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Abstract: Accurate mapping of agricultural fields is needed for many purposes, including irrigation
decisions and cadastral management. This paper is concerned with the automated mapping of
cropland strips that are common in the North China Plain. These strips are commonly 3–8 m
in width and 50–300 m in length, and are separated by small ridges that assist with irrigation.
Conventional surveying methods are labor-intensive and time-consuming for this application,
and only limited performance is possible with very high resolution satellite images. Small Unmanned
Aircraft System (sUAS) images could provide an alternative approach to ridge detection and strip
mapping. This paper presents a novel method for detecting cropland strips, utilizing centimeter
spatial resolution imagery captured by sUAS flying at low altitude (60 m). Using digital surface
models (DSM) and ortho-rectified imagery from sUAS data, this method extracts candidate ridge
locations by surface roughness segmentation in combination with geometric constraints. This method
then exploits vegetation removal and morphological operations to refine candidate ridge elements,
leading to polyline-based representations of cropland strip boundaries. This procedure has been
tested using sUAS data from four typical cropland plots located approximately 60 km west of Jinan,
China. The plots contained early winter wheat. The results indicated an ability to detect ridges
with comparatively high recall and precision (96.8% and 95.4%, respectively). Cropland strips were
extracted with over 98.9% agreement relative to ground truth, with kappa coefficients over 97.4%.
To our knowledge, this method is the first to attempt cropland strip mapping using centimeter spatial
resolution sUAS images. These results have demonstrated that sUAS mapping is a viable approach
for data collection to assist in agricultural land management in the North China Plain.

Keywords: automated extraction; ridge detection; strip mapping; small unmanned aircraft systems
(sUAS); surface roughness; North China Plain
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1. Introduction

Cropland strips are long and narrow agricultural parcels that are common in parts of China and
India [1]. In the North China Plain (NCP), these strips are typically 3–8 m in width and 50–300 m in
length [2]. As shown in Figure 1, cropland strips are typically separated by ridges that mark ownership
or management boundaries and aid in irrigation [3]. The ridges are commonly 30–40 cm in width and
10–20 cm in height. These dimensions aid in efficient use of water during flood irrigation, which has
been adopted for more than 90% of cropland in this region [4]. Water is electronically pumped from
a nearby well or ditch, and transported to cropland strips by hoses. The elongated shapes of the
cropland strips, combined with raised ridges between the strips, guide the flow of irrigation water
very efficiently.

Widespread use of cropland strips in the NCP is a result of policies that were instituted in China
in 1979 to stimulate agricultural productivity [5]. Now, there is a strong need to develop maps of
cropland strips to guide irrigation decisions and to support cadastral management. One reason for this
need is the dramatic shift in population from rural to urban locations. According to the World Bank
(https://data.worldbank.org/), the ratio of urban population in China has increased from 17.9% in
1979 to 56.7% in 2016. Another reason for obtaining maps is the relatively low amount of arable land
per capita in China: 0.086 ha per capita in 2016, as compared to 0.471 ha per capita in the United States.
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Figure 1. Typical cropland landscape of (a) aerial view and (b) field photo of actual strips and ridges.

Sustainable agriculture requires field-specific information to support management decisions,
including irrigation planning [6] and fertilization management [7]. Obtaining such information is still
a challenge in regions that are dominated by small agricultural parcels. Current mapping methods
primarily rely on field surveying and manual digitization using traditional instruments, which is
time-consuming. Satellite imagery is constrained by its relative inability to support the identification
of small parcels at the desired level of resolution. The emergence of low-altitude small unmanned
aircraft system (sUAS) imaging technology offers great potential for mapping and assessing small
agricultural parcels.

