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Abstract: Current new developments in remote sensing imagery enable satellites to capture videos
from space. These satellite videos record the motion of vehicles over a vast territory, offering
significant advantages in traffic monitoring systems over ground-based systems. However, detecting
vehicles in satellite videos are challenged by the low spatial resolution and the low contrast in
each video frame. The vehicles in these videos are small, and most of them are blurred into their
background regions. While region proposals are often generated for efficient target detection, they
have limited performance on satellite videos. To meet this challenge, we propose a Local Region
Proposing approach (LRP) with three steps in this study. A video frame is segmented into semantic
regions first and possible targets are then detected in these coarse scale regions. A discrete Histogram
Mixture Model (HistMM) is proposed in the third step to narrow down the region proposals by
quantifying their likelihoods towards the target category, where the training is conducted on positive
samples only. Experiment results demonstrate that LRP generates region proposals with improved
target recall rates. When a slim Fast-RCNN detector is applied, LRP achieves better detection
performance over the state-of-the-art approaches tested.

Keywords: satellite videos; region proposals; convolutional neural networks; tiny and dim target
detection; component mixture model

1. Introduction

As one of the most promising developments in remote sensing imagery, the satellite videos
captured by Skybox and JL-1, have facilitated several emerging research and applications, including
super resolution [1,2], video encoding [3,4] and target tracking [5,6]. They expand the earth observation
capacity to rapid motion monitoring, such as vehicle and ship tracking [5,7,8]. To reveal these rapid
motions, targets of interests need to be located throughout the satellite video first, and the extracted
targets in each frame are then associated to construct the trajectories of targets of interest. Therefore,
target detection in satellite videos is a fundamental and critical step for target tracking and motion
pattern analysis.

Detecting objects of interest in a video can be achieved by the motion-based detectors, which search
the changed pixels in a sequence of images by comparing with an estimated background model [9,10].
Various algorithms, such as Frame-Difference [5,11,12], Median Background [13], Gaussian Mixture
Model (GMM) [14,15] and Visual Background Extractor (ViBe) [7,16,17], were developed for moving
object detection. However, these approaches are prone to the inadequate background modelling and
affected by the problem of parallax caused by the motion of the camera.

Alternatively, the image-based object detectors can extract objects of interest from a video frame
by frame [18], whose performance is less affected by the parallax motion. By taking the advantage
of the discriminative learning methods, these approaches employ a classifier to scan over possible
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locations of targets in an image by sliding window [19–21]. To reduce the number of the candidate
locations to examine, region proposals, which refer a sparse set of potential target locations, are
introduced to replace sliding windows over the entire image. For common computer vision tasks,
generating region proposals are commonly guided by the object saliency, such as the edges [22–24],
or based on superpixels [25–29] or segmentation masks [30,31]. In aerial videos, the coherent regions
extracted by Maximally Stable Extremal Regions (MSER) [32,33] or Top-hat-Otsu [34] are also adopted
for region proposal generation. Due to the weak contrast between targets and background in satellite
videos, saliency-based approaches result in degraded region proposal performance —either generating
too many region proposals or producing a low target recall rate. These approaches also lack the
mechanisms for quantifying the region proposals’ likelihood of being a target, and place the entire
burden of handling a large number of region proposals in the target recognition stage. Convolutional
Neural Networks were applied for searching region proposals in recent years. These approaches can
provide the confidence score for each region proposal, and a significant portion of false alarms in the
region proposals are removed before the recognition state [35–38]. However, they heavily rely on the
training of a reliable region proposal network using a large amount of training samples.

To improve the region proposal performance to handle dim and small target detection in satellite
video, we propose a Local Region Proposing (LRP) approach with three steps in this study. Our
observation is that vehicles in satellite videos appear small and dim globally. Therefore we propose
to perform segmentation at a coarse scale to form semantic region first. Possible locations of small
targets in each semantic region are then extracted. To reduce the false alarm further and alleviate
the computation burden on further target recognition stage, a discrete Histogram Mixture Model
(HistMM) is proposed to quantify their likelihoods towards the target category. HistMM presents little
difficulty in cooperating with most detectors, as it is estimated separately and only positive samples
are required for estimating the model.

The remaining part of this paper is structured as follows. Section 2 presents the proposed local
region proposal approach, after which the experimental results are presented in Section 3. We conclude
this paper in Section 4 with remarks on the promising direction for future study.

