–12 months), and the long-term and variable impacts antecedent conditions
play in computing index values [11]. The SPEI compares monthly moisture demand vs. supply, and is
based on a normalized probability distribution with a mean of zero and standard deviation of one;
zero indicates normal conditions with negative values representing increasing drought. Four sites
were selected from throughout the eastern deciduous forest for which to compare SPEI vs. deficit:
Indianapolis IN (48 km NNW from Lilly–Dickey Woods), Athens GA, St. Louis MO, and Worcester
MA. These sites all had radiation data (collected at their airports) available 1961–2017 from NSRDB,
so this was used as the time period of comparison. The SPEI package (v. 1.7) is available in the R
statistical environment [43], and includes functions for computing potential evapotranspiration using
the Penman–Monteith, the Hargreaves, or the Thornthwaite methods. Required data were not readily
available to implement the Penman–Monteith method. Since the American Society of Civil Engineers
found it to be superior to the Thornthwaite method in estimating monthly evapotranspiration [24], the
Hargreaves method was selected [44]:

PET = 0.0023×RA ×

[(TMax − TMin
2

)
+ 17.8

]
× (TMax − TMin)

0.5 (4)

where RA is extraterrestrial radiation expressed in equivalent evaporation (mm d−1) estimated from
the site’s latitude, and TMax and TMin represent maximum and minimum monthly temperatures (◦C),
respectively. Temperature and monthly precipitation (mm) data were downloaded from the PRISM
Climate Group, and SPEI was computed for each site using a three-month interval (e.g., June, July,
and August values would be used to compute August SPEI). The “point-based” SPEI values were
then compared to deficit grids created by the Water Balance Toolset. Study areas measuring 1 km2

were established in close proximity to each of the four SPEI sites, in a natural (non-built) setting. The
Water Balance Toolset was run as described in Section 2.2 using automatic acquisition of input data (1/3
arc-second DEM, ~9.3 m resolution). Monthly deficit grids for June, July, and August were summed,
and a single grid average computed. Pearson product-moment correlation was performed in SAS (v.
9.4) for each of the four study areas to assess correspondence between the three-month SPEI value for
August, and the average grid value of summer deficit (sum of June–August).

3. Results

3.1. Relationship to SPEI

For the period 1961–2017, JJA Deficit computed by the Water Balance Toolset was highly correlated
with August SPEI using a three-month interval, across the four sites: Athens GA, r = 0.88; Indianapolis
IN, r = 0.84; Worcester MA, r = 0.76, St. Louis MO, r = 0.89 (p < 0.0001 for all values). As expected, the
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Water Balance Toolset was able to capture the drought signal indicated by SPEI. Yet the strength of the
Water Balance approach is its ability to model fine-scale variation in moisture stress within a landscape.

3.2. Water Balance at Lilly-Dicky Woods, 1998–2017

When using average monthly values of temperature, precipitation, and radiation, relatively
small summer (JJA) deficit is observed across the study area for the 1998–2017 baseline (Figure 2a;
Table 1). Summer deficit represents 1.2% of demand (potential evapotranspiration). With the small
summer deficit, average annual surplus is 511 mm, representing 39.4% of annual precipitation. JJA
deficits increase significantly in the 2012 drought year (representing 56.5% of demand; Table 1), and
a pronounced topographic pattern is evident (Figure 2c). Compared to the LiDAR DEM, mean JJA
deficit in 2012 is similar using the SRTM DEM, but the range of values captured across the landscape is
greatly reduced (Table 1). Obviously, the coarse-resolution SRTM DEM is unable to capture fine-scale
topographic variation (Figure 2e).
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Figure 2. Modeled summer (JJA) water deficit for Lilly–Dickey Woods. Depicted area measures 900 m
× 900 m, centered on the 25-ha ForestGEO plot. Left panels represent simulations of recent observed
climatic conditions, right panels are comparable simulations for end-of-21st century climatic projections
derived from the RCP8.5 radiative forcing scenario: (a) baseline conditions using average monthly
values, 1998–2017; (b) baseline conditions with projected changes for 2071–2100 (“2080”); (c) drought
year 2012; (d) projected future changes applied to 2012 values; (e) same historical simulation as (c)
using NASA Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM); (f) same
scenario as (d) using SRTM DEM. Light Detection and Ranging (LiDAR)-derived DEM used for (a–d);
its hillshade projected over all images.
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Table 1. Descriptive statistics for summer [JJA] water deficit, precipitation (P), and potential
evapotranspiration (PET) (units = mm), for water balance simulations depicted in Figure 2. The
first three simulations utilize recent observed climatic conditions, the last three are based upon
end-of-21st century climatic projections derived from the RCP8.5 radiative forcing scenario.