The objective of this paper is to present an automated method for mapping typical cropland
strips in the NCP using sUAS photogrammetry. Specifically, this study has investigated the degree
to which cropland ridges and strips in the NCP can be identified from centimeter ground sampling
distance (GSD) images acquired by a sUAS. An accuracy assessment is presented, and the results
are compared with manual measurements. The proposed automated method focuses on detecting
small ridge candidates, and linking them automatically to identify enclosed cropland strips. To the
best of our knowledge, this is the first research on the topic of cropland strip mapping using
centimeter-spatial-resolution sUAS images.

2. Background

Cropland strip mapping is essential to strip-specific management and cadastral mapping of
farmland in the NCP. A cropland strip is a fundamental cultivated unit with an exclusive right of land

https://data.worldbank.org/
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use. Each cropland strip has a couple of adjacent ridges as its boundary. Therefore, ridge detection is
particularly important to strip mapping. Moreover, cropland ridges have an elongated structure and
obvious elevation differences with their surroundings. The linear nature of cropland ridges is similar
to roads, which are easily recognized in images. Thus, road detection methods have strong potential to
be used in identifying ridges.

Coarse-scale cropland mapping has been studied using multi-temporal satellite images, such as
MODIS [8], Landsat [9,10] and Sentinel [11]. Fine-scale mapping could be supported by different types
of earth observation, such as ground-based observation, spaceborne imaging, or airborne imaging [12].
Fine-scale cropland mapping is often done using manual digitization subsequent to field surveys
using traditional surveying equipment, such as total stations, real-time kinematic global positioning
systems (RTK-GPS), etc. These methods tend to be labor-intensive, time-consuming, and subjective.
Adverse weather, such as rainfall or snow, will also extend the surveying period. Although very high
resolution (VHR) satellite images have many agricultural applications, they have been used to only
limited effect in identifying such small ridges and strips (see Figure 2). Currently, the highest resolution
of commercial satellite images is the 0.31 m of WorldView-3, which still does not enable accurate
detection of cropland ridges. Moreover, civil satellites acquiring VHR images generally have a long
revisit cycle with relatively narrow swaths. Imaging ability is easily blocked on rainy or cloudy days.
It is easy to miss the best image acquisition period for identifying ridges. Taken together, it is difficult
to precisely extract farm parcels using VHR images. Piloted airborne imaging could provide decimeter
GSD products [13], but requires proximate air strips and cumbersome administrative procedures.
As such, the non-UAS methods mentioned above have clear limitations for this use case.

(a) (b)

Figure 2. Limited performance of satellite panchromatic image in cropland ridge identification:
(a) WorldView-3 (0.31 m), (b) GF-2 (0.81 m). The bigger the digital number, the brighter the image pixel.

Mapping using sUAS photogrammetry has been implemented in many fields in the past few years.
The rapid development of UAV technology, coupled with lightweight centimeter spatial resolution
sensors, is enabling the acquisition of extremely high resolution images with flexible acquisition times.
For example, the DJI Phantom 4 Pro (Shenzhen, China) carrying a 20.48-million-pixel optical camera
is one of the most popular drone-sensor combinations in recent studies [14]. Robust and accessible
algorithms have also been continuously improved to provide high-quality image products, including
orthophotos, digital surface models (DSMs), and 3D point clouds.

Comparative accuracy has been demonstrated between digital elevation models (DEM) derived
by structure from motion (SfM) algorithms and terrestrial laser scanning (TLS) in regions of
complicated topography at decimeter-scale vertical accuracy [15,16]. Many studies have illustrated
the potential for extracting small objects and detecting subtle spatial heterogeneity. These include
applications such as cadastral mapping [17], plant density counts [18], tobacco plant detection [19],
vine canopy segmentation [20], landslide scarp recognition [21], water stress detection [22], soil erosion



Remote Sens. 2019, 11, 2343 4 of 26

quantification [23], and characterization of gravel size distributions [24]. Millimeter spatial resolution
aerial images were collected to evaluate pavement distress conditions [25]. sUAS imaging technology
has thus become an important earth observation technology that is accessible to general users. It also
poses great challenges to image processing, analysis, and applications because of large data volumes
and immature or poorly applied approaches [26].

Based on the literature review, previous studies on cropland mapping using sUAS images are
lacking, and this presents a research gap. Centimeter GSD sUAS images could provide an alternative
approach to ridge identification and strip mapping. This study focuses on the utility of centimeter
GSD images obtained from a sUAS for automated, fine-scale cropland strip mapping on the NCP.

3. Methodology

The method is presented in four parts: data preparation (Section 3.1), ridge detection (Section 3.2)
and strip mapping (Section 3.3), followed by accuracy assessment (Section 3.4). The pipeline of the
method is displayed as Figure 3. The details of each step are presented in the following subsections.
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Figure 3. Pipeline of the methods used in this study.
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3.1. Study Site and Dataset Preparation

3.1.1. Site Description

The site is located in the west of Jinan, Shandong Province (112°45′0′′–122°48′0′′E,
32°0′0′′–40°24′0′′N). This region of the NCP has four distinctive seasons and a typical temperate
monsoon climate, and is an important agricultural zone in China (Figure 4). It is about 44,000 km2

and 50 m above sea level on average. The NCP is an alluvial plain developed by the intermittent
flooding of the Huang-Huai-Hai rivers, and cultivated farmland accounts for 85% of the area [27] .
The main cropping system is winter wheat and summer corn [28]. The NCP produces more than 75%
and 32% of Chinese wheat and corn, respectively [29].
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Figure 4. (a) location of North China Plain (NCP) and study site; (b) location of four plots with a 32-bit
panchromatic image from the GF-2 satellite (spatial resolution: 0.83 m) as background.

3.1.2. Small UAS and Image Acquisition

A sUAS kit was deployed during data acquisition in the field. A DJI Matrice 100 with a
consumer-grade digital camera (the Zenmuse X3) mounted on a three-axis gimbal was used. The main
specifications are listed in Table 1 and detailed information can be found on the official website
(https://www.dji.com/).

Table 1. Specifications of sUAS employed in this study.

No. UAV Specification UAV Parameter Digital Camera Specification Digital Camera Parameter

1 Diagonal wheelbase 650 mm Focal length 3.64 mm

2 Maximum takeoff
weight 3.6 kg Weight of camera and

gimbal 247 g

3 Maximum payload 1.0 kg Sensor size 6.17× 4.55 mm
4 Maximum AGL 500 m Effective pixels 12.4 megapixel

5 Hovering accuracy
(P-mode with GPS)

Vertical: 0.5 m, Horizontal:
2.5 m Diagonal field of view 94◦

6 Capacity of battery
(TB48D) 5700 mAh Pixel size 1.55 µm

7 Hovering time (with
TB48D battery)

No payload: 28 min, 500 g
payload: 20 min, 1 kg
payload: 16 min

Sensor type
complementary
metal-oxide-semiconductor
(CMOS)

The sUAS data were acquired at the early growing stage of winter wheat (November, 2016).
The altitudes above ground level (AGL) of flights were set at 60 m, 100 m and 150 m (see Table 2).
The flight trajectory was designed in advance with a front overlap of 80% and a side overlap of 60%.
The camera captured an image vertically every three seconds. The camera was set to use shutter speed
priority and auto adjustment of ISO applied gains. Sequential images were stored in Joint Photographic

https://www.dji.com/
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Experts Group (JPEG) format on a memory card. UAV-embedded global navigation satellite system
(GNSS) and inertial measurement unit (IMU) equipment provided position and attitude information
with relatively low precision [14].

To achieve accurate georeferenced results after 3D construction, 13 ground control points (GCPs)
were distributed as evenly as possible on the site and marked as crosses 10 cm wide and 1 m long
using lime. The central coordinate of each GCP was obtained using a GNSS receiver (South Survey
GALAXY G1; real-time kinematics surveying with a typical accuracy of 0.008 m + 1 ppm horizontally
and 0.015 m + 1 ppm vertically). The study site required multiple flights because of the flight time on
each battery charge (about 25 min).