2. Local Region Proposing

Figure 1 shows the Local Region Proposing approach (LRP) developed in this study is composed
of three steps. First semantic regions are extracted by coarse-scale segmentation, then possible target
locations are searched in each extracted region. The Histogram Mixture Model is developed for
removing obvious false alarms from the region proposals.

Figure 1. Overview of the proposed region proposal algorithm.

2.1. Semantic Region Extraction

Extracting semantic regions from a video frame can be by segmentation at a coarse scale,
and the majority of pixels in each extracted region are more likely from a single land cover type.
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The Felzenszwalb’s graph-based segmentation approach [39] is a typical method for extracting the
semantic regions.

By this graph-based segmentation approach, the scale of the generated superpixels can be
controlled by a parameter k. Increasing k would lead to more coarse-scale superpixels, and these
superpixels tend to present regions from different land cover types. The semantic regions are allowed
to be larger than the target size on purpose. Decreasing k would generate fine-scale superpixels.
However, it is often difficult to make superpixels to associate with small targets in satellite videos, due
to the low spatial resolution and the low contrast of targets, for example, vehicles, to the background
in satellite videos.

2.2. Searching Possible Locations in Semantic Regions

Unlike most dominating saliency object-based approaches, such as Selective Search [26,40],
which merge superpixels to form region proposals, the proposed LRP searches region proposals
inside semantic regions, where an adaptive threshold is introduced to accommodate the statistics of
individual regions.

Note the set of extracted semantic regions as R, for a semantic region that contains m pixels,
the set of the pixels’ coordinates is noted as r = {(x0, y0), (x1, y1), . . . , (xm, ym)} ∈ R. The intensity of
a pixel at location (x, y) is referred to I(x, y). The blobs with high local saliency are constructed by the
pixels with intensities over a threshold thrr, I(x, y) > thrr, (x, y) ∈ r. The threshold thrr is defined by

thrr = µr + f ∗ σr, (1)

where µr and σr are the mean and standard deviation of pixel intensities in this local region r. The factor
f is the expected saliency against the backgrounds. For each extracted blob, a corresponding boundary
box is extracted as a possible location.

In the complex scenarios of satellite videos, this searching strategy may be affected by the presence
of crowded vehicles and the blurred boundaries of vehicles, which results in merged proposals or
incomplete proposals within an original boundary box extracted. We handle these cases by generating
multiple proposals. The large boxes should be divided into sub regions to match the target size
approximately and the small boxes should be expanded by half of the target size in each direction
as a conservative treatment. Figure 2a shows an example where 4 region proposals are generated.
To address those incomplete proposals, as shown in Figure 2b, the given bounding box is expanded in
each directions.

(a) (b)

Figure 2. Generating multiple region proposals from a possible location. The red box refers to the
groundtruth, green solid box refers to the extracted possible location, and green dash boxes refer to
the generated region proposals. (a) and (b) illustrate two examples of generating region proposals by
splitting and expanding original region proposals, respectively.
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2.3. Histogram Mixture Model

2.3.1. Histogram Mixture Model for Removing Obvious False Alarms

The proposed Histogram Mixture Model (HistMM) measures the likelihoods of the generated
region proposals towards their corresponding target category, so that obvious false alarms could be
removed at an early stage. The HistMM is a mixture model built on a set of histograms, and training
or estimating HistMM depends only on positive training samples.

Note the entire set of initial region proposals on a video frame as Xrp = {x0, x1, . . . , xnrp}, and nrp

is the number of initial region proposal on a given frame. For a region proposal ∀x ∈ Xrp, it is marked
as either target or background. We decide if x belongs to the target category (T) or the background
category (B) by a Bayesian decision function,

R =
p(T|x)
p(B|x) =

p(x|T)p(T)
p(x|B)p(B)

, (2)

in which R measures the membership rate of x belonging to the target category versus belonging to
the background category. R ≥ 1 implies x is a target. The corresponding decision function for x that
belongs to T can be simplified as

p(x|T) ≥ ct, (3)

where ct is a threshold.
The p(x|T) refers to the likelihood of a region proposal x to the target category. We model it by a

mixture model composed by a set of nH histograms,H = {h1, h2, . . . , hnH}. In this paper, we assume
that each histogram contributes equally to the likelihood p(x|T), therefore, the possibility of a proposal
r that belongs to T is defined as,

p(x|T) = 1
nH

nH

∑
i=1

p(x|hi). (4)

