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Abstract: The spatial extent and vegetation characteristics of tidal wetlands and their change are
among the biggest unknowns and largest sources of uncertainty in modeling ecosystem processes
and services at the land-ocean interface. Using a combination of moderate-high spatial resolution
(≤30 meters) optical and synthetic aperture radar (SAR) satellite imagery, we evaluated several
approaches for mapping and characterization of wetlands of the Chesapeake and Delaware Bays.
Sentinel-1A, Phased Array type L-band Synthetic Aperture Radar (PALSAR), PALSAR-2, Sentinel-2A,
and Landsat 8 imagery were used to map wetlands, with an emphasis on mapping tidal marshes,
inundation extents, and functional vegetation classes (persistent vs. non-persistent). We performed
initial characterizations at three target wetlands study sites with distinct geomorphologies, hydrologic
characteristics, and vegetation communities. We used findings from these target wetlands study
sites to inform the selection of timeseries satellite imagery for a regional scale random forest-based
classification of wetlands in the Chesapeake and Delaware Bays. Acquisition of satellite imagery,
raster manipulations, and timeseries analyses were performed using Google Earth Engine. Random
forest classifications were performed using the R programming language. In our regional scale
classification, estuarine emergent wetlands were mapped with a producer’s accuracy greater than 88%
and a user’s accuracy greater than 83%. Within target wetland sites, functional classes of vegetation
were mapped with over 90% user’s and producer’s accuracy for all classes, and greater than 95%
accuracy overall. The use of multitemporal SAR and multitemporal optical imagery discussed here
provides a straightforward yet powerful approach for accurately mapping tidal freshwater wetlands
through identification of non-persistent vegetation, as well as for mapping estuarine emergent
wetlands, with direct applications to the improved management of coastal wetlands.

Keywords: Tidal wetlands; synthetic aperture radar; random forest; R; Google Earth Engine;
Chesapeake Bay; Delaware Bay; Sentinel-1A; Sentinel-2A; PALSAR; PALSAR-2; Landsat 8

1. Introduction

Tidal wetlands are among the most productive ecosystems on Earth, exerting a strong influence on
hydrological and biogeochemical processes, especially carbon cycling [1–3]. Carbon sequestration rates
in tidal marshes and mangroves have been reported to be orders of magnitude higher than even tropical
rainforests on a per-area basis [4]. With continued coastal urbanization, the long-term sustainability of
coastal communities and economies will increasingly rely on the many services that tidal wetlands
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provide, from recreation and food production, to water purification, coastal flood protection, and
nutrient and sediment regulation [5]. Yet, large areas of tidal wetlands continue to be damaged or lost
due to development, filling, drainage, nutrient enrichment, and other anthropogenic disturbances [6–9].
Monitoring the response of tidal wetlands to these pressures and quantifying changes in their spatial
extent and ecological characteristics has become increasingly important for improved management
of these ecosystems and the services they provide. In this study we explore several approaches for
mapping and monitoring the tidal wetlands of the Chesapeake and Delaware Bays.

Wetlands can be large in extent, highly heterogenous, and difficult to access. These factors limit
the ability to inventory and monitor wetlands using field studies alone. Satellite remote sensing
provides synoptic observations of wetlands and direct observations of biophysical attributes that define
wetlands, including surface hydrology (inundation state), hydrophilic vegetation, and hydric soils [6].
Many studies have utilized remote sensing to study abiotic and biotic wetland processes [10–15],
and to inventory wetlands [16–18]. For wetland process studies, polar orbiting optical and synthetic
aperture radar (SAR) satellites with spatial resolutions of 5–250 meters have generally represented
a compromise in terms of spatial resolution and temporal resolution (revisit time), which are both
important for monitoring wetland dynamics. Satellite imagery with spatial resolutions finer than five
meters is more suited to characterizing wetland spatial variability and producing detailed wetland
maps [19–21]. However, many of the satellites acquiring this high spatial resolution imagery are
commercial, requiring users to purchase imagery and at times also requiring tasking of the satellites for
image acquisition over a given study site. Further, commercial imagery generally lacks the large-scale
regional coverage in space and time needed for mapping a wetland’s extent and inundation dynamics
over large areas. Publicly available high spatial resolution aerial photography, such as the United
States Department of Agriculture Farm Service Agency National Aerial Imagery Program (NAIP)
provides an alternative to high spatial resolution commercial satellite imagery and provides growing
season imagery for the entire United States every two to three years. The United States Fish and
Wildlife Service produces its National Wetlands Inventory (NWI) by manually digitizing wetland
boundaries using NAIP and other high spatial resolution aerial photography [22,23]. Although manual
digitization is effective for wetland mapping [24], these mapping efforts are labor intensive, preventing
frequent updates of associated datasets. As a result, the NWI and similar products may at times be out
of date by several years or even decades [10]. In contrast to wetlands mapping efforts utilizing aerial
photography, which often relies on manual digitization, satellite imagery-based mapping efforts have
generally relied on supervised and unsupervised automated classification approaches [25]. When
the wetlands being classified are large in extent, automated classification approaches with 30-m
resolution satellite imagery can achieve classification accuracies greater than 95%, which is similar to
accuracies obtained from classifications with 1-m resolution imagery recommended by the Federal
Geographic Data Committee (FGDC) for wetlands mapping [26]. Use of satellite imagery for wetlands
characterization and mapping also provides the ability to fuse optical imagery with SAR imagery,
which each have unique and complementary observational capabilities [27].

Optical satellite imagery has been widely used for characterizing wetland vegetation. The visible
red to near infrared spectral angle provides a combined measure of vegetation greenness, leaf area index,
and upper canopy structure, integrated within an image pixel. This spectral angle is often leveraged
to produce spectral ratios and indices that relate to the aforementioned vegetation properties [28,29].
SAR satellites operate at microwave wavelengths, achieving greater signal penetration in vegetated
canopies and more accurate characterization of vegetation structural biomass and inundation below
canopies than optical spectral ratios and indices. C-band SAR (5.56-cm wavelength) is particularly
suitable for separating/identifying emergent marsh vegetation based on biomass. Ramsey et al. and
Dabrowska-Zielinska et al. both demonstrated strong statistical relationships between leaf area index
(LAI) and cross-polarized C-band backscatter in emergent marsh wetlands [30,31]. With an increasing
biomass of shrubs and trees, C-band signals saturate, limiting their ability to differentiate high biomass
emergent marsh vegetation from forest- and shrub-dominated wetlands [32]. L-band SAR (23-cm
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wavelength) can effectively separate emergent marsh vegetation from shrubs and trees. The differences
in vegetation canopy interaction between optical, C-band SAR, and L-band SAR make these forms of
imagery complementary in wetland mapping in general, and particularly useful in mapping the tidal
wetlands of the Chesapeake and Delaware Bays, which are largely classified as estuarine emergent (i.e.,
tidal marsh) by the NWI and dominated by emergent species of moderate biomass.

Just as the characterization of vegetation structure remains critical in mapping emergent tidal
marshes, so is the characterization of wetland hydrology. SAR and optical datasets can both accurately
assess surface water extent [17,33–38]. SAR-based surface water mapping generally relies on backscatter
thresholding approaches [34,35]. Optical surface water mapping generally relies on the derivation
of spectral indices and subsequent thresholding or the thresholding of several multispectral bands.
The normalized difference water index (NDWI) with green and near infrared bands and the modified
normalized difference water index (mNDWI) with green and shortwave infrared bands [37,38] are two
commonly used optically-based surface water indices.

Because microwave signals penetrate vegetation canopies, SAR is able to detect inundation under
vegetated canopies more effectively than optical imagery. Several studies have utilized SAR imagery
for inundation mapping in vegetated wetlands [10,12,39]. SAR backscatter intensity may increase
or decrease when vegetated wetlands become inundated depending on the relative contributions of:
(1) double-bounce scattering between vegetation and the underlying water surface, which increases
like-polarized backscatter; (2) multiple scattering by vegetation, which enhances cross-polarized
backscatter; and (3) forward specular scattering from open water, which greatly decreases backscatter [32,
40,41]. The double-bounce scattering mechanism is most present in co-polarized backscatter, σ0

HH

and σ0
VV (with the first H or V representing the polarization of the transmitted signal and second H or

V representing polarization of the return signal). Volume (multiple) scattering from vegetation is best
characterized with the cross-polarized backscatter, σ0

HV and σ0
VH. As the inundation level increases in

wetlands, moist soil transitions to standing water and double-bounce scattering enhances co-polarized
backscatter, while cross-polarized backscatter decreases monotonically as vegetation exposed above
the water level decreases. This opposite behavior of co- and cross-polarized backscatter can be used to
identify inundated vegetation provided sufficient vegetation remains present above the water level.
These scattering responses also vary in magnitude and sensitivity with SAR wavelength (e.g., C-band
vs. L-band frequency).

In this study we examine the characterization of inundation dynamics and vegetation
characteristics of target wetland study sites in the Chesapeake Bay using SAR and optical satellite
imagery. We explore and evaluate the capabilities of SAR and optical imagery and use this to guide
layer selection for a fused SAR-optical-Digital Elevation Model (DEM) classification based on the
random forest algorithm [42], mapping the tidal wetlands of the Chesapeake and Delaware Bays for
2017. In this regional scale wetlands classification, we separated estuarine emergent wetlands from
palustrine emergent wetlands. This separation corresponded to a general split between freshwater
marshes and brackish/salt marshes. Our approaches utilized multitemporal satellite imagery from
a single year and can be updated on an annual basis to provide annual assessments of change in
tidal wetlands distribution. Our regional scale wetlands mapping effort leveraged the temporally
dense record of publicly accessible satellite imagery including Sentinel-1A, Sentinel-2A, Landsat 8, and
Advanced Land Observing Satellite (ALOS)—Phased Array type L-band Synthetic Aperture Radar 1 &
2 (PALSAR/PALSAR2) imagery.

2. Materials and Methods

2.1. Methods Overview

Due to the fact we are attempting to provide assessments of wetland extent, wetland vegetation
characteristics, and wetland inundation dynamics in a single study, the methods we employed were by
their very nature multifaceted and at times complex. For these reasons, we provide an ordered overview
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of the methods sections here to provide clarity to the reader. Section 2.2 describes the satellite datasets
we evaluated and successively employed for wetland characterization and subsequent mapping.
Section 2.3 describes the target wetlands study sites we selected for this evaluation. Section 2.4
describes wetland vegetation characterization in terms of both field studies and previous datasets
utilized for vegetation characterization in addition to remote sensing-based methods employed for
vegetation characterization. Section 2.5 describes wetland inundation characterization and is split
into Section 2.5.1, which discusses the field studies and previous datasets used for the hydrologic
characterization of study sites, and Section 2.5.2, which describes the remote sensing-based methods
employed for inundation characterization. The methods section concludes with Sections 2.6 and 2.7,
which describe mapping efforts employing random forest classifications. Section 2.6 describes a
classification of vegetation within a target study site wetlands complex using both SAR-only and
SAR-optical-DEM image stacks as classification inputs. In Section 2.6, we describe the use of a
post-classification importance assessment for the SAR-only and SAR-optical-DEM classifications
to determine which forms of imagery were most important for improving classification accuracy.
Section 2.7 describes the methods for mapping general wetlands classes in a regional scale classification
for the Chesapeake and Delaware Bays using the same SAR-optical-DEM image stack used in Section 2.6.
Section 2.7 concludes with a post-classification importance assessment of the SAR-optical-DEM regional
scale wetlands classification, which was then compared to the SAR-optical-DEM wetland vegetation
classification described in Section 2.6.