Figure 2
Grid

Mean
Deficit

Standard
Deviation Min Max P Mean

PET

Deficit as
Percentage of

PET

1998–2017 (a) 4 3 0 10 357 373 1.2
2012 (c) 226 27 63 266 100 400 56.5

2012: SRTM (e) 246 11 205 261 100 421 58.3
2071–2100 (2080) (b) 33 13 0 54 332 429 7.6

2080 + 2012 (d) 305 39 63 356 91 461 66.3
2080 + 2012: SRTM (f) 333 15 274 354 91 484 68.7

Table 2 presents a tally of species comprising≥1% of all trees≥30 cm DBH (n = 3137) at Lilly–Dickey
Woods. Tallies are presented for canopy (≥30 cm DBH) and subcanopy trees (10–19 cm DBH, n = 3476).
Whereas oaks and hickory comprise 73% of trees in the larger size class, their representation decreases
in the smaller size class, as does the early successional tulip poplar. In contrast, maples and beech
comprise 89% of stems in the smaller size class, but only 20% of stems in the larger size class.

Table 2. Dominant canopy trees (≥1% of all trees ≥30 cm) on Lilly–Dickey Woods forest dynamics plot.
Tally and percentages by size class (≥30 cm diameter at breast height (DBH), n = 3137, and 10–19 cm
DBH, n = 3476).

Species Common Name
≥30 cm DBH 10–19 cm DBH

n Percent n Percent

Acer rubrum Red maple 39 1.2 318 9.1
Acer saccharum Sugar maple 519 16.5 2160 62.1
Carya glabra Pignut hickory 155 4.9 67 1.9
Fagus grandifolia American beech 70 2.2 610 17.5
Liriodendron tulipifera Tulip poplar 35 1.1 4 0.1
Nyssa sylvatica Blackgum 43 1.4 72 2.1
Quercus alba White oak 194 6.2 20 0.6
Quercus montana Chestnut oak 1551 49.4 79 2.3
Quercus rubra Northern red oak 176 5.6 1 <0.1
Quercus velutina Black oak 202 6.4 2 0.1

Tree locations were plotted over the water balance grids, and the value of 2012 JJA deficit was
extracted for each tree ≥30 cm DBH in the 25-ha forest dynamics plot; the distributions for the most
abundant species are presented as box and whisker plots (Figure 3a). Using the LiDAR-derived DEM,
individual species evince wide ecological amplitude (i.e., they occur on sites across a range of values),
but do segregate according to summer deficit. Notably, beech, tulip poplar, blackgum, northern red
oak, red maple, and sugar maple preferentially occur on the more mesic sites, whereas white oak,
pignut hickory, chestnut oak, and black oak occur on sites experiencing greater moisture stress. Using
the SRTM DEM, the segregation of mesic and more xeric species also emerges, though the range of
deficit values is greatly compressed (Figure 3b).
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3.3. Water Balance under an RCP8.5 2080s Scenario

Extremely high deficit values were not observed with the 2080s (2071–2100 average) projection
(Figure 2b, Table 1), as was also the case with the 1998–2017 baseline scenario. Yet the mean deficit value
for the 2080s projection exceeded the maximum value observed under the 1998–2017 baseline. Summer
deficit represents 7.6% of demand, and the higher summer deficit under the 2080s projection reduced
annual surplus, both in terms of total amount (461 mm) and as a percentage of annual precipitation
(32.6%). When the projected changes were applied to 2012 monthly values, extreme deficit conditions
are observed (Figure 2d). Summer deficit represents 66.3% of demand, and the mean value is higher
than the maximum value observed under the previous scenarios (Table 1). As with the actual 2012
simulation, pockets of more mesic settings are maintained on the landscape using a fine-resolution
DEM, but not the SRTM-derived DEM (Figure 2d,f).