The decision function in Equation (3) can be then interpreted as

p(x|T) = 1
nH

nH

∑
i=1

p(x|hi) ≥ ct ⇒ ∃h ∈ H, p(x|h) ≥ ct, (5)

which means the likelihood to at least one histogram ĥi inH is larger than ct. On the contrary, a region
proposals is a background when all likelihoods toward histograms in H are less than the threshold
ct, as

p(x|h) < ct, ∀h ∈ H. (6)

For a given pair of a region proposal x and a histogram in h ∈ H, we appropriate p(x|h) by the
Intersection of Histogram (IoH) between the histogram h and the histogram extracted from the region
proposal x. For simplicity, we employ the Histogram of Color (HoC) for calculating p(x|h), as

p(x|h) = IoH(h, HoC(x)) = ∑ min(h, HoC(x)), (7)

which sums up the minimum values in all pairs of corresponding bins from h and HoC(x). As shown
in Figure 3, the IoHs on HoCs are distinct for distinguishing targets and backgrounds, although less
information is provided due to the dim appearance of the vehicles.

Our HistMM removes obvious false alarms by the threshold ct. A larger ct tends to removal
more possible false alarms, whereas it also risks abandoning some target instances. A smaller ct may
improve the coverage of targets in the region proposals, but the remaining number of proposals would
be high. The detailed effects of different parameter settings are discussed in Section 3.2.
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Figure 3. Histogram of Color can distinguish targets from backgrounds. Region proposal A and B are
vehicles, whereas the region proposal C and D are obvious false alarms. For the four selected region
proposals, their corresponding HoC are extracted, as shown in the right part of the figure. For A and B,
the IoH is high, while both C and D have low IoH due to the extremely low similarities.

2.3.2. Estimating Histogram Mixture Model

For a set of nrp possible region proposals Xrp on a video frame, we predict a region proposal
x ∈ Xrp as a target or a background by Equation (6), as summarized in Algorithm 1. The complexity for
predicting region proposals by HistMM grows linearly with the size of Xrp, O(nH × nrp). Therefore,
our proposed HistMM is computationally feasible and scalable for the case with a large number of
region proposals.

Algorithm 1 Removing Obvious False Alarms by Histogram Mixture Model (HistMM)

Input: Xrp = {x0, x1, . . . , xnrp}, ct > 0, andH = {h1, h2, . . . , hnH}
Output: Xrp

1: for x ∈ Xrp do

2: if ∀h ∈ H, p(x|h) ≤ ct then

3: Remove x from Xrp.
4: end if
5: end for
6: return Xrp

HistMM is estimated by a recursive learning algorithm on the positive samples of
groundtruths [14,41]. Note the estimated set of histograms by Ĥ = {ĥ1, ĥ2, . . . , ĥnH}, and all the
positive samples in the groundtruths is denoted by Xgt. For a groundtruth xgt ∈ Xgt, a histogram ĥm,
m ∈ {1, . . . , nH}, is updated by

π̂m ← π̂m + om(xgt)

ĥm ←
ĥm × π̂m + HoC(xgt)× om

π̂m + om
,

(8)

where π̂m counts the updates of estimated histogram ĥm, and, as π̂m increases, the lower fraction of the
new samples are taken into ĥm. om(xgt) defines the xgt’s ownership of an estimated histogram ĥm as

om(xgt) =


1, p(xgt|ĥm) ≥ ct and m = arg max

i∈{0,1,...,nH−1}
p(xgt|ĥi)

0, otherwise
, (9)

by which om(xgt) = 1 indicts that the new sample xgt updates the histogram ĥm by Equation (8).
Otherwise, om(xgt) = 0 means no nearby histogram component exists for this sample xgt, and a
new histogram component ĥnH is added to Ĥ. π̂nH is then initialized as 1 and the added histogram
component ĥnH is initialized by HoC(xgt). This update procedure continues until it finishes iterating
over the groundtruth set Xgt, as summarized in Algorithm 2.
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Algorithm 2 Training procedure of Histogram Mixture Model (HistMM)

Input: Xgt = {x1, . . . , xngt}, ct > 0
Output: Ĥ

1: for x ∈ Xgt do

2: if ∃ĥ ∈ Ĥ, p(x|ĥ) ≥ ct then

3: Find the updating histogram ĥm and the ownership om(x) by Equation (9).
4: Update ĥm by

π̂m ← π̂m + om(x)

ĥm ←
ĥm × π̂m + HoC(x)× om

π̂m + om
.