2.2. Satellite Imagery Selection and Processing

We evaluated L-band PALSAR and PALSAR-2, and C-band Sentinel-1A SAR imagery, as well
as Sentinel-2A and Landsat 8 optical imagery for the characterization of wetland vegetation and
inundation state, as well as mapping of overall tidal wetland extent, at three target study sites. We
then utilized these satellite datasets to map palustrine emergent, estuarine emergent, and forested
wetlands throughout the Chesapeake and Delaware Bays for 2017 in a regional scale classification. The
aforementioned satellites provided data with revisit intervals of 48, 48, 12, 10, and 16 days, respectively.
There was sufficient temporal overlap between the satellite datasets from 2016 through to 2017 to
evaluate satellite performance in the characterization of vegetation phenology and inundation extent
over a range of tidal stages. This was the timeframe for which we performed the majority of our
analysis. The exception to this rule was the PALSAR satellite, which operated between 2006 and
2011. We used Google Earth Engine (GEE) for the majority of our image data assembly [43]. GEE
is a cloud-based image processing platform that has been effective for computationally demanding
image processing and classification applications, such as large-scale agricultural mapping, forest
monitoring, and wetlands mapping [18,44]. The majority of our classification work employed SAR
and optical satellite imagery; however, we also made extensive use of the Shuttle Radar Topography
Mission (SRTM) Digital Elevation Model (DEM) in our regional scale classification efforts. We accessed
Sentinel-2A and Landsat 8 optical imagery and the SRTM DEM through GEE. Sentinel-2A imagery
was available on GEE as a top of atmosphere (TOA) reflectance product, while Landsat 8 was available
as a surface reflectance product. All optical imagery was quality and cloud masked in GEE prior to the
analysis and classification.

Sentinel-1A imagery accessed through GEE was processed with the European Space Agency’s
Sentinel Applications Platform (SNAP) toolbox in a processing sequence in which ground range
detected SAR imagery undergoes the following processes: orbit correction, border noise removal,
thermal noise removal, radiometric calibration, and terrain correction with an SRTM DEM. Although
SAR terrain correction tools can be variable in performance, the flat terrain of the Chesapeake and
Delaware Bay regions was unlikely to produce significant differences in processed SAR imagery
based on the choice of SAR terrain correction tool; however, this is a non-trivial consideration in
topographically complex study areas. PALSAR-2 imagery was available on GEE in the form of
annual mosaics. These annual mosaics were assembled by the Japan Aerospace Exploration Agency
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(JAXA). JAXA produced the PALSAR-2 annual mosaics by orthorectifying PALSAR-2 image strips
from a given year, applying a slope correction with the 90-m SRTM DEM, and then mosaicking the
image strips and applying a destriping process. PALSAR imagery was the only satellite dataset not
available through the GEE platform. We used PALSAR imagery provided and processed by the Alaska
Satellite Facility (ASF) through an agreement with JAXA. ASF processed the PALSAR imagery to
a ground-range-detected, terrain-corrected, level 1.5 product, which we downloaded from ASF’s
VERTEX online interface. PALSAR and PALSAR-2 L-band imagery was available for HH polarization,
and at times HV polarization as well, while Sentinel-1A C-band imagery was available for both VV
and VH polarizations.

Processing of imagery outside of the GEE environment for target wetlands site vegetation and
inundation analysis and development of training/validation data for the regional scale classification
were performed using Quantum GIS (QGIS), Python, and the R programming language [45].

2.3. Study Site Selection

We selected three target wetlands study sites for the evaluation of satellite imagery for vegetation
and inundation characterizations and to inform our regional scale wetlands mapping effort for the
Chesapeake and Delaware Bays. These sites were chosen based on their high wetland densities and
distinct ecological characteristics relative to one another. The three target sites included the Smithsonian
Global Change Research Wetland (GCReW), or Kirkpatrick Marsh (hereafter referred to as Kirkpatrick
Marsh), the Blackwater National Wildlife Refuge (hereafter referred to as Blackwater NWR), and the
Jug Bay Wetlands Sanctuary (hereafter referred to as Jug Bay) (Figure 1).

Kirkpatrick Marsh, in the Rhode River sub-estuary along the northwestern shoreline of the
Chesapeake Bay, is classified as an estuarine, emergent, persistent, and irregularly flooded marsh
(E2EM1P) according to the National Wetlands Inventory (NWI) 2013 update. Kirkpatrick Marsh is
noted as being high elevation by previous studies [46–48]. The vegetation composition is typical of a
high elevation marsh in the Mid-Atlantic region of the United States with dominant species including:
Scirpus americanus (also known as Shoenoplectus), Spartina patens, Iva frutescens, and Phragmites australis.
These are all persistent species with significant amounts of non-photosynthetic plant material remaining
present on the marsh surface during the non-growing season.

Blackwater NWR and its connected wetlands comprise the largest estuarine wetlands complex in
the Chesapeake Bay (Figure 1). Situated along the eastern shoreline of the Chesapeake Bay, this site
contains several classes of individual wetlands, the vast majority of which are estuarine, emergent,
persistent, and irregularly flooded marshes (E2EM1P) according to the NWI 2013 update. Blackwater
NWR also contains estuarine, emergent, persistent, and regularly flooded marshes (E2EM1N). The low
elevation of Blackwater’s marsh surface, combined with sea-level rise, sediment deficits, and marsh
destruction by nutria, have resulted in significant wetland degradation with more than 5000 acres of
tidal marsh being converted to open water since 1938 [49–52]. Thus, even though Blackwater NWR
shares the same NWI wetland class as Kirkpatrick Marsh, it is a very different system in terms of its
geomorphology. These differences are further evidenced by the presence of low marsh species like
Spartina alterniflora, which is largely absent from Kirkpatrick Marsh. Blackwater NWR also contains
Spartina patens and Distichlis spicata, which are common high marsh species. These three dominant
species of Blackwater NWR are all persistent graminoid emergents.

Located along the Patuxent River in southern Maryland, Jug Bay is a tidal freshwater wetlands
complex containing several NWI wetland classes (Figure 1). The most common wetland classes
include estuarine, emergent, persistent, and irregularly flooded marsh (E2EM1P), estuarine, emergent,
persistent, and regularly flooded marsh (E2EM1N), as well as various deepwater, shrub, and
forested wetlands according to the NWI 2013 update. The salinity differences between Jug Bay
relative to Kirkpatrick Marsh and Blackwater NWR facilitates pronounced differences in vegetation
characteristics [53,54]. Jug Bay, like other Mid-Atlantic tidal freshwater systems, contains a significant
amount of non-persistent vegetation types including: Nuphar lutea (spatterdock), Peltandra virginica
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(green arrow arum), and Pontederia cordata (pickerelweed) [55,56]. Jug Bay also contains substantial
amounts of Zizania aquatica (wild rice), which is semi-persistent in nature, losing its leaves at the end of
the growing season, while its stems persist on the marsh surface either standing or in a horizontal
mat during the non-growing season. Jug Bay contains significant amounts of persistent Typha spp.
(cattail) as well. We surveyed the Jug Bay Wetlands Sanctuary during all four seasons and performed
vegetation inventories during each of these visits (6/7/2016, 5/1/2017, 23/6/2017, 13/9/2017, 14/9/2017,
5/12/2017, 6/12/2017, and 13/4/2018). We observed that dominant vegetation was fairly well zonated,
forming stands that were largely monospecific. We observed that Nuphar lutea was by far the most
dominant non-persistent vegetation in Jug Bay.
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imagery. Previous vegetation inventories existed for Kirkpatrick Marsh (Lu, Williams, and 
Megonigal, Personal communication) and Jug Bay (Swarth et al.) [56,57]. In order to update these 
surveys to correspond to the 2016–2017 satellite imagery datasets, we visited both target sites and 
performed GPS-based transects in July 2016, recording dominant vegetation types. These transects 
were then referenced with 2015 NAIP imagery, as well as the original Lu, Williams, and Megonigal 
and Swarth et al. shapefile-based vegetation inventories in order to perform updates to the dominant 
vegetation boundaries (Figure 2). We performed this manually digitized update in QGIS, changing 
the boundaries of dominant species only where clearly identifiable shifts in the spatial distribution 
of dominant vegetation had occurred relative to the 2015 NAIP imagery. In many cases, the Lu, 
Williams, and Megonigal survey for Kirkpatrick Marsh and Swarth et al. survey for Jug Bay needed 
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could be utilized for the identification of different classes of vegetation. We computed the normalized 
difference vegetation index (NDVI) and triangular vegetation index (TVI) for optical imagery [28,29].  

Figure 1. False-color rendering of Sentinel-2 near infrared imagery of Chesapeake Bay and Delaware
Bay study region with Kirkpatrick Marsh, Blackwater National Wildlife Refuge (NWR), and Jug Bay
Wetlands target study sites shown in the right panel with false-color National Aerial Imagery Program
(NAIP) aerial photography and National Wetlands Inventory (NWI) boundaries in white.

2.4. Marsh Vegetation Characterization Using Field Surveys and Satellite Imagery

Kirkpatrick Marsh and Jug Bay were selected as evaluation sites for vegetation characterizations
with SAR and optical satellite imagery. We were particularly interested in evaluating the differences
between persistent and non-persistent vegetation types within these study sites and determining
whether their presumed phenological differences would be captured using multitemporal satellite
imagery. Previous vegetation inventories existed for Kirkpatrick Marsh (Lu, Williams, and Megonigal,
Personal communication) and Jug Bay (Swarth et al.) [56,57]. In order to update these surveys to
correspond to the 2016–2017 satellite imagery datasets, we visited both target sites and performed
GPS-based transects in July 2016, recording dominant vegetation types. These transects were then
referenced with 2015 NAIP imagery, as well as the original Lu, Williams, and Megonigal and
Swarth et al. shapefile-based vegetation inventories in order to perform updates to the dominant
vegetation boundaries (Figure 2). We performed this manually digitized update in QGIS, changing
the boundaries of dominant species only where clearly identifiable shifts in the spatial distribution of
dominant vegetation had occurred relative to the 2015 NAIP imagery. In many cases, the Lu, Williams,
and Megonigal survey for Kirkpatrick Marsh and Swarth et al. survey for Jug Bay needed only minor
spatial adjustments.



Remote Sens. 2019, 11, 2366 7 of 36

Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 32 

 

NDVI is one of the more commonly used indices for characterizing wetland vegetation 
[25,47,49]. TVI is less commonly utilized but it has been demonstrated to be more effective for 
characterizing vegetation in high biomass ranges in agricultural studies. After evaluating the 
temporal and spatial coverage of Landsat 8 and Sentinel-2A imagery, we elected to only use Sentinel-
2A vegetation indices as they provided a denser timeseries of cloud-free imagery over both target 
sites. Following this evaluation, Sentinel-2A NDVI and TVI, as well Sentinel-1A VV- and VH-
polarized backscatter (σ0VV and σ0VH) spatial averages, were computed for each vegetation class for 
Kirkpatrick Marsh and Jug Bay. These timeseries were then exported from GEE and analyzed with 
Python and R.   NDVI = (୒୍ୖିୖୣୢ)(୒୍ୖାୖୣୢ)  (1) 

TVI = 0.5[120(NIR − Green) − 200(Red − Green)] (2) 

 
 
     
 

 
  
 
 
 
 
 
 

Figure 2. 2015 NAIP natural-color site maps of Kirkpatrick Marsh (a) and Jug Bay (b). 2013 NWI 
boundaries shown in white. The color shapefile boundaries show the updated Swarth et al. [56] and 
Lu, Williams, and Megonigal vegetation survey boundaries [57]. 

2.5. Marsh Inundation Characterization and Approaches 

2.5.1. Field Measurements of Marsh Inundation 

To evaluate how differences in geomorphology (i.e., marsh elevation) impact marsh inundation 
regimes and our ability to detect inundation using different remote sensing tools, our remote sensing 
assessment and mapping of marsh inundation focused on Kirkpatrick Marsh and Blackwater NWR. 
Kirkpatrick Marsh consists of almost entirely high marsh, is less frequently inundated than low 
marsh systems, and the mean tidal amplitude of the adjacent Rhode River sub-estuary is 0.3 meters 
[47,58,59]. This presented a unique opportunity to determine how effectively inundation events of 
low water depth (less than 0.5 meters) that occurred below dense vegetated canopies could be 
detected using satellite imagery, particularly in regions dominated by the high biomass and densely 
growing Phragmites australis. The Blackwater NWR system is a mix of a low and high marsh. We 
surveyed a sub-region of the Blackwater NWR site on 15 October 2015 (see GPS locations in Figure 
3). We noted that major sections of the surveyed area were dominated by Spartina alterniflora. During 
this survey, we observed that major regions of the marsh inundated during regular high tides 
(approximate tidal range of 0.6 meters in the connected estuary). 