4. Discussion

Deficit computed by the Water Balance Toolset correlates highly with the SPEI drought index at a
range of sites across the eastern deciduous forest, and demonstrates that the water balance approach is
able to capture the drought signal of a site. The correspondence is not surprising, since both measures
evaluate the relationship between precipitation (supply) and potential evapotranspiration (demand).
A water balance approach additionally accounts for the availability of soil storage, and a previous
application demonstrated its ability to capture seasonal patterns recorded by soil moisture probes in
North Carolina and Ohio [25]. In contrast to a standard drought index that calculates a single value for
a study site, the Water Balance Toolset captures inter-landscape variation, and quantifies both moisture
demand and deficit in millimeters of water.

At Lilly–Dickey Woods, a hilly site with moderate relief, the Water Balance Toolset was used to
simulate the significant drought year of 2012, since extreme climatic events are likely more critical in
defining environmental gradients compared to average conditions [45]. Topographically controlled
gradients in moisture conditions were evident: exposed ridges and slopes, with their higher radiation
loads, experienced the largest deficits; smaller deficits occurred in more sheltered locations. Trees
in the largest size class, which likely established in the 19th century, segregate along these moisture
stress gradients. Drought-adapted oak and hickory species preferentially occur on high-deficit sites,
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while mesic species such as maple and beech are more prominent on low-deficit sites. Thus, water
balance modeling was able to capture inter-landscape distribution patterns described for this region:
beech and maple dominate the canopy in ravines and on north-facing slopes, while oak and hickory
are canopy dominants on ridges and south-facing slopes [3,32,33]. Changes in patterns of abundance
along environmental gradients affirms the importance of fine-scale habitat variability in maintaining
species diversity under changing climatic conditions.

Outside of the 1998–2017 baseline period, more intense droughts of longer duration have been
recorded in the region in the 1930s and 1950s [46], and in the 1880s as inferred from tree-ring
reconstructions [31]; these events may have influenced the species distribution of present-day canopy
trees at Lilly–Dickey Woods. In contrast, the late 20th century has witnessed a trend of increased
moisture availability, and is among the wettest periods in the eastern U.S. in the last 500 years [47,48];
wetter climatic conditions may explain the changing pattern observed in trees that established in
the 20th century at Lilly–Dickey Woods. In the smaller size-class, mesic species have expanded into
the high-deficit sites, and drought-tolerant species have experienced an overall decline. A similar
topographic shift has been reported in neighboring Ohio [9]. There, drought-tolerant species were
formerly more abundant across the landscape c. 1800, but now preferentially occur in more restricted
topographic settings such as ridges. Mesic species, in contrast, expanded from slopes and valleys
into a wider range of topographic settings. Edaphic characteristics also played a role in the observed
shifts in Ohio, and individualistic responses may challenge predictions of vegetation response to future
climate change. Yet the Ohio and Indiana findings suggest that regional climate change may have
altered competitive relationships, such that patterns of abundance have shifted within the landscape.
A similar response could be expected with future climate change.

Water-balance projections for Lilly-Dicky Woods derived from the RCP8.5 scenario indicate a
dramatic increase in both total deficit, and deficit as a percentage of demand by the end of this
century (Table 1). These conditions would favor drought-tolerant species such as oak and hickory,
over mesic species such as beech and maple that have been increasing in importance over the 20th
century. Water-balance modeling using the LiDAR-based DEM indicated the persistence of more mesic
habitat, even under significant drought conditions (Figure 2d). Although reduced in extent, mesic
habitat is projected to persist under extreme drought conditions modeled for late century. This is not
the case when using the coarse-resolution SRTM DEM (Figure 2f). Mean deficit values were similar
with the two DEMs, but the variability about the mean is greatly reduced with SRTM (Table 1); this
observation is explained by the fact that the area covered by a single pixel in the SRTM is comprised of
over 300 pixels with the LiDAR DEM. If fine-scale pattern is critical for the analysis, a high-resolution
DEM is recommended.

The Water Balance Toolset provides a fine-resolution assessment of moisture demand and moisture
availability, though users should be aware of certain limitations. For example, to account for availability,
the Water Balance Toolset relies on precipitation inputs, and soil available water capacity. Proximity to
surface water bodies is not addressed, nor is moisture augmentation from upslope drainage. As the
soil dries, its hydraulic conductivity decreases, and topographic control on subsurface drainage is less
evident [49–51]. During much of the growing season, soil moisture is likely to be below field capacity,
and upslope augmentation likely is not a significant influence. If soil moisture is at field capacity,
then plants are not experiencing moisture deficit, regardless of upslope augmentation. Since the focus
has been on summer conditions, the model also did not account for monthly precipitation carryover
as snowpack; a storage detention routine should be implemented if important for the application.
To model demand (potential evapotranspiration), the Water Balance Toolset considers temperature
and radiation using a monthly time step. Since diurnal variations in temperature are not considered,
maximum demand occurs on southern exposures (in the northern hemisphere), since that is where
maximum insolation occurs (and modeled potential evapotranspiration is symmetrical about the
north–south axis). Yet typically, higher potential evapotranspiration is associated with more westerly
aspects because temperatures and vapor pressure deficits are higher in the afternoon when these aspects
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are receiving the most direct radiation. However, an approach to adjust potential evapotranspiration
based on diurnal temperature patterns had minimal influence on summer values for Lilly–Dickey
Woods. (The adjustment method is presented on the author’s web page, https://people.ohio.edu/dyer/.)

5. Conclusions

Because it simultaneously incorporates solar energy, available moisture, and their interaction
throughout the year, the water balance has utility for a range of ecological applications. Water balance
variables have explained broad-scale patterns in species richness [52], decomposition rates [53], and
net primary productivity [54]; they have also been used to delineate vegetation associations at global to
regional scales [2,17,55]. Available moisture and energy also influence the distribution of tree species at
finer scales of analysis, though other variables may assume increasing importance. Since topography
influences radiation load and drainage patterns, it results in distinctive vegetation assemblages in
upland forest communities. Despite probable individualistic responses to altered conditions, vegetation
responses to future climate change are likely to manifest along topographic gradients.

At a central Indiana study site, regional climate projections suggest that within the next 50 years,
conditions may favor drought-tolerant species, and curtail mesic species within the landscape. By
utilizing downscaled GCM data and fine-resolution LiDAR-derived DEM, the water balance model
suggested pockets of mesic habitat may persist in the landscape, even with drought conditions under
the harsh RCP8.5 scenario (Figure 2d). This result affirms the critical role for topography in creating
microclimates that are distinct from the regional climate, which can serve as microrefugia for species in
retreat from the deleterious effects of altered climate [56]. These sites may also serve as stepping stones
as species migrate to newly defined ranges [57]. The identification of potential microrefugia is a critical
priority for species diversity and conservation efforts in the coming decades [58]. In recent years,
high-resolution gridded datasets of climate, soils, and radiation have become increasingly available.
The water balance approach presented here highlights the potential for incorporation of fine-scale
digital elevation models into regional analyses of moisture relations. The LiDAR-derived DEM
employed at Lilly–Dickey Woods enabled the modeling of potential evapotranspiration at 1.5-meter
resolution; assessing moisture demand and availability at an “individual tree scale” permits a fine-scale
analysis of vegetation response to environmental gradients under different climatic conditions.

Topographic gradients produce varied microclimates, creating habitat diversity within the
landscape. Habitat diversity in turn is linked to species richness; indeed, topographic diversity serves
as a key element of The Nature Conservancy’s efforts to identify species-diverse areas using abiotic
surrogates [59]. This paper presents a GIS-based tool to identify areas with distinctive topoclimates [56],
by computing a monthly water balance for all pixels within a study area. The tool requires minimal
inputs (monthly temperature, precipitation, and radiation, soil available water capacity, and a digital
elevation model), and requires only a basic proficiency with ArcGIS. By incorporating climatic variables,
the model enables an assessment of changing conditions, including the interactive effects between
moisture demand (temperature, radiation) and availability (precipitation, soil storage). Units of all
output grids are expressed as amounts of water (mm), which facilitate ecological interpretation and
enable comparisons among sites. Mean deficit computed by the Water Balance Toolset at four sites
across the eastern deciduous forest correlated highly with an established drought index, though the
strength of the Toolset is its ability to model fine-scale variation within a landscape. Because of its
ability to capture fine-scale variation in moisture relationships, the Water Balance Toolset can be useful
in exploring species–environment linkages.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/20/2385/s1,
Water Balance Toolset for ArcGIS, User Manual.
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