5: else

6: Initialize a new component by HoC(x), and add it toH.
7: end if
8: end for
9: return Ĥ

3. Experimental Results

3.1. Datasets

Two satellite video datasets, SkySat-Las Vegas dataset and SkySat-Burj Khalifa dataset, were used
for experimental evaluation of the proposed method for efficient region proposal. For both datasets,
the satellite videos were collected by SkySat, which recorded 1800 frames with 30 frames per second.
The spatial resolution of each frame in this video is 1.5 m and the frame size is 1920× 1080 pixels.

The SkySat-Las Vegas dataset refers to the satellite video captured over Las Vegas, USA in March
2014. As illustrated in Figure 4a, two sub-regions were selected for training and one sub-region was
selected for evaluation.

The SkySat-Burj Khalifa dataset refers to the satellite video, which is captured over Burj Khalifa,
United Arab Emirates on April, 2014. This video is 60 seconds long, which counts up to 30 frames per
second. As shown in Figure 4b, 3 sub-regions were selected from the original video, two of which were
for training and the remaining one for evaluation.

(a) SkySat-Las Vegas dataset (b) SkySat-Burj Khalifa dataset

Figure 4. Two typical frames from the two satellite video datasets used. (The regions surrounded by
the rectangle in yellow color are for training, while the regions in green color are for testing.)

For both datasets, vehicles on five frames from each datasets were annotated, and their
corresponding boundary boxes were provided as labelled samples. As we can see in Table 1, the average
target sizes are very small.
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Table 1. Detailed information for the datasets.

Dataset Region Size Average Vehicle Size

SkySat-Las Vegas
Train. 1 360× 360 7.09× 5.12
Train. 2 580× 1070 6.27× 5.03

Eval 720× 700 7.54× 6.00

SkySat-Burj Khalifa
Train. 1 300× 400 6.52× 5.11
Train. 2 450× 650 7.07× 5.28

Eval 500× 670 6.97× 5.80

3.2. Parameter Discussion

The LRP approach is mainly controlled by 3 parameters: the local region scale k, the threshold
factor f and the threshold ct in HistMM. The effect of each of them is discuss below. Their performance
were evaluated in terms of the coverage of targets (recall), where a targets is recalled if there is at
least 50% of IoU between any proposals and the ground-truth bounding box. These evaluations were
conducted by the Leave-One-Out Cross Validation (LOOCV) strategy on training set of the SkySat-Las
Vegas dataset.

• Semantic region Scale k controls size of the semantic regions generated. A larger k is preferred as
it will generate a coarse segmentation as required. The semantic regions are allowed to be larger
than the target size on purpose. As presented in Figure 5, reducing k gives fine-scale segmentation
and leads to an increased number of region proposals with lower recall rate, while with increasing
k, LRP generates fewer region proposals with improved recall rate.

• Threshold Factor f controls the segmentation threshold in each semantic region. Selecting a
large f would result in fragmented region proposals and decrease recall scores. As illustrated in
Figure 5, increasing f from 1.0 to 3.5, the recall scores experience a drop of over 40%.

• HistMM Threshold ct is the Bayesian decision threshold in the HistMM for removing obvious
false alarms as presented Section 2.3. The HistMM model with a smaller ct tends to keep more
obvious false alarms, which leads to unnecessarily more region proposals decreases. On the
other hand, increasing ct would filter out more obvious false alarms from the searched region
proposals. As shown in Figure 6, when ct increases to 0.5, the number of region proposals (Nrp)
reduces significantly, while the recall scores holds nearly stable about 80%, which presents the
most efficient case.

When ct was set to 0.5 based on the cross validation on using the training data, the number
of region proposals are reduced by over 60% by HistMM with almost no decrease in recall rate,
las presented in Table 2 and Figure 7, which demonstrates the effectiveness of the proposed
HistoMM model.

Table 2. Evaluation on the effectiveness of HistMM.

Dataset
Recall Nrp

Before After Diff Before After Diff

SkySat-Las Vegas 75.92% 75.10% −0.82% 30,614 10,100 −67.01%
SkySat-Burj Khalifsa 77.31% 76.83% −0.48% 17,017 6525 −61.66%
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Figure 5. Region performance evaluation with different k and f .
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Figure 6. Region proposal performance by different ct with k = 81, f = 1.25.