Table 2. Summary of the sUAS flight parameters for the study site.

Flight Mission AGL (m) Date of Flight Overlap (Front × Side) Number of GCPs Resolution (cm)

Mission 1 60 1 November 2016 80% × 60% 13 2.5
Mission 2 100 2 November 2016 80% × 60% 13 4.2
Mission 3 150 2 November 2016 80% × 60% 13 6.5

3.1.3. Dataset Preparation

Pix4D mapper (3.0.17, Pix4D, Lausanne, Switzerland) was used to process the sequential images
with surveyed GCPs to obtain the DSMs and georeferenced orthophotos. The specific steps and
processing parameters can be found in Table A1 of Appendix A.

The first dataset consisted of four plots on which winter wheat was being grown. This dataset was
used to develop the automated strip mapping method, and were selected for features such as ridge
length, crop coverage, and topographic gradient. These specific parameters and detailed statistics can
be seen in Figure 5 and Table 3.

Table 3. Specific parameters of four plots.

Plot Plot 1 Plot 2 Plot 3 Plot 4

area (m2) 17,466 24,743 6228 9447
number of cropland strips 18 22 18 27
ridge width (m) 0.33 0.41 0.36 0.39
strip, length × width range (m) 181.5 × (3.8–7.5) 237.8 × (4.5–5.3) 52.1 × (5.5–8.0) 72.3 × (4.7–5.0)
elevation, mean(min-max) (m) 28.33(27.72–28.93) 28.35(28.03–28.87) 28.07(27.69–28.43) 28.31(28.17–28.55)
gradient, mean(min-max) 2.797(0,39.103) 2.590(0,35.815) 2.639(0,28.540) 2.387(0,35.963)
surface roughness, mean(min-max) 0.490(0,1) 0.495(0,1) 0.494(0,1) 0.495(0,1)
crop coverage condition partly scarcely partly scarcely

The second dataset was selected to explore the effects of spatial resolution on strip mapping.
The first four plots were resampled into 10 different spatial resolutions ranging from 3 to 12 cm using
nearest neighbor sampling, resulting in 40 test images.

The third dataset was prepared as ancillary data to verify the extracted accuracy using the second
dataset. It includes the orthophotos and DSMs produced by sUAS images at altitudes of 100 m and
150 m AGL.

3.1.4. Validation Data Collection

VHR orthophotos enable visual discrimination of inter-strip ridges. Validation data were acquired
using heads-up digitzing in geographic information system (GIS) software. All ridges were visually
identified as accurately as possible as polylines and then the strip outlines were made by connecting
adjacent polylines in each plot. These spatial reference data were used for accuracy assessment, and are
shown in Figure 6.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (m) (o) (p)

Figure 5. Plot images of orthophoto for Plot 1 (a), Plot 2 (b), Plot 3 (c), Plot 4 (d), DSM for Plot 1 (e), Plot
2 (f), Plot 3 (g), Plot 4 (h), elevation histogram for Plot 1 (i), Plot 2 (j), Plot 3 (k), Plot 4 (l), and surface
roughness histogram for Plot 1 (m), Plot 2 (n), Plot 3 (o), Plot 4 (p).

3.2. Ridge Detection

Four steps were conducted to detect cropland ridges, including initial extraction using threshold
segmentation of surface roughness (Section 3.2.1), ridge filtering using shape index (Section 3.2.2),
ridge cleaning by removing impacts of vegetation coverage (Section 3.2.3), and ridge smoothing using
morphological operation (Section 3.2.4).
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Figure 6. Validation ridges obtained by manual digitization for Plot 1 (a), Plot 2 (b), Plot 3 (c), Plot 4 (d).

3.2.1. Initial Extraction Using Threshold Segmentation of Surface Roughness

Elevation profiles of cropland in the plain area have regular peaks along with fluctuating ridