

Supporting information

Fig. S1. The potentially occurring fraction (POF) of alien species in the river Waal near Gameren derived from remotely sensed water temperatures at 50 cm depth during a hot summer day.

Fig. S2. The potentially occurring fraction (POF) of native species in the river Waal near Gameren derived from remotely sensed water temperatures at 50 cm depth during a hot summer day.

Fig. S3. Measured water temperatures in the river Rhine at gauging station Lobith during 2017.

Study object	Platform / Sensor	Resolution (m)	Wavelength (µm)	Validation method	Accuracy of RS measurement
<i>Torgersen et al. 2001</i> Oregon (USA), 50- 60 km long sections, width: 2-110 m	Helicopter / Thermovision 1000 forward-looking infrared system (FLIR)	0.2 - 0.4	8 - 12	Onset thermometers at 10 cm depth (n=67)	MAE 0.3 °C y=1.002 x - 0.018 (R ² =0.99)
Handcock et al. 2006 Green River, Yakima River, and Columbia River, USA, with stream widths between 10–500 m	Terra Satellite / MODIS Terra Satellite / ASTER Landsat-7 / Landsat ETM+ King Air B200 aircraft / MASTER Ground / FLIR	1000 90 60 5 and 15 0.05-0.5	6.54 - 14.39 8.12 - 11.65 10.40 - 12.50 10.15 - 11.45 10.15 - 11.45	Temperature loggers at stream bed $(n = 21)$ and portable thermometer at 10 cm depth	MD +1.2-2.2 °C for pure water pixels
Jensen et al. 2012 Curtis Creek, Utah, 300 m long section of 5-10 m wide	AggieAir UAV / microbolometer thermal cameras by Infrared Cameras Inc.	0.30	not reported	Temperature samples (n=18)	Up to -7° C y = 0.7 x +8.2
Dugdale et al. 2015 25 tributaries of the Restigouche River: 696 km total length, width unreported	Helicopter / FLIR SC660 uncooled microbolometer TIR camera	0.19	7 - 13	Onset HOBO UA- 002-64 temperature loggers anchored to the river bed (n=32)	y = 0.95 x + 0.81 (R ² =.97) RMSE = 0.45 °C
Fricke et al. 2015 Two sections of the river Rhine of 237 km long and 150 to 500 m river wide	Aircraft / Image IR 8800 by InfraTec	4	8 - 12	Buoys with temperature loggers at 1 m depth (n=7)	$MD - 1.36 \pm 0.16^{\circ}C.$ y = 0.93 x - 1.81
Fullerton et al. 2015 Entire rivers varying from 50-645 km in USA	Aircraft / Different TIR sensors (similar wavelength range, radiometric calibration and sensitivity)	0.20 - 0.44	8 - 12	Instream Onset thermal sensors (n = not reported)	MAE 0.44 ± 0.37 °C
<i>Iezzi et al. 2015</i> Aterno River in Italy with 20 m width	Ground / FLIR Systems S65 HS portable thermal imager	not reported	7.5 - 13	Portable thermometer (n=9)	not reported
<i>Wawrzyniak et al. 2016</i> Ain River in France with a 60 m width	6 Aircraft / Thermo Tracer TH7800 and VarioCAM	0.6-1.5	8 - 14 7.5 - 14	VEMCO loggers at bottom of the river bed (n=7)	MAE 2.6±1.2 °C
<i>This study</i> Side channel river Waal, of 755 m long and max 40 m wide	Sensefly eBee / ThermoMAP	0.25	7-15	Onset thermometers at 10 (n=24) and 50 cm depth (n=4)	MAE 0.81 ± 0.60 y = 0.7469 x + 5.93 (R ² =0.97) RSME 0.53 °C

 Table S1 Literature overview of thermal remote sensing of surface water temperature.

* MAE = mean absolute error, MD = mean difference, RMSD = root mean squared difference

References Table S1

- Dugdale, S. J., Bergeron, N. E., St-Hilaire, A., (2015) Spatial distribution of thermal refuges analysed in relation to riverscape hydromorphology using airborne thermal infrared imagery. Remote Sensing of Environment 160: 43-55.
- Fricke, K., Baschek, B., (2015) Temperature monitoring along the Rhine River based on airborne thermal infrared remote sensing: estimation of in situ water temperatures and inflow detection compared to artificial satellite data. Journal of Applied Remote Sensing 9: 095067.
- Fullerton, A.H., Torgersen, C.E., Lawler, J.J., Faux, R.N., Steel, E.A., Beechie, T.J., Leibowitz, S.G., (2015) Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures. Hydrological Processes 29: 4719-4737.
- Handcock, R.N., Torgersen, C.E., Cherkauer, K.A., Gillespie, A.R., Tockner, K., Faux, R.N., Tan, J., 2012. Thermal infrared remote sensing of water temperature in riverine landscapes, in: Fluvial remote sensing for science and management. John Wiley & Sons, New York, USA, pp. 85-113.
- Iezzi, F., Todisco, M.T., (2015) Stream temperature estimated in situ from thermal-infrared images: best estimate and uncertainty. In Journal of Physics: Conference Series Vol. 655, No. 1, p. 012063. IOP Publishing, Italy.
- Jensen, A.M., Neilson, B.T., McKee, M., Chen, Y., (2012) Thermal remote sensing with an autonomous unmanned aerial remote sensing platform for surface stream temperatures. In Proceedings IEEE Int. Geoscience and Remote Sensing Symposium (IGARSS), 2012, pp. 5049-5052.
- Wawrzyniak, V., Piégay, H., Allemand, P., Vaudor, L., Goma, R., Grandjean, P., (2016) Effects of geomorphology and groundwater level on the spatio-temporal variability of riverine cold water patches assessed using thermal infrared (TIR) remote sensing. Remote Sensing of Environment 175: 337-348.
- Torgersen, C.E., Faux, R.N., McIntosh, B.A., Poage, N.J., Norton, D.J., (2001) Airborne thermal remote sensing for water temperature assessment in rivers and streams. Remote Sensing of Environment 76: 386-398.