(a) Before HistMM (b) After HistMM (Ct = 0.5)

Figure 7. Visualization on region proposals before and after HistoMM.

3.3. Comparison of Region Proposal Approaches

The region proposal performance was compared with a set of existing region proposals approaches
for both common object detection tasks as well as aerial object detection tasks. Inspired by the
systematic region proposal evaluation research [42], the proposed region proposal scheme was
evaluated against Superpixels (SP) [39,42], Selective Search (SS) [26] and Region Proposal Network
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(RPN) [36]. SP generates a region proposal for each extracted superpixel, and SS merges neighboring
superpixels as region proposals. For both SS and SP the extraordinarily tiny or large region
proposals are considered impossible for vehicles in satellite videos and removed by post-processing.
In addition to these well-known region proposals techniques, two approaches for aerial object detection
are also included for comparison, which are Maximally Stable Extremal Regions (MSER) [33] or
Top-hat-Otsu [34].

Qualitatively, the region proposals generated by our LRP are more concentrated on possible
targets, while those saliancy object-based approaches, SS and SP, produce more evenly distributed
region proposals, as shown in Figure 8. A similar phenomenon is observed on the results by RPN,
as both RPN and our LRP remove those obvious false alarms from the background.

Then quantitative performance evaluation on different approaches was conducted in terms of
recall scores. Benefiting from the adopted searching strategy and the HistMM, LRP generates a
reasonable number of region proposals with good coverage of the possible targets. As presented
in Table 3 and Figure 9, our LRP achieves the highest recall@0.5 scores on both evaluation datasets.
In term of the number of the generated region proposals, it seems like our LRP generates more region
proposals than SP, but it should be noted that more than one region proposals are generated by LRP
for most possible targets, as shown in Figure 8. Although RPN generates more region proposals with
better recall rates, it takes advantage of the finetune scheme from our Fast R-CNN model.

Table 3. Evaluation on region proposal performance.

Method
SkySat-Las Vegas SkySat-Burj Khalifsa

Nrp Recall Time (s) Nrp Recall Time (s)

SP 4092 37.95% 1.98 7922 51.38% 1.28
SS 18,222 20.00% 588.97 11,728 19.34% 264.00

MSER 15,347 37.73% 0.48 10,569 55.80% 0.34
Top-hat-Ostu 1329 2.01% 0.02 1280 29.28% 0.01

RPN
(Finetuned from Fast-RCNN-LRP) 13,288 90.00% 0.72 7908 90.05% 0.48

lLRP 9874 80.00% 4.23 7424 79.56% 3.60

Besides, we also compare the detection performance by using a slim Fast-RCNN detector. This
slim Fast-RCNN receives 128× 128 video frame as input, and it includes two groups of convolutional
layers and a branch of fully connected layers for classification, where the branch for boundary box
regression are replaced with carefully selected anchor distribution. Each group of convolutional layers
contains three layers with kernel in the same size of 3× 3, and the number of output channels is
16 and 32 for the first and second convolutional layer group, respectively. After each convolutional
layer, a non-linear transformation is conducted by a Rectifier Linear Unit (ReLU) [43,44], which is
followed by a Batch Normalization (BN) layer [45]. The output size by Roi Pooling is 2× 2, which is
followed by two fully connected layers with 512 and 32 hidden neural units, respectively. A Faster
R-CNN model is also included for comparison. Due to the limited number of training samples, directly
training a Faster R-CNN model is challenging, therefore, this Faster R-CNN model is finetuned from
our Fast R-CNN-LRP. The performance evaluation is based on the PASCAL VOC metrics, where we
use Average Precision (AP) instead of Mean Average Precision (mAP), since only one target category is
contained in both datasets.

Compared with detection results by SP and SS approaches, our approach recalls most of the targets
with the highest AP scores, as presented in Table 4 and Figure 10. Compared with the state-of-the-art
Faster-RCNN model, the developed LRP with Fast-RCNN model achieves slightly improved detection
performance. As illustrated in Figure 11, fewer false alarms with higher detection scores are produced
by the Fast R-CNN model using the proposed LRP approach.
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(a) Groundtruth (b) SP (c) SS

(d) MSER (e) RPN (Finetuned from
Fast R-CNN-LRP)

(f) LRP

Figure 8. Visualization on generated region proposals by different approaches on SkySat-Las
Vegas Dataset.
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(b) SkySat-Burj Khalifa Dataset

Figure 9. Recall rates over different IoU thresholds.

In addition to aforementioned single-frame-based detection approach, we also compare our
approach with three popular background subtraction-based approaches —Gaussian Mixture Model
(GMM) [46], GMMv2 [14] and Visual Background Extractor (ViBe) [16] approaches (A post-processing
is applied to all these background subtraction-based approaches for removing extremely small or
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large blobs.). Their performance are compared in terms of recall, precision and F1 scores at IoU = 0.5.
Compared with these background subtraction-based approaches, Fast-RCNN-LRP that uses our region
proposals generates better F1 scores, and the background subtraction-based approaches suffer from
poor precision, as shown in Table 5.

Table 4. Detection performance evaluation.

Method
SkySat-Las Vegas SkySat-Burj Khalifa

Rcll Prcn F1 AP Rcll Prcn F1 AP

Fast R-CNN-SP 34.32% 35.53% 34.91% 29.20% 46.41% 31.82% 37.75% 35.30%
Fast R-CNN-SS 14.32% 19.57% 16.54% 7.43% 16.02% 12.78% 14.22% 5.90%

Fast R-CNN-MSER 30.45% 31.16% 30.80% 20.21% 41.44% 47.17% 44.12% 33.96%
Fast R-CNN-Top-hat-Ostu 1.82% 8.08% 2.97% 1.15% 26.52% 26.23% 26.37% 13.37%

Fast R-CNN-LRP 58.18% 43.91% 50.05% 49.48% 64.09% 42.49% 51.10% 50.57%

Faster R-CNN
(Finetuned from

Fast R-CNN-LRP)
59.32% 55.53% 56.31% 46.46% 62.43% 46.12% 53.05% 45.15%

(a) Groundtruth (b) Fast R-CNN-SP (c) Fast R-CNN-MSER

(d) Fast R-CNN-SS (e) Faster R-CNN (f) Fast R-CNN-LRP

Figure 10. Visualization on detection results by selected approaches on SkySat-Burj Khalifsa dataset.

Table 5. Detection results comparisons.

Dataset Method Rcll Prcn F1

SkySat-
Las Vegas

GMM 45.8% 49.6% 47.6%
GMMv2 64.7% 26.7% 37.8%

ViBe 58.0% 16.7% 25.9%
Fast-RCNN-LRP 58.18% 43.91% 50.05%

SkySat-
Burj Khalifa

GMM 33.5% 56.7% 42.1%
GMMv2 70.1% 37.7% 49.0%

ViBe 74.6% 22.0% 34.0%
Fast-RCNN-LRP 64.09% 42.49% 51.10%
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Figure 11. Precision-recall curve.

4. Discussion and Conclusions

Region proposal extraction is a valuable step to make target detection efficient. However, it is
challenging to generate a small number of region proposals without missing any targets. This is more
difficult when the targets are small and dim, such as those presented in satellite videos, due to their
limited spatial resolution.

To address the degraded performance of current region proposal extraction methods for satellite
videos, we proposed a novel region proposal approach (LRP), in which possible locations of targets are
searched in semantic regions by coarse-scale segmentation and a Histogram Mixture Model (HistMM)
is proposed to select region proposals with high likelihood from them.

The proposed LRP achieves improved recall rates of the targets with an acceptable increase in
time cost, when compared with saliency object-based region proposal approaches, such as Superpixels
(SP), Selective Search (SS), Maximally Stable Extremal Regions (MSER) and Top-hat-Otsu. Although
the Region Proposal Network (RPN) recalls more targets with less time cost, it requires sufficient
training samples or finetuning from a pre-trained model, such as the one obtained from LRP. Another
advantage of the proposed LRP is that its training procedure only relies on positive training samples,
even when a limited number of training samples is available.

With the improved recall rates by LRP, the detection performance by it with a slim Fast R-CNN
is also superior to other saliency object-based region proposal approaches. The detection results are
comparable with those by a finetuned Faster R-CNN model from our Fast R-CNN model. Compared
with those background subtraction techniques, the proposal LRP approach outperforms them in term
of precision, as fewer false alarms are generated.

As more satellite video data are available, more extensive testing can be conducted in the
future study. In addition, the approach proposed in this manuscript is developed and tested on a
panchromatic video data without color information. It may be extended to multi-channel data in the
future research and improved detection performance can be expected.
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