To assess the capability of the satellite imagery in characterizing tidal inundation within these 
study sites, tidal stage water level timeseries were acquired from nearby National Oceanic and 
Atmospheric Administration (NOAA) tidal stations and matched with satellite overpass times. The 
NOAA tidal gauge closest to Blackwater NWR is Bishop’s Head (Station ID: 8571421). The tidal gauge 
closest to Kirkpatrick Marsh is Annapolis (Station ID: 8575512). No time-based or water level-based 
adjustments were made to the Bishop’s Head tidal timeseries because reliable estimates of in-marsh 

Figure 2. 2015 NAIP natural-color site maps of Kirkpatrick Marsh (a) and Jug Bay (b). 2013 NWI
boundaries shown in white. The color shapefile boundaries show the updated Swarth et al. [56] and
Lu, Williams, and Megonigal vegetation survey boundaries [57].

These updated surveys were then ingested into Google Earth Engine (GEE). Within GEE, we
accessed collections of Sentinel-1A, Sentinel-2A, and Landsat 8 imagery in order to evaluate whether
optical vegetation indices or SAR backscatter timeseries exhibited unique temporal signatures that
could be utilized for the identification of different classes of vegetation. We computed the normalized
difference vegetation index (NDVI) and triangular vegetation index (TVI) for optical imagery [28,29].

NDVI is one of the more commonly used indices for characterizing wetland vegetation [25,47,49].
TVI is less commonly utilized but it has been demonstrated to be more effective for characterizing
vegetation in high biomass ranges in agricultural studies. After evaluating the temporal and spatial
coverage of Landsat 8 and Sentinel-2A imagery, we elected to only use Sentinel-2A vegetation indices
as they provided a denser timeseries of cloud-free imagery over both target sites. Following this
evaluation, Sentinel-2A NDVI and TVI, as well Sentinel-1A VV- and VH-polarized backscatter (σ0

VV

and σ0
VH) spatial averages, were computed for each vegetation class for Kirkpatrick Marsh and Jug

Bay. These timeseries were then exported from GEE and analyzed with Python and R.

NDVI =
(NIR−Red)
(NIR + Red)

(1)

TVI = 0.5[120(NIR−Green) − 200(Red−Green)] (2)

2.5. Marsh Inundation Characterization and Approaches

2.5.1. Field Measurements of Marsh Inundation

To evaluate how differences in geomorphology (i.e., marsh elevation) impact marsh inundation
regimes and our ability to detect inundation using different remote sensing tools, our remote sensing
assessment and mapping of marsh inundation focused on Kirkpatrick Marsh and Blackwater NWR.
Kirkpatrick Marsh consists of almost entirely high marsh, is less frequently inundated than low marsh
systems, and the mean tidal amplitude of the adjacent Rhode River sub-estuary is 0.3 meters [47,58,59].
This presented a unique opportunity to determine how effectively inundation events of low water depth
(less than 0.5 meters) that occurred below dense vegetated canopies could be detected using satellite
imagery, particularly in regions dominated by the high biomass and densely growing Phragmites australis.
The Blackwater NWR system is a mix of a low and high marsh. We surveyed a sub-region of the
Blackwater NWR site on 15 October 2015 (see GPS locations in Figure 3). We noted that major sections
of the surveyed area were dominated by Spartina alterniflora. During this survey, we observed that
major regions of the marsh inundated during regular high tides (approximate tidal range of 0.6 meters
in the connected estuary).
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To assess the capability of the satellite imagery in characterizing tidal inundation within these study
sites, tidal stage water level timeseries were acquired from nearby National Oceanic and Atmospheric
Administration (NOAA) tidal stations and matched with satellite overpass times. The NOAA tidal
gauge closest to Blackwater NWR is Bishop’s Head (Station ID: 8571421). The tidal gauge closest to
Kirkpatrick Marsh is Annapolis (Station ID: 8575512). No time-based or water level-based adjustments
were made to the Bishop’s Head tidal timeseries because reliable estimates of in-marsh water heights
were not available over Blackwater NWR. In the case of Kirkpatrick Marsh, water level adjustments
were made by leveraging the findings from previous studies that characterized the hydrology of the
marsh in detail [46,48]. Nelson et al. determined that a water depth of 0.89 meters or greater in a
major tributary draining Kirkpatrick Marsh was needed to reach a bankfull depth, at which point
the marsh platform begins to inundate [48]. The results from Nelson et al. were obtained using a
SonTek Acoustic Doppler Current Profiler (ADCP) measuring water depth and velocity. Because the
SonTek was only deployed for limited times, we performed an assessment of relationship between
the SonTek and the nearby Annapolis NOAA tidal gauge to determine whether adjustments could
be made to the Annapolis series to estimate the Kirkpatrick Marsh tidal creek water levels during all
satellite overpasses. We performed this assessment by resampling the SonTek and Annapolis series to
a common temporal resolution of one minute. A lagged correlation analysis (lag range of −120 minutes
to +120 minutes) was performed for a time period of approximately one week for three separate
seasons in 2016. These three selected periods were times when the SonTek was determined to be
operating continuously. The three time periods were determined to have an average time offset of
34.33 minutes (with the SonTek water level changes preceding the Annapolis water level changes).
The height offset was determined to be 0.4774 meters on average (with the Kirkpatrick Marsh tributary
bottom where the SonTek was deployed being lower in elevation than the Annapolis tidal gauge).
These parameters are shown in Table 1.

Table 1. Adjusted Annapolis stage parameters for estimating tidal creek stage of Kirkpatrick Marsh.

Date n (minutes) Max R-Value Time Offset (minutes) Height Offset (meters)

June 2016 6000 0.9911 34 0.4856
October 2016 6000 0.9963 37 0.4769

December 2016 6000 0.9912 32 0.4696

Average – – 34.33 0.4774
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2.5.2. Satellite-Based Inundation Mapping at Kirkpatrick Marsh and Blackwater NWR

After the adjusted water level series were obtained, GEE was used to derive optically-based water
indices (NDWI and mNDWI) from Sentinel-2A and Landsat 8 imagery and to provide σ0

VV, σ0
VH,

and σ0
VV/σ0

VH ratio timeseries from Sentinel-1A, covering Kirkpatrick Marsh between 2016–2017.
We evaluated the σ0

VV/σ0
VH ratio as a potential normalized inundation indicator as σ0

VV tends to
increase as marshes inundate from enhanced double-bounce scattering, while σ0

VH tends to decrease
from reductions in volume scattering. The spatial means of the backscatter and water index values
were computed over the Kirkpatrick Marsh (NWI class E2EM1P). The same process was used for the
NWI-defined irregularly inundated estuarine marshes (E2EM1P) and regularly inundated marshes
(E2EM1N) of the Blackwater NWR study site in addition to several less spatially extensive NWI wetland
classes. The optical water index and SAR backscatter timeseries were computed in GEE, then exported
for further analysis in Python and R. The Kirkpatrick Marsh and Blackwater NWR satellite timeseries
were compared to the adjusted Annapolis tidal series and Bishop’s Head tidal series, respectively.

Pearson’s correlation was used to determine the goodness of fit between the Sentinel-1A backscatter
and the Sentinel-2A water index variability and tidal stage in both Kirkpatrick Marsh and Blackwater
NWR. These relationships were also plotted using both ordinary least squares and second order
polynomials. Blackwater NWR had only one PALSAR image acquired at high tide that was from the
same orbit as a corresponding low tide image (ascending orbital path 136). This high tide–low tide
image pair was used for comparison, in addition to the Sentinel-1A and Sentinel-2A image timeseries,
providing an assessment of optical, C-band SAR, and L-band SAR for inundation characterization at
the Blackwater NWR site (Figure 4). No PALSAR imagery was available for the stage height above
the bankfull depth in Kirkpatrick Marsh, thus no corresponding assessment of inundation mapping
could be performed. Above the bankfull depth, Landsat 8 images were also limited. As a result, only
Sentinel-1A backscatter (σ0

VV, σ0
VH, and σ0

VV/σ0
VH ratio) and Sentinel-2A NDWI and mNDWI could

be assessed for their inundation mapping capabilities at Kirkpatrick Marsh.

NDWI =
(Green−NIR)
(Green + NIR)

(3)

mNDWI =
(Green− SWIR)
(Green + SWIR)

(4)

In Kirkpatrick Marsh, having a well-constrained estimate of the bankfull depth from a previous
study [48] allowed us to segment Pearson’s correlation analysis of Sentinel-1A backscatter and
Sentinel-2A optical water indices into above- and below-bankfull depth categories. Within the
above-bankfull depth (ABD) category, Sentinel-1A backscatter, particularly σ0

VV and σ0
VV/σ0

VH ratio
exhibited the highest correlation with water level (tidal stage) and were subsequently selected for
mapping the inundation extent (see the Results section for justification). Noting the relationships
showing moderate to strong statistical relationships between the marsh-integrated σ0

VV and σ0
VV/σ0

VH

ratio and water level above-bankfull depth, we utilized this relationship to map the inundation over
Kirkpatrick Marsh at different tidal stages with a statistically based change detection approach. This
approach relied on computing a below-bankfull depth (BBD) temporal mean image and BBD temporal
standard deviation (SD) image for σ0

VV and the σ0
VV/σ0

VH ratio on a per-pixel basis for low tide
Sentinel-1A imagery covering the marsh between 2016–2017. The full 2016–2017 imagery timeseries
(above- and below-bankfull depth) was then classified as inundated for any pixel 2 SD below the
mean for σ0

VV/σ0
VH ratio or 2 SD above the mean for σ0

VV (Equations (5) and (6)), representing
a >95% confidence interval separation from the BBD σ0

VV or σ0
VV/σ0

VH temporal mean. We also
evaluated 1 SD and 3 SD thresholds for inundation classification. Using a per-pixel change detection
classification allowed us to control for spatial and temporal variability across the marsh due to
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variability in vegetation structure, biomass, and non-tidal hydrology to detect changes linked to high
tide inundation events.

Inundated pixel = σ0
VV > (µ_vv_bbd + 2SD_vv_bbd) (5)

Inundated pixel = σ0
VV/σ0

VH < (µ_vvvh_bbd − 2SD_vvvh_bbd) (6)

where: σ0* is the backscatter for a given image pixel location in full timeseries, µ_*_bbd is the backscatter
temporal mean for below-bankfull depth image series at a given pixel location, and 2SD_*_bbd is two
backscatter standard deviations for below-bankfull depth image series at a given pixel location.
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Figure 4. Blackwater October 2015 survey locations (points) and Figure 3 subregion (white box) overlaid
on Synthetic Aperture Radar (SAR) imagery. Phased Array type L-band Synthetic Aperture Radar
(PALSAR) L-band backscatter (σ 0

HH) images are shown in the upper panels with the left-side image
(a) being low tide and the right-side image (b) being high tide. Sentinel-1A C-band backscatter (σ 0

VV)
images are shown in the lower panels with the left-side being low tide (c) and the right-side image
(d) being high tide. All SAR images are scaled between −5 dB and −20 dB.

At the Blackwater NWR site, we performed an additional analysis on a sub-region of the wetlands
complex. We evaluated 2015 NAIP imagery in combination with an October 2015 ground survey and
2013 NWI polygons to determine which sections of the study site were consistently classified as tidal
marsh, estuarine forest, upland forest, and open water. This was done to produce accurate regions of
interest (ROIs) that could be used for pixel extraction of high tide and low tide satellite image pairs.
Since only one PALSAR high tide–low tide pair existed, we could not perform a timeseries analysis, but
rather performed a backscatter pixel distribution comparison between high tide and low tide imagery.
The PALSAR image pair was acquired from the same ascending orbital path 136. The low tide image
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was acquired on 2006-12-05 03:30:00 GMT with a Bishop’s Head tidal stage of 0.084 meters. The high
tide image was acquired on 2010-03-15 03:32:00 GMT with a Bishop’s Head tidal stage of 0.805 meters.
Sentinel-1A high tide–low tide pairs from similar tidal stages were selected for comparison to PALSAR.
Sentinel-1A low tide imagery was acquired on 2016-10-30 23:06:00 GMT with a Bishop’s Head tidal
stage of 0.238 meters, and high tide imagery was acquired on 2016-10-06 23:06:00 GMT with a tidal
stage of 0.885 meters.

2.6. Target Site Wetland Vegetation Mapping and Overview of Random Forest Classification

We selected Jug Bay as a wetland vegetation mapping site. We mapped specific wetland vegetation
classes at Jug Bay described in the Swarth et al. survey and expanded the mapping effort into the
surrounding Patuxent River region. We performed two classifications at Jug Bay, the first was a
multitemporal SAR classification where the layer selection was informed by the vegetation timeseries
analysis described in Methods Section 2.4 and the corresponding Results Section 3.2.2. A SAR-only
classification was developed at Jug Bay to capitalize on pronounced differences in the SAR timeseries
between vegetation classes. In an effort to capture these phenological differences in a classification,
we created a 10-layer image stack with Sentinel-1A SAR temporal derivatives for both VV and VH
polarizations including annual mean, annual standard deviation, summer mean (July–August), fall
mean (September–October), and winter mean (November–December) layers.

We then classified this SAR-only image stack using a supervised classifier based on the random
forest algorithm (Figure 5). The random forest approach was also used in the regional scale classification
described in Section 2.7. The random forest algorithm is a machine learning classification approach
structured as an ensemble of decision trees that split predictor variable values at nodes and define
a precited class based on votes across the decision trees [42]. The random forest approach performs
an internal validation and classification accuracy assessment using out-of-bag sampling (making
cross-validation unnecessary), is robust to over-fitting, and has been demonstrated as effective in
previous satellite image-based wetland classification efforts [17,42]. The random forest approach also
provides a post-classification importance assessment of predictor variables [42]. In the SAR-only
random forest classification, we parameterized the classifier with three predictors sampled for splitting
at each node in a given tree and used 200 trees, as performed in Clewely et al. [17]. We used the updated
Swarth survey as training/validation data for the random forest classification at Jug Bay. Within the R
environment, the “sp” package was used to define a stratified random sample of 500 points within
each multipart polygon of a given Swarth survey vegetation class (and one open water class). These
training/validation points were then used to extract associated predictor values from the SAR-only
image stack, which was subsequently used to train and validate the random forest classification and
classify the image stack using R’s “randomForest” package.

To provide a comparison to the SAR-only Jug Bay wetland vegetation classification described
above and to provide a second comparison to the regional scale wetlands classification described in
the following Section 2.7, we performed a second random forest classification of vegetation at Jug Bay
using the same SAR-optical-DEM stack used in the regional scale classification. We parameterized
this second random forest classifier with 200 trees and selected four predictors for splitting at each
node. The comparison between the SAR-only and SAR-optical-DEM classifications were performed
in order to evaluate the importance of layer selection in wetland mapping at Jug Bay. The second
comparison of the SAR-optical-DEM classification at Jug Bay and the regional scale SAR-optical-DEM
classification described in Section 2.7 was performed in order to provide a controlled evaluation of
the satellite image importance in terms of characterizing vegetation within wetlands and separating
wetlands from other land cover. The rationale for SAR-optical-DEM stack layer selection is described
in the following Section 2.7.
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Figure 5. Schematic of regional scale random forest classification process in which the National
Land Cover Database (NLCD) and the National Wetlands Inventory (NWI) are merged to produce a
classification training raster and Quantum GIS (QGIS) and its associated Geospatial Data Abstraction
Library (GDAL) are used to produce training polygons used to classify Google Earth Engine (GEE)
image stacks in the R environment with R’s Random Forest package.

2.7. Regional Scale Wetland Mapping and SAR-Optical-DEM Layer Selection Rationale

Results from our satellite-based vegetation and inundation characterizations at target wetlands
sites were used to guide the selection of input satellite imagery for the regional scale wetlands
classification for the Chesapeake and Delaware Bays. The motivation was to carefully select image
layers that provided information that could uniquely identify estuarine emergent wetlands (i.e., tidal
marshes). For the regional scale classification, we also included additional wetland classes in the form
of forested wetlands and palustrine emergent wetlands. Several common non-wetland classes were
included in the regional scale classification in order to evaluate potential classification confusion with
wetlands. These classes included: open water, urban, barren, grass, agriculture, shrub, and forest.

In order to perform the regional scale classification, we first created a training/validation dataset.
The training/validation dataset of non-wetland classes were acquired directly from the 2011 National
Land Cover Database (NLCD) [60]. Training/validation dataset wetland classes were created by
merging the National Wetlands Inventory (2013 update) and the 2011 NLCD to map the locations of
emergent wetlands and forested wetlands. NWI wetlands polygons were assigned an integer value
based on the wetland class, rasterized to a 10-m spatial resolution, then resampled and georegistered
to the NLCD pixels at a matching 30-m spatial resolution. Only areas of overlap between the NWI
and NLCD were used to define the wetland extent, culminating in a conservative estimate of wetland
extent and reducing classification commission errors for wetland classes in the training of the random
forest classifier. These data layers were merged together culminating in a final training raster.

GEE was used to process the optical imagery, SAR imagery, and topographic variables that served
as inputs to the regional scale random forest classification. Within GEE, we stacked imagery by first
selecting Sentinel-1A image paths. These paths were split between path 4 and path 106, which roughly
divided the eastern and western sides of the Chesapeake Bay. The first layers we included in the
GEE image stacks were the 2017 annual mean backscatter and standard deviation for Sentinel-1A
σ0

VV and σ0
VH imagery. In this way, we could reduce the size of the Sentinel-1A image collection

while preserving useful temporal information for the classifier and also temporally filter imagery
to reduce SAR speckle noise [61]. Sentinel-1A fall 2017 high tide–low tide difference layers for the
σ0

VV, σ0
VH, and σ0

VV/σ0
VH ratio images were also included in the GEE stacks since, as seen in Results

Section 3.1.1 and 3.1.2, large differences between high and low tide imagery occurred during the
fall season (September-November). Part of our evaluation process was to determine whether these
tidal difference layers were particularly useful in classifying estuarine emergent marshes compared
to all other classification layers. The 2017 PALSAR-2 annual mosaics with σ0

HH and σ0
HV images
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were also binned in the Sentinel-1A image paths within the GEE image stacks. Although our results
demonstrated that PALSAR L-band imagery was highly effective for mapping inundation at the
Blackwater NWR site (Results Section 3.1.1), multitemporal PALSAR-2 imagery coinciding with the
2016–2017 timeframe of our analysis was not available. However, the PALSAR results from Blackwater
NWR also demonstrated that single date L-band imagery was important to include in the regional scale
classification (namely PALSAR-2 imagery) because of its capability in the biomass-based separation of
forested and emergent wetlands.

We computed vegetation indices (NDVI, TVI) and water indices (mNDWI) with cloud-masked
Landsat 8 surface reflectance imagery for summer 2017 (June–August), fall 2017 (September–October),
and winter 2017 (November–December). Several of these ranges contained multiple overlapping
images, which we reduced by computing the temporal median index value. These spectral indices
were acquired from various Landsat paths and were binned to the separate Sentinel-1A image paths
in the GEE image stacks. Landsat 8 imagery was selected over Sentinel-2A imagery because it was
available in GEE as a mature surface reflectance product [62,63]. The Landsat 8 imagery also tended
to be less cloudy at the regional scale than Sentinel-2A imagery. Like the temporal reductions of
the Sentinel-1A imagery, the inclusion of Landsat 8 vegetation and water indices (over multispectral
bands) was done in an effort to reduce the total number of input variables (layers) in the GEE image
stacks. Topographic variables were included in the GEE image stacks in the form of elevation and slope
derived from the SRTM DEM. The elevation and slope layers were also binned into the Sentinel-1A
image paths. Topographic variables were included in the GEE image stacks because they have been
demonstrated as being more important than optical or SAR imagery in supervised classifications by
previous wetlands mapping studies [17,64]. The final GEE image stacks had nine SAR input layers,
nine optical input layers, and two topographic input layers. The layers in the GEE image stacks varied
in spatial resolution, with Sentinel-1A having a 20 × 22-m spatial resolution (resampled to 10 × 10-m
pixel resolution in GEE), PALSAR-2 annual mosaics having a 25 × 25-m resolution, and SRTM DEM
and Landsat 8 resolutions being 30 × 30 m. We resampled the GEE image stacks to the coarsest
common resolution of 30 × 30 m. The GEE image stacks were exported to a local desktop. These
SAR-optical-DEM image stacks for Sentinel-1A path 4 and path 106 were mosaicked using R’s “Raster”
package. The rationale for layer inclusion in the SAR-optical-DEM stack is described in Table 2.

The final SAR-optical-DEM image stack served as predictors for both the regional scale classification
and the Jug Bay SAR-optical-DEM classification described in Section 2.6. For the regional scale
classification, a random forest classification was performed by defining training data using QGIS to
select random points within the training raster. This was done by performing a stratified random point
sampling with 10,000 points per training class, and then performing a second random sample with
100,000 total points. These samples were then combined to produce a training dataset that represented
a compromise between including underrepresented classes while also accounting for class prevalence.
To assess the degree to which parameter tuning impacted the accuracy of the random forest classifier,
we performed a series of regional scale classifications by adjusting the number of trees in the classifier
by the following values: 10, 25, 50, 75, 100, 150, 200, 300, 400, and 500.
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Table 2. Description of input layers to regional scale random forest classification.

Layer in GEE Stack Description Rationale Example

vv_mean Sentinel-1 VV 2017 annual mean Decreases SAR speckle noise while preserving resolution, Jug Bay
vh_mean Sentinel-1 VH 2017 annual mean captures central backscatter tendency

vv_sd Sentinel-1 VV 2017 annual standard deviation Provides separability between high annual temporal variability Jug Bay
vh_sd Sentinel-1 VH 2017 annual standard deviation emergent estuarine wetlands and other landcover

vv_tidal_diff Sentinel-1 VV tidal difference (Fall 2017)
Captures tidal variability in emergent estuarine systems presumably
absent from other landcover

Blackwater, Kirkpatrickvh_tidal_diff Sentinel-1 VH tidal difference (Fall 2017)
vvvh_tidal_diff Sentinel-1 VV/VH tidal difference (Fall 2017)

hh PALSAR-2 HH 2017 annual mosaic Provides biomass-based backscatter separability between
Blackwaterhv PALSAR-2 HV 2017 annual mosaic between emergent and forested wetlands

summer_tvi Landsat 8 TVI (Summer 2017) Captures wetland vegetation phenology (three seasons help separate
emergent wetlands from crops); more biomass Kirkpatrick

fall_tvi Landsat 8 TVI (Fall 2017) separate emergent wetlands from crops); more biomass
winter_tvi Landsat 8 TVI (Winter 2017) separability than NDVI

summer_ndvi Landsat 8 NDVI (Summer 2017) Captures wetland vegetation phenology (three seasons help separate
emergent wetlands from crops)

Kirkpatrickfall_ndvi Landsat 8 NDVI (Fall 2017)
winter_ndvi Landsat 8 NDVI (Winter 2017)

summer_mndwi Landsat 8 mNDWI (Summer 2017)
Captures fractional surface water in sparsely vegetated wetlands Blackwaterfall_mndwi Landsat 8 mNDWI (Fall 2017)

winter_mndwi Landsat 8 mNDWI (Winter 2017)

elevation SRTM DEM Estuarine emergent wetlands close to sea-level Sites low elevationslope SRTM DEM Gradient
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3. Results

3.1. Satellite-Based Marsh Inundation Characterization and Mapping

3.1.1. Blackwater NWR Inundation

We assessed the linear and non-linear empirical relationships between the tidal stage and SAR
backscatter/optical water index values for several different wetland types (shown in Table 3). The
Sentinel-1A σ0

VV/σ0
VH ratio exhibited the highest correlation with the tidal stage compared to other

imagery at the Blackwater NWR site for the dominant E2EM1P wetland class for both ordinary least
squares and polynomial fits. In general, SAR-tidal stage correlation was greater than that of optical
water indices. The mNDWI exhibited a moderate degree of correlation with the tidal stage for E2EM1P
wetlands, which was significantly higher than the correlation for NDWI. Figure 6 depicts the ordinary
least squares (OLS) fit and second order polynomial fit (Poly) relationships between the tidal stage and
σ0

VV/σ0
VH ratio for both major estuarine emergent wetland classes. The polynomial better modeled the

data than the OLS, but neither was ideal. However, the increasing downward slope of the polynomial
fit in the range of 0.4 to 0.6 meters did indicate the presence of a change point relationship, where
backscatter only exhibited sensitivity to tidal stage above a certain level. Even though the polynomial
behavior suggested the existence of a change point, without having a well-constrained estimate of
water level bank full depth, we could not perform a piecewise regression analysis. However, we
demonstrate how such an analysis was used in Section 3.1.2 for Kirkpatrick Marsh.

Table 3. Pearson’s correlation (R-value) for Sentinel-1A (S1) and Sentinel-2A (S2) values and Bishop’s
Head tidal stage for the ordinary least squares (OLS) fit and polynomial (Poly) fit.

NWI
Class

S1-VH
OLS

S1-VH
Poly

S1-VV
OLS

S1-VV
Poly

S1-VV/VH
OLS

S1-VV/VH
Poly

S2-NDWI
OLS

S2-NDWI
Poly

S2-mNDWI
OLS

S2-mNDWI
Poly

Total Area
(km2)

E2EM1N −0.638 0.757 0.374 0.575 −0.705 0.889 0.314 0.378 0.460 0.468 12.01
E2EM1P −0.689 0.761 0.581 0.666 −0.765 0.856 0.352 0.393 0.471 0.515 284.40
E2EM1P6 −0.450 0.541 0.368 0.378 −0.530 0.567 0.192 0.283 0.001 0.235 3.70
E2EM1Pd −0.646 0.725 0.457 0.539 −0.684 0.772 0.407 0.412 0.560 0.669 15.38
E2SS4P −0.189 0.422 0.395 0.403 −0.456 0.457 0.047 0.303 −0.065 0.080 13.92
E2FO4P −0.089 0.357 0.360 0.381 −0.401 0.401 0.006 0.236 0.108 0.142 24.63
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Figure 6. Relationships between the Sentinel-1A σ0VV/σ0VH (VV/VH backscatter) ratio and tidal stage 
for dominant NWI wetland types in Blackwater NWR; both E2EM1N (estuarine emergent, persistent, 
regularly flooded) (a) and E2EM1P (estuarine emergent, persistent, irregularly flooded) (b) show 
similar relationships with the tidal stage.  

Figure 6. Relationships between the Sentinel-1A σ0
VV/σ0

VH (VV/VH backscatter) ratio and tidal stage
for dominant NWI wetland types in Blackwater NWR; both E2EM1N (estuarine emergent, persistent,
regularly flooded) (a) and E2EM1P (estuarine emergent, persistent, irregularly flooded) (b) show
similar relationships with the tidal stage.

Figure 7 illustrates that Sentinel-1A σ0
VV and σ0

VV/σ0
VH ratio distributions exhibited substantial

change between high and low tide. The PALSAR high tide–low tide pair distributions for the σ0
HH

imagery exhibited even greater change and sufficient separability for an absolute threshold of −13.5 dB
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to be applied to the high tide and low tide imagery to classify tidal marsh inundation. The thresholded
images were differenced to derive a marsh intertidal zone, as shown in Figure 8.Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 32 

 

(a-1) (a-2) 

(b-1) (b-2) 

(c-1) (c-2) 

Figure 7. Comparison of the Sentinel-1A σ0VV/σ0VH ratio (VV/VH backscatter ratio), Sentinel-1A σ0VV 

(VV backscatter), and PALSAR σ0HH (HH backscatter) for high tide and low tide imagery. Although 
the Sentinel-1A σ0VV (a) and σ0VV/σ 0VH ratio (b) effectively capture variability from tidal influence, they 
do not provide the clearly defined separability of PALSAR σ0HH (c) for threshold-based inundation 
classification of tidal marshes in Blackwater NWR. 

 

 

Figure 7. Comparison of the Sentinel-1A σ0
VV/σ0

VH ratio (VV/VH backscatter ratio), Sentinel-1A σ0
VV

(VV backscatter), and PALSAR σ0
HH (HH backscatter) for high tide and low tide imagery. Although the

Sentinel-1A σ0
VV (a) and σ0

VV/σ 0
VH ratio (b) effectively capture variability from tidal influence, they

do not provide the clearly defined separability of PALSAR σ0
HH (c) for threshold-based inundation

classification of tidal marshes in Blackwater NWR.



Remote Sens. 2019, 11, 2366 17 of 36

Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 32 

 

Figure 7 illustrates that Sentinel-1A σ0VV and σ0VV/σ0VH ratio distributions exhibited substantial 
change between high and low tide. The PALSAR high tide–low tide pair distributions for the σ0HH 
imagery exhibited even greater change and sufficient separability for an absolute threshold of −13.5 
dB to be applied to the high tide and low tide imagery to classify tidal marsh inundation. The 
thresholded images were differenced to derive a marsh intertidal zone, as shown in Figure 8. 

 

Figure 8. Blackwater NWR PALSAR high tide–low tide classified inundation extents based on 
absolute backscatter thresholds from PALSAR image pair differencing. Open water was classified as 
below −13.5 dB for both low tide and high tide imagery. The marsh intertidal zone was classified as 
below −13.5 dB at high tide and above −13.5 dB at low tide. This threshold was derived in Figure 7. 
Only NWI estuarine emergent wetlands and marine classes were classified as tidally inundated, non-
tidally inundated, or open water (red polygons on map also include estuarine forest, which was not 
classified). Like estuarine forests, upland areas are also shown as grayscale SAR imagery from the 
high tide image. 

3.1.2. Kirkpatrick Marsh Inundation 

Second order polynomial and ordinary least squares relationships between satellite imagery and 
tidal stage were evaluated for Kirkpatrick Marsh as they were for Blackwater NWR with the 
exception that ordinary least squares was split into a BBD regression and an ABD regression, as 

Figure 8. Blackwater NWR PALSAR high tide–low tide classified inundation extents based on absolute
backscatter thresholds from PALSAR image pair differencing. Open water was classified as below
−13.5 dB for both low tide and high tide imagery. The marsh intertidal zone was classified as below
−13.5 dB at high tide and above −13.5 dB at low tide. This threshold was derived in Figure 7. Only
NWI estuarine emergent wetlands and marine classes were classified as tidally inundated, non-tidally
inundated, or open water (red polygons on map also include estuarine forest, which was not classified).
Like estuarine forests, upland areas are also shown as grayscale SAR imagery from the high tide image.

3.1.2. Kirkpatrick Marsh Inundation

Second order polynomial and ordinary least squares relationships between satellite imagery and
tidal stage were evaluated for Kirkpatrick Marsh as they were for Blackwater NWR with the exception
that ordinary least squares was split into a BBD regression and an ABD regression, as determined by the
Nelson et al. study that better constrained the hydrology of Kirkpatrick Marsh relative to Blackwater
NWR. Figure 9 depicts similar relationships to Blackwater NWR where the start of the increasing
downward slope of the polynomial existed in close proximity to the BBD–ABD split and tracked the
two BBD and ABD regressions fairly well, demonstrating the potential utility of the polynomial for
modeling backscatter over the full tidal range when known break points for a marsh bankfull depth
cannot be obtained. These findings, shown in Table 4 and Figure 9, served as the impetus for use of
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the change detection-based inundation classification with the Sentinel-1A σ0
VV/σ0

VH ratio shown in
Figure 10. Figure 10 shows the Kirkpatrick Marsh inundated area for the four 2016–2017 Sentinel-1A
images acquired at the four highest tidal stages using 1 SD, 2 SD, and 3 SD as change detection
thresholds. Also shown in Figure 10 is an open-water estuary ROI demonstrating that the open water
σ0

VV/σ0
VH ratio did not change with the water level stage. Vachon and Wolfe demonstrated that

C-band backscatter increases for all polarizations when open water becomes roughened by wind and
wave activity [65]. σ0

VV was noted as being most sensitive to water surface roughness from wind.
Wind and wave activity can influence the water level stage, especially when combined with peak tidal
phases. However, our results demonstrate that the variability in the σ0

VV/σ0
VH ratio was likely caused

by scattering variability from marsh vegetation–inundation interaction, rather than roughness-based
scattering changes to the water’s surface on the inundated marsh, as evidenced by a lack of change
in the estuary σ0

VV/σ0
VH ratio. This scattering change on the marsh was likely due to increases in

double-bounce scattering in σ0
VV and decreases in volume scattering in σ0

VH as the marsh inundated.

Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 32 

 

determined by the Nelson et al. study that better constrained the hydrology of Kirkpatrick Marsh 
relative to Blackwater NWR. Figure 9 depicts similar relationships to Blackwater NWR where the 
start of the increasing downward slope of the polynomial existed in close proximity to the BBD–ABD 
split and tracked the two BBD and ABD regressions fairly well, demonstrating the potential utility of 
the polynomial for modeling backscatter over the full tidal range when known break points for a 
marsh bankfull depth cannot be obtained. These findings, shown in Table 4 and Figure 9, served as 
the impetus for use of the change detection-based inundation classification with the Sentinel-1A 
σ0VV/σ0VH ratio shown in Figure 10. Figure 10 shows the Kirkpatrick Marsh inundated area for the 
four 2016–2017 Sentinel-1A images acquired at the four highest tidal stages using 1 SD, 2 SD, and 3 
SD as change detection thresholds. Also shown in Figure 10 is an open-water estuary ROI 
demonstrating that the open water σ0VV/σ0VH ratio did not change with the water level stage. Vachon 
and Wolfe demonstrated that C-band backscatter increases for all polarizations when open water 
becomes roughened by wind and wave activity [65]. σ0VV was noted as being most sensitive to water 
surface roughness from wind. Wind and wave activity can influence the water level stage, especially 
when combined with peak tidal phases. However, our results demonstrate that the variability in the 
σ0VV/σ0VH ratio was likely caused by scattering variability from marsh vegetation–inundation 
interaction, rather than roughness-based scattering changes to the water’s surface on the inundated 
marsh, as evidenced by a lack of change in the estuary σ0VV/σ0VH ratio. This scattering change on the 
marsh was likely due to increases in double-bounce scattering in σ0VV and decreases in volume 
scattering in σ0VH as the marsh inundated.  

Table 4. Pearson’s correlation (R-value) for Sentinel-1A and Sentinel-2A values for the full tidal range 
(polynomial only) and above-bankfull depth (ABD) for Kirkpatrick Marsh tidal creek water level. 
 

Imagery Type Full Poly OLS (ABD) Poly (ABD) n (ABD) 

S1-VH 0.326 −0.478 0.572 13 

S1-VV 0.790 0.819 0.859 13 

S1-VV/VH 0.897 −0.868 0.917 13 

S2-mNDWI 0.280 0.335 -- 4 

S2-NDWI 0.473 −0.514 -- 4 
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Figure 9. Kirkpatrick Marsh Sentinel-1A σ0
VV/σ0

VH ratio with a full-range polynomial (solid black
line), BBD regression (dotted line), ABD regression (dashed line), and Nelson et al. bankfull depth as
the vertical black line with grey confidence intervals (95%).

Table 4. Pearson’s correlation (R-value) for Sentinel-1A and Sentinel-2A values for the full tidal range
(polynomial only) and above-bankfull depth (ABD) for Kirkpatrick Marsh tidal creek water level.

Imagery Type Full Poly OLS (ABD) Poly (ABD) n (ABD)

S1-VH 0.326 −0.478 0.572 13
S1-VV 0.790 0.819 0.859 13

S1-VV/VH 0.897 −0.868 0.917 13
S2-mNDWI 0.280 0.335 – 4
S2-NDWI 0.473 −0.514 – 4
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Figure 10. Change detection-based inundation products from the Sentinel-1A σ0
VV/σ0

VH ratio for
high tide imagery over Kirkpatrick Marsh: (a) σ0

VV/σ0
VH ratio, and (b) the corresponding classified

inundation. Tidal stage increases moving from the top of the figure to the bottom (1–4).
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3.2. Satellite-Based Marsh Vegetation Characterization

3.2.1. Kirkpatrick Marsh Vegetation

The four dominant species of vegetation at Kirkpatrick Marsh exhibited similar temporal directional
tendencies for Sentinel-1A σ0

VV and σ0
VH and Sentinel-2A NDVI. NDVI captured a predictable

greenness phenology for two full growing seasons. Scirpus americanus (also called Shoenoplectus)
vegetation exhibited a lower NDVI than the other species, likely owed to its more vertical structure
and more open canopy [47]. Spartina patens, which is the most horizontally oriented vegetation
and forms dense mats of many small stems and leaves, had a consistently higher NDVI than even
Phragmites australis and Iva frutescens, despite having a lower biomass. The response of TVI (not shown
in Figure 11) was very similar to the NDVI, despite findings of TVI being less prone to biomass-based
saturation [29]. This indicates that the optical vegetation indices were responsive to the upper canopy
structure, especially canopy closure, as well as greenness, but provided little capability in separating
vegetation based on biomass.
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Figure 11. Timeseries plots for the spatial mean Sentinel-1A σ0
VH, Sentinel-2A NDVI, and Sentinel-1A

σ0
VV for dominant vegetation species over Kirkpatrick Marsh (a,b,c, respectively). (d) The σ0

VV/σ0
VH

ratio for the above-bankfull depth for the dominant vegetation demonstrating a similar response to
tidal inundation between all four species, albeit with a biomass offset.

Sentinel-1A σ0
VV and σ0

VH imagery captured biomass-based offsets between species, with
Phragmites australis and Iva frutescens exhibiting an offset backscatter from Scirpus and Spartina patens,
indicating stability in biomass separation between the species. Sentinel-1A σ0

VH showed lower
backscatter for Scirpus compared to the other vegetation during the growing season. Both Sentinel-1A
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σ0
VV and σ0

VH tended to decrease during the growing season for all four species. Several times during
the fall seasons in 2016 and 2017, σ0

VV increased greatly and σ0
VH decreased greatly. Exploring the

divergence between σ0
VV and σ0

VH with the σ0
VV/σ0

VH ratio showed this was likely the result of tidal
influence as the σ0

VV/σ0
VH ratio for the four dominant species all showed strong inverse relationships

when the σ0
VV/σ0

VH ratio was regressed against the water level above bankfull depth (Figure 11).

3.2.2. Jug Bay Wetlands Vegetation

Different classes of vegetation at Jug Bay had pronounced differences in vegetation structural
phenology. The two most common classes of vegetation, Typha spp. and Nuphar lutea, exhibited very
different Sentinel-1A σ0

VV signatures (Figure 12, left panel). These backscatter changes were consistent
with differences in the seasonal structural changes that occurred between persistent and non-persistent
vegetation (Figure 12, right panel). Persistent Typha spp. exhibited backscatter increases in fall that were
similar to the persistent species at Kirkpatrick Marsh. Correlation of the 2016–2017 Sentinel-1A σ0

VV

timeseries between Typha spp. from Jug Bay and Kirkpatrick Marsh Scirpus americanus, Spartina patens,
Iva frutescens, and Phragmites australis produced R-values of: 0.86, 0.76, 0.80, and 0.85, respectively.
Indicating that Kirkpatrick Marsh and Jug Bay likely share a similar tidal hydrology given that most
of the variability in Sentinel-1A σ0

VV in tidal marshes with persistent vegetation was explained by
variability in tidal stage. The similar temporal variability in backscatter between persistent vegetation
across study sites is contrasted by the temporal backscatter variability differences between persistent
and non-persistent species at Jug Bay. These differences are captured in the 2017 σ0

VV annual standard
deviation map shown in the central panel of Figure 13. Note that the Sentinel-1A backscatter (σ0

VV)
annual standard deviation effectively depicted the locations of non-persistent Nuphar lutea. These
findings were the impetus for inclusion of VV-polarized backscatter (σ0

VV) annual standard deviation as
one of the several input layers included in the SAR-only and SAR-optical-DEM Jug Bay classifications.
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persistent Nuphar lutea and persistent Typha spp., which were effectively captured by the SAR 
timeseries. 

Figure 12. Timeseries plots for spatial mean Sentinel-1A σ0
VV according to Jug Bay vegetation

type (left panel). Right panel shows site photos of general summer to winter phenological changes
in non-persistent Nuphar lutea and persistent Typha spp., which were effectively captured by the
SAR timeseries.

The random forest classification for Jug Bay achieved accurate results using 10 timeseries
Sentinel-1A input layers as predictors (>95%). The 20 input layers from the SAR-optical-DEM stack
achieved slightly higher accuracies (>97%). In the SAR-optical-DEM stack, SAR layers were the most
important predictor layers for increasing classification accuracy. In the SAR-only classification, the
σ0

VV annual standard deviation and σ0
VV and σ0

VH winter mean (November–December) imagery
were the most useful predictors. All vegetation classes within this wetland system and open water
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were classified with accuracies greater than 90% for both user’s accuracy (commission error) and
producer’s accuracy (omission error) (Tables 5 and 6). Tables 7 and 8 illustrated that each of the layers
were uniquely useful for classifying individual classes in both the SAR-only and SAR-optical-DEM
classifications. For both Nuphar lutea and Typha spp., the σ0

VV standard deviation and winter σ0
VV and

σ0
VH imagery were the most useful predictors in the SAR-only classification. In the SAR-optical-DEM

classifications, the σ0
VV standard deviation was also a useful predictor for Nuphar lutea and Typha spp.

The σ0
VV tidal difference layer was uniquely important for the classification of Typha spp.
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Figure 13. Jug Bay random forest classification. ROIs from the Swarth survey overlaid on the 2015
NAIP imagery and Sentinel-1A σ0

VV 2017 annual standard deviation imagery (a and b, respectively).
(c) SAR-only random forest classification. Note that Sentinel-1A σ0

VV annual standard very effectively
highlighted locations of non-persistent Nuphar lutea, which was not clearly distinguished in the natural
color NAIP imagery.

3.3. Regional Scale Wetland Mapping

Informed by the findings from the vegetation and inundation characterizations at the target
wetlands study sites, we mapped the wetlands of the Chesapeake Bay and Delaware Bay regions. This
regional classification is shown in Figure 14. Open water was mapped with the greatest accuracy
(user’s accuracy and producer’s accuracy >96%). Emergent estuarine wetlands were mapped with the
next highest accuracy with user’s and producer’s accuracies of 83% and 88%, respectively. Emergent
palustrine wetlands were mapped with a producer’s accuracy of 65% and a user’s accuracy of 79%. All
other classes were mapped with lower accuracies (Table 9). We found that emergent estuarine wetlands
and emergent palustrine wetlands were most often confused with one another in terms of classification
accuracy and were often adjacent to each other in regions generally characterized as tidal freshwater
wetlands by previous studies. When the palustrine and estuarine emergent classes were lumped into a
single emergent class, classification accuracy improved to a user’s accuracy greater than 86% and a
producer’s accuracy of greater than 90%. The overall accuracy of the regional scale classification was
relatively low at 67%; however, much of this diminished accuracy was due to a confusion between
upland classes, rather than inaccuracy in wetland classification which was the focus of this study.
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Table 5. Jug Bay random forest classification confusion matrix for SAR-only classification. Diagonal matches between observed (Reference) and predicted (Classification)
classes are bolded.

Classification
Water Nuphar Zizania Typha Shrub Forest Producer’s Accuracy (%)

Reference

Water 495 0 0 0 0 0 100.00
Nuphar 0 464 31 2 0 0 93.36
Zizania 0 17 469 14 5 0 92.87
Typha 0 1 14 481 9 2 94.87
Shrub 0 1 6 10 471 5 95.54
Forest 0 0 0 0 3 480 99.38

User’s Accuracy (%) 100.00 96.07 90.19 94.87 96.52 98.56
Overall Accuracy %

95.97

Table 6. Jug Bay random forest classification confusion matrix for SAR-optical-DEM classification.

Classification
Water Nuphar Zizania Typha Shrub Forest Producer’s Accuracy (%)

Reference

Water 500 0 0 0 0 0 100.00
Nuphar 1 481 19 6 0 1 94.69
Zizania 0 8 477 5 3 0 96.75
Typha 0 1 10 483 10 0 95.83
Shrub 0 0 0 9 491 0 98.20
Forest 0 0 0 0 0 496 100.00

User’s Accuracy (%) 99.80 98.16 94.27 96.02 97.42 99.80
Overall Accuracy %

97.57
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Table 7. Jug Bay random forest layer importance assessment for SAR-only classification. Columns 2–7 represent the decrease in accuracy predicting a given class
when removing the input layer (predictor) in column 1. For example, the removal of the VV_mean layer (σ0

VV annual mean) decreased the accuracy by 0.2193 when
classifying a given pixel as water. Thus, higher values of accuracy decrease represent layer importance. Columns 8–9 represent the decrease in accuracy for all classes
and decrease in the Gini coefficient. Top three layer classification improvements for each vegetation/landcover class prediction (columns) are bolded.

Layer Type Water Nuphar Zizania Typha Shrub Forest Mean Decrease Accuracy Mean Decrease Gini

VV_mean 0.2193 0.0763 0.0942 0.0789 0.3221 0.1573 0.1573 216.4184
VH_mean 0.1671 0.0706 0.1209 0.1133 0.2701 0.2326 0.1618 258.9103

VV_SD 0.0019 0.2059 0.1683 0.1864 0.3489 0.4963 0.2331 319.5366
VH_SD 0.0004 0.0905 0.2567 0.0511 0.2171 0.3411 0.1588 200.7394

VV_summer 0.2306 0.0858 0.1430 0.1562 0.1402 0.1806 0.1559 273.6167
VH_summer 0.1981 0.0437 0.0859 0.1374 0.1381 0.2040 0.1340 226.1407

VV_fall 0.0406 0.0028 0.0693 0.0252 0.1007 0.1058 0.0571 99.9647
VH_fall 0.0112 0.0357 0.1531 0.0456 0.2795 0.1928 0.1190 194.1971

VV_winter 0.0223 0.2752 0.2119 0.1622 0.2436 0.2148 0.1884 316.4512
VH_winter 0.0191 0.2163 0.2981 0.1751 0.2679 0.3360 0.2186 365.0655
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Table 8. Jug Bay random forest layer importance assessment for SAR-optical-DEM classification.

Layer Type Water Nuphar Zizania Typha Shrub Forest Mean Decrease Accuracy Mean Decrease Gini

VV_mean 0.2189 0.1184 0.1087 0.1070 0.1862 0.0334 0.1288 219.2148
VH_mean 0.2468 0.1930 0.1906 0.1637 0.3262 0.0269 0.1910 328.2239

VV_SD 0.0150 0.2690 0.0967 0.1428 0.2534 0.0179 0.1331 236.3179
VH_SD 0.0028 0.1636 0.1873 0.1304 0.2292 0.0158 0.1215 189.5208

VV_tidal_diff 0.0002 0.0044 0.1148 0.1492 0.0166 0.0003 0.0475 79.6682
VH_tidal_diff 0.0004 0.0031 0.1957 0.0228 0.0181 0.0121 0.0415 71.2645

VVVH_tidal_diff 0.0002 0.0060 0.0429 0.0849 0.0123 0.0010 0.0245 44.7473
HH 0.0213 0.0034 0.0276 0.0101 0.0206 0.0007 0.0138 15.6724
HV 0.0019 0.0033 0.0378 0.0130 0.0204 0.0005 0.0127 16.6604

summer_tvi 0.0581 0.0417 0.1470 0.0880 0.0595 0.0256 0.0698 111.7885
summer_ndvi 0.0685 0.0502 0.1196 0.0666 0.1002 0.2178 0.1034 182.2881

summer_mndwi 0.2041 0.0604 0.1324 0.0817 0.0573 0.0613 0.0991 180.2152
fall_tvi 0.0140 0.0861 0.1052 0.0406 0.0556 0.0324 0.0558 85.8827

fall_ndvi 0.0379 0.0601 0.1414 0.0978 0.1428 0.2085 0.1146 192.8352
fall_mndwi 0.1262 0.1097 0.1422 0.1020 0.1038 0.0411 0.1041 184.5659
winter_tvi 0.0065 0.0325 0.0798 0.0477 0.0254 0.1041 0.0492 70.8000

winter_ndvi 0.0054 0.0212 0.0871 0.0444 0.0320 0.0529 0.0404 67.6125
winter_mndwi 0.0738 0.0049 0.0959 0.0436 0.0186 0.0337 0.0448 40.8471

DEM 0.0213 0.0386 0.0593 0.0559 0.0533 0.2899 0.0862 142.0544
DEM_grad 0.0014 0.0029 0.0199 0.0121 0.0175 0.0001 0.0090 13.8682
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Our random forest parameter tuning assessment revealed that increasing the number of trees made
little difference in improving classification accuracy above a certain limit. We found that increasing
the number of trees from 10 to 25 to 50 to 100 to 200 increased the overall classification accuracy from
58.13% to 63.38% to 65.43% to 66.53% to 67.04%. However above 200 trees, the accuracy remained
asymptotically limited below 68%. For these reasons, we selected the 200-tree classifier for the final
regional scale classification of the SAR-optical-DEM stack shown in Figure 14.

The importance assessment of the regional scale random forest classification is shown in Table 10.
These findings illustrate that the SRTM DEM elevation was the most important layer in terms of
increasing overall classification accuracy, as evidenced by both the mean decrease in accuracy from
removing the SRTM DEM elevation layer as a classification predictor variable and in the Gini impurity
index. Optical vegetation indices were more important for separating wetlands from non-wetland
landcover than SAR layers. SAR layers were overall less important than the optical and SRTM DEM
layers in the overall classification. Of the SAR layers, tidal difference layers were the least important of
the SAR input layers. The Sentinel-1A σ0

VH annual mean was the most important SAR layer in terms
of the overall classification importance and Gini impurity index value in the regional scale classification
as it had the third highest mean decreases in overall accuracy and the fifth highest Gini index value.

Remote Sens. 2019, 11, x FOR PEER REVIEW 23 of 32 

 

classifications, the σ0VV standard deviation was also a useful predictor for Nuphar lutea and Typha spp. 
The σ0VV tidal difference layer was uniquely important for the classification of Typha spp. 

3.3. Regional Scale Wetland Mapping 

Informed by the findings from the vegetation and inundation characterizations at the target 
wetlands study sites, we mapped the wetlands of the Chesapeake Bay and Delaware Bay regions. 
This regional classification is shown in Figure 14. Open water was mapped with the greatest accuracy 
(user’s accuracy and producer’s accuracy >96%). Emergent estuarine wetlands were mapped with 
the next highest accuracy with user’s and producer’s accuracies of 83% and 88%, respectively. 
Emergent palustrine wetlands were mapped with a producer’s accuracy of 65% and a user’s accuracy 
of 79%. All other classes were mapped with lower accuracies (Table 9). We found that emergent 
estuarine wetlands and emergent palustrine wetlands were most often confused with one another in 
terms of classification accuracy and were often adjacent to each other in regions generally 
characterized as tidal freshwater wetlands by previous studies. When the palustrine and estuarine 
emergent classes were lumped into a single emergent class, classification accuracy improved to a 
user’s accuracy greater than 86% and a producer’s accuracy of greater than 90%. The overall accuracy 
of the regional scale classification was relatively low at 67%; however, much of this diminished 
accuracy was due to a confusion between upland classes, rather than inaccuracy in wetland 
classification which was the focus of this study. 

 

Figure 14. Random forest classification for Chesapeake Bay and Delaware Bay wetlands for 2017.
Estuarine emergent wetlands are depicted in blue. Palustrine emergent wetlands are depicted in red.
Forested wetlands depicted in green were classified less accurately than emergent wetlands.
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Table 9. Regional scale random forest classification confusion matrix. Diagonal matches between observed (Reference) and predicted (Classification) classes are bolded.

Classification

Water Urban Barren Grass Agriculture Shrub Upland
Forest

Forested
Wetland

Palustrine
Emergent

Estuarine
Emergent Total Producer’s Accuracy

%

Reference

Water 22172 80 263 37 51 2 75 51 87 260 23078 96.07
Urban 31 11261 637 1957 1061 50 449 164 61 105 15776 71.38
Barren 502 1522 4473 650 1575 233 669 221 107 290 10242 43.67
Grass 31 2410 208 4449 4835 696 3643 1031 65 78 17446 25.50

Agriculture 11 764 290 1666 22852 220 1699 615 113 31 28261 80.86
Shrub 16 311 106 1039 1486 2853 5059 1535 45 27 12477 22.87

Upland Forest 28 494 100 1431 1415 1343 23427 3374 30 7 31649 74.02
Forested Wetland 56 254 53 496 585 529 3662 10732 372 224 16963 63.27

Palustrine Emergent 93 75 73 116 1009 83 171 550 5954 950 9074 65.62
Estuarine Emergent 127 71 160 34 53 2 1 130 699 9993 11270 88.67

Total 23067 17242 6363 11875 34922 6011 38855 18403 7533 11965
User’s Accuracy % 96.12 65.31 70.30 37.47 65.44 47.46 60.29 58.32 79.04 83.52 Overall Accuracy %

67.05
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Table 10. Regional scale random forest layer importance assessment.

LayerType Water Urban Barren Grass Ag. Shrub U. Forest W. Forest Palustrine Estuarine Mean Decrease
Accuracy

Mean Decrease
Gini

vv 0.286 0.027 0.026 0.000 0.040 0.006 0.051 0.063 0.038 0.092 0.071 6792.088
vh 0.282 0.020 0.074 −0.003 0.112 0.020 0.103 0.127 0.069 0.116 0.104 10293.323

vv_sd 0.018 0.005 0.009 −0.002 0.022 0.001 0.026 0.024 0.029 0.016 0.016 4621.997
vh_sd 0.007 0.017 0.016 0.002 0.075 0.016 0.038 0.042 0.048 0.036 0.032 7285.724

vv_tidal_diff 0.000 0.003 0.002 0.000 0.004 0.000 0.005 0.004 0.003 0.005 0.003 3740.538
vh_tidal_diff 0.000 0.002 0.001 0.000 0.005 0.000 0.005 0.003 0.003 0.010 0.003 3897.383

vvvh_tidal_diff 0.001 0.001 0.002 0.000 0.005 0.001 0.002 0.001 0.002 0.005 0.002 3669.585
hh 0.027 0.017 0.005 −0.001 0.019 0.003 0.022 0.029 0.014 0.019 0.017 4689.331
hv 0.072 0.033 0.011 0.001 0.027 0.010 0.041 0.031 0.023 0.052 0.033 5633.296

summer_tvi 0.179 0.148 0.070 0.012 0.054 0.014 0.025 0.029 0.066 0.292 0.081 8488.662
summer_ndvi 0.184 0.237 0.133 0.023 0.028 0.026 0.094 0.167 0.102 0.268 0.117 11751.909

summer_mndwi 0.245 0.174 0.032 0.009 0.044 0.014 0.044 0.042 0.098 0.128 0.084 8987.405
fall_tvi 0.093 0.084 0.034 0.009 0.042 0.015 0.032 0.014 0.060 0.290 0.059 7603.245

fall_ndvi 0.148 0.170 0.092 0.020 0.036 0.039 0.078 0.066 0.095 0.235 0.091 11122.123
fall_mndwi 0.237 0.166 0.036 0.014 0.037 0.021 0.042 0.033 0.096 0.104 0.079 12343.496
winter_tvi 0.078 0.048 0.026 0.011 0.062 0.030 0.031 0.017 0.110 0.205 0.055 6736.456

winter_ndvi 0.349 0.081 0.063 0.010 0.034 0.073 0.046 0.043 0.090 0.072 0.090 8764.048
winter_mndwi 0.205 0.128 0.023 0.004 0.045 0.018 0.045 0.027 0.089 0.077 0.069 9277.989

dem 0.198 0.052 0.038 0.025 0.051 0.039 0.171 0.120 0.243 0.451 0.130 14884.806
dem_grad 0.274 0.008 0.011 0.000 0.006 0.001 0.029 0.005 0.008 0.016 0.045 4979.564
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4. Discussion

Inundation mapping results from Blackwater NWR (Section 3.1.1) demonstrated that PALSAR
L-band σ0

HH high tide–low tide image pairs could be used to unambiguously separate inundated and
non-inundated tidal marshes using absolute thresholding. The threshold value of −13.5 dB separating
inundated and non-inundated marsh was similar to the −14.0 dB threshold used by Clewley et al. to
map surface water with PALSAR imagery [17]. Because the marshes surveyed in Blackwater NWR
are dominated by emergent graminoid species of low to moderate biomass (e.g., Spartina alterniflora,
Spartina patens, and Distichlis spicata), the close agreement with Clewley et al. was not surprising and
was indicative of specular forward scattering dominating backscatter response when low–moderate
biomass graminoid vegetation becomes submerged or partially submerged during high tide. Kim et al.
evaluated C-band and L-band SAR for inundation detection in Cladium sp. (sawgrass)-dominated
wetlands, which have a structure and biomass similar to Spartina alterniflora-dominated wetlands.
Kim et al. found that L-band SAR backscatter exhibited a much stronger inverse relationship with the
wetland water level than C-band SAR backscatter, likely indicating more specular forward scattering
at longer wavelengths (lower backscatter) as moderate-biomass emergent vegetation submerges.
Ramsey et al. performed a similar comparison, noting that L-band-based inundation maps had higher
levels of agreement (91%) with in situ inundation measurements than C-band-based maps (67–71%)
in Spartina alterniflora dominated wetlands [39]. Consistent with these previous studies, our results
demonstrate that L-band SAR imagery was more effective than C-band SAR imagery in detecting
inundation in the moderate-biomass emergent wetlands of Blackwater NWR. It should be noted,
however, that in our analysis, we compared C-band and L-band SAR imagery of different polarizations
(Sentinel-1A C-band VV vs. PALSAR L-band HH), which limited a direct wavelength-based comparison
of the imagery as polarimetric responses to inundation state can be variable as well [66–68]. These
findings have relevance to the science objectives of the upcoming NASA-ISRO Synthetic Aperture
Radar (NISAR) mission, which will operate at an L-band frequency and will have a nominal revisit
of 12 days. The implementation of thresholding techniques for deriving inundation products from
NISAR imagery could make for an effective and simple approach, which is important to consider given
the anticipated computational demands for storing and processing NISAR imagery.

The single high tide–low tide PALSAR image pair provided effective backscatter separation
in the Blackwater NWR study site. However, this particular threshold (and general approach of
absolute thresholding) may not be applicable to inundation mapping in other wetlands dominated
by higher biomass species like Typha spp. and Phragmites australis. Bourgeau-Chavez et al. [69] and
Bourgeau-Chavez et al. [70] demonstrated that Phragmites australis and Typha spp. could be effectively
distinguished from lower biomass emergent vegetation in wetlands mapping efforts, indicating that
these higher biomass emergent species may not produce the same backscatter responses in L-band
signals when inundated as the lower biomass emergent species of Blackwater NRW did. Although we
did not acquire PALSAR imagery above the bankfull depth in Kirkpatrick Marsh, future work should
focus on investigating differences in L-band backscatter response between Phragmites australis and
lower biomass vegetation at this site. We are currently in the process of performing this analysis with
multitemporal PALSAR-2 imagery.

In contrast to the PALSAR L-band results, classification of inundation using Sentinel-1A C-band
imagery at Blackwater NWR was more challenging. The Sentinel-1A VV-polarized backscatter (σ0

VV)
and σ0

VV/σ0
VH ratio did show substantial changes in distributions between high and low tide for tidal

marsh ROIs, but these differences did not provide clear separability. For these reasons, we did not
attempt to use Sentinel-1A imagery to classify inundation over Blackwater NWR. Our results suggest
that detailed characterization of a wetland’s tidal hydrology, such as that provided in Nelson et al.
for Kirkpatrick Marsh, is important for constraining satellite-based inundation estimates and should
be integrated into future efforts applying change detection approaches to classify inundation over
Blackwater NWR.
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At the Kirkpatrick Marsh site, we determined that increases in the Sentinel-1A σ0
VV and

decreases in the σ0
VV/σ0

VH ratio were both strong indicators of the tidal inundation extent given the
moderate–high goodness of fit between the site-adjusted tidal stage and marsh integrated backscatter
above the bankfull depth as defined in Nelson et al. [48]. We found a clear separation between the
marsh-integrated σ0

VV and σ0
VV/σ0

VH ratio at a Kirkpatrick Marsh tidal creek water level greater than
1.1 meters. These factors allowed us to map tidal inundation over a series of high tide images in this
high marsh system (Figure 10). Utilizing imagery acquired every 12 days from the Sentinel-1A satellite
allowed us to effectively implement temporal change detection approaches to map inundation, which
would not have been possible with imagery from SAR satellites with longer revisit times. The change
detection approaches we implemented could be used for inundation mapping with timeseries imagery
from the future L-band NISAR mission, which will also have a 12-day revisit.

At both Kirkpatrick Marsh and Blackwater NWR, Sentinel-1A imagery acquired at the highest
tidal stages was acquired during fall. Higher tidal stages were correlated with a higher σ0

VV and a
lower σ0

VV/σ0
VH ratio. Pope et al. suggested that C-band VV-polarized backscatter enhancement

in emergent wetlands during high water periods could be attributed to reductions in the overall
attenuation of vertically oriented SAR signal by vertically oriented vegetation [40]. However, the
findings by Pope et al. suggest that only high biomass emergent vegetation exhibits an increase in σ0

VV

for C-band imagery [40]. In contrast, our results demonstrated that all four dominant vegetation types
of Kirkpatrick Marsh exhibited backscatter increases during inundated conditions, despite having
pronounced differences in biomass and structure. This may be attributed to the collapse of vertical stems
and leaves during fall, resulting in increasingly horizontally structured vegetation, which enhances
double-bounce scattering in vertically polarized SAR signals when the underlying marsh surface is
inundated. It is also likely that the change in vegetation structure combined with senescing vegetation
becoming saturated with saline water during or following high tide (but not submerged) may have
increased backscatter by increasing the dielectric constant of the partially collapsed vegetation, which
was also acting a rough surface, thus increasing the direct σ0

VV response. These are all potential
explanations for the observed Sentinel-1A σ0

VV enhancement in fall, but they are by no means definitive.
To further investigate the causal mechanisms of this fall backscatter enhancement, measurements
with a grid of water level sensors were recently deployed across Kirkpatrick Marsh at sites with
different vegetation characteristics, which will allow us to assess how the interaction of inundation
and vegetation phenology contribute to this observed enhancement in Sentinel-1A σ0

VV. Such a water
level sensor grid will also serve to validate Sentinel-1A change detection-based inundation products
for Kirkpatrick Marsh and validate future PALSAR-2 inundation mapping efforts as well.

In the case of the SAR-based inundation mapping work, both the results from Kirkpatrick
Marsh and Blackwater NWR proved useful in informing the regional scale wetland classification.
The pronounced tidal responses in both Sentinel-1A σ0

VV and σ0
VV/σ0

VH ratio was the impetus for
including high tide-low tide difference layers in the regional scale classification. Although L-band high
tide-low tide image pairs covering the Chesapeake Bay would have been optimal to include in this
classification, this imagery was not available for 2017. However, the results from Blackwater NWR
also demonstrated the capability of L-band imagery in separating forested and emergent wetlands,
which was the impetus for including PALSAR-2 annual mosaics in the regional scale classification.
Wetland inundation could not be mapped with optical water indices as relationships between tidal
stage and water index value were weak at both Kirkpatrick Marsh and Blackwater NWR. Although
the mNDWI is demonstrated as being effective for mapping surface water [38], it is less effective for
inundation detection under vegetated canopies than SAR imagery. However, multi-season mNDWI
imagery was included in the regional scale classification to provide a characterization of open water
extent as a complement to the SAR imagery characterizing wetland inundation extent.

Comparing Sentinel-1A σ0
VV timeseries for Kirkpatrick Marsh and Jug Bay showed that σ0

VV

variability was very similar between different vegetation types at Kirkpatrick Marsh, but also
very similar to Typha spp. at Jug Bay. This is likely indicative of phenological and inundation
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changes combining in a distinct way to enhance backscatter for all persistent vegetation types in
fall. Potential causal factors of this fall backscatter enhancement have already been discussed. Our
results demonstrated that persistent vegetation maintained a backscatter increase from summer to
fall/winter, while non-persistent vegetation exhibited a backscatter decrease, which was of a greater
relative magnitude as well. The reason for the decrease in non-persistent vegetation backscatter was
well-evidenced by site photos depicting the loss of biomass as Nuphar lutea decayed at the end of
the growing season, which was effectively tracked with decreases in the C-band SAR backscatter
(Figure 12).

The use of timeseries-based Sentinel-1A SAR derivatives was highly effective for separating
emergent vegetation classes at Jug Bay from one another and further separating them from shrub and
forest classes. The Jug Bay SAR-only random forest classification achieved overall accuracies greater
than 95%. The Jug Bay SAR-optical-DEM classification using the same layers as the regional scale
wetland classification achieved accuracies greater than 97%. The Jug Bay random forest importance
assessment revealed that the Sentinel-1A σ0

VV backscatter annual standard deviation layer was one
of the most important layers in terms of improving classification accuracy in both SAR-only and
SAR-optical-DEM classifications. Qualitatively, it was clear that this layer was effective at depicting
locations of non-persistent vegetation (Figure 13). The implementation of timeseries approaches for
mapping functional vegetation classes could be used for mapping non-persistent vegetation outside
of the Chesapeake Bay region. The Sentinel-1A imagery that was acquired nearly every 12 days in
2017 provided consistent observations of the phenological changes over the Jug Bay site that were
not provided using cloud-obscured optical imagery. The reliability of SAR with stable operating
modes was clearly demonstrated in this case as the consistency of SAR observations allowed for
successful detection of phenological changes in persistent and non-persistent vegetation. The extent of
non-persistent vegetation in coastal emergent wetlands is indicative of regions that are tidal freshwater,
rather than brackish or saline [54]. The continued monitoring of these tidal freshwater wetlands serves
as a tool for assessing changes to salinity properties along the freshwater-brackish-saline continuum.

In the regional scale random forest classification of wetlands in the Chesapeake and Delaware
Bays, we used nine optical layers, nine SAR layers, and two DEM layers as classification predictors. The
overall classification accuracy of our regional scale mapping effort was 67%, which was relatively low.
However, much of the overall classification error was due to confusion between different non-wetland
landcover classes. The overall goal of this effort was to map estuarine emergent wetlands (i.e., tidal
marshes), which was done with relatively high accuracies (user’s and producer’s accuracies of 83%
and 88%, respectively). We found that palustrine emergent wetlands were classified with a lower
accuracy than estuarine emergent wetlands and noted that these two classes were most often confused
with one another. When these classes were grouped into a single emergent wetland class, classification
accuracy improved to a user’s accuracy greater than 86% and a producer’s accuracy of greater than
90%. All predictor layers used in this regional scale classification were carefully selected based on
the findings from our target wetland site studies or a rationale that supported the separation of
wetlands from other sites (i.e., use of multi-season NDVI and TVI to separate emergent wetlands
from crops). We used the C-band SAR backscatter temporal mean and standard deviation to capture
emergent wetland central tendency and temporal variability, the latter of which tended to be higher
in emergent wetlands than other landcover types. We used multi-season mNDWI in the regional
scale classification to aid in surface water identification, although the importance assessment of the
regional scale classification demonstrated that summer NDVI, DEM gradient (slope), and Sentinel-1A
σ0

VV and σ0
VH annual means were more useful variables for mapping the locations of open water.

Sentinel-1A SAR high tide low tide image pairs for the fall season were included in an attempt to
isolate estuarine emergent wetlands. Although the target wetland study sites showed well-defined
changes in Sentinel-1A backscatter corresponding to tidal stage, the tidal difference layers proved to
be some of the least useful layers for improving regional scale random forest classification accuracy
overall, and for the estuarine emergent wetland class in particular. This was somewhat surprising but
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is likely the result of the SAR standard deviation layer capturing much of the similar variance that the
tidal differences layers were, thus providing little additional useful information to the random forest
classifier. Optically based vegetation indices proved to be some of the most useful layers in the regional
scale wetland classification. This was likely because multi-season optical imagery aids the random
forest classifier in separating emergent wetlands from crops, and because the peak TVI and NDVI
values of emergent wetlands tend to be lower than upland vegetated systems as a result of less canopy
closure (more vertically structured vegetation) and more near infrared attenuation by surrounding
water compared to upland systems. The overall finding that the topographic variables (elevation and
slope) were the most useful predictor layers in the regional scale classification was consistent with
Clewley et al. and Knight et al. [17,64]. Overall, our results from the regional scale random forest
classification highlighted the increasing relative importance of SAR, optical, and elevation data in
overall wetland classification, consistent with Knight et al. [64].

Our results demonstrate the existence of somewhat of a paradox: In our regional scale classification,
optical imagery was superior for wetland mapping in terms of separating wetlands from other
landcover. However, in our inundation and vegetation characterizations and vegetation mapping
efforts at Jug Bay, SAR imagery proved more important for these characterizations. The use of the
same SAR-optical-DEM stack in the regional scale classification and Jug Bay vegetation classification
provided a direct comparison of layer importance for these different mapping efforts shown in Tables 8
and 10. These differences in the regional scale wetland classification and the Jug Bay vegetation
classification were likely the result of timeseries optical imagery showcasing consistent differences
between wetlands and other landcover, while the temporal and spatial variability within wetlands that
timeseries SAR effectively captured may essentially act as noise in a statistically-based classifier when
attempting to separate wetlands from upland landcover classes in the regional scale classification effort.

5. Conclusions

We used a combination of ground surveys and optical and SAR imagery to characterize tidal
inundation patterns at two estuarine marsh study sites and vegetation characteristics at an estuarine
marsh and a tidal freshwater marsh complex. Informed by the findings from these target wetlands
sites, we mapped wetland vegetation for an expanded region in the Patuxent River with a very high
accuracy (>95% overall) by utilizing timeseries SAR imagery and fused SAR-optical-DEM imagery.
The SAR-optical-DEM classification relied on the same layers used in our regional scale wetlands
classification for emergent estuarine wetlands in the Chesapeake and Delaware Bays. In this way
we produced two classifications, one providing a detailed classification of vegetation types within
a wetlands complex and the another separating wetlands from other landcover. Even when relying
on the same input layers, these classifications produced very different post-classification importance
assessments, with SAR layers being more useful for the detailed vegetation classification and DEM
and optical being more useful for separating wetlands from other landcover classes.

Temporal SAR derivatives were used here, for the first time, to map non-persistent vegetation in
the Patuxent River. Our approach provides a straightforward, yet powerful tool for mapping tidal
freshwater systems through the identification of indicator non-persistent vegetation, which can lead to
the improved management of tidal freshwater systems. Critical to this approach is the ability to now
leverage the consistent 12-day repeat C-band SAR observations provided by Sentinel-1A, which rarely
changed its operating mode over our study region. The combination of Sentinel-1A’s temporal fidelity
and spatial resolution is unprecedented in SAR remote sensing and presents numerous opportunities
and applications in wetland mapping and characterization. However, our findings suggest that L-band
SAR is more useful than optical or C-band SAR for inundation mapping in tidal marshes. Future
work should include assessments of inundation mapping with imagery from the fully polarimetric
L-band Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) mission in conjunction with
radiometric modeling, which will support the objectives of the upcoming NISAR mission (L-band
frequency and 12-day revisit).
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Remote sensing imagery was also used here to map estuarine emergent wetlands in the Chesapeake
and Delaware Bays with Google Earth Engine. The emergence of cloud-based remote sensing analysis
platforms present opportunities to expand mapping efforts like the one described here to much
larger extents, potentially globally. Global estimates of tidal marsh extent are poor [8]. However,
recent efforts by Mcowen et al. have aggregated national tidal marsh inventories into a global tidal
marsh inventory [71]. This global inventory likely underestimates the extent of tidal marshes since
it aggregates national inventories that are often themselves incomplete. However, there is potential
to improve these estimates of tidal marsh extent by utilizing tidal marsh inventories as training data
for remote sensing-based tidal marsh classifications at the global scale. With the advent of cloud
computing remote sensing platforms, such mapping efforts are now highly feasible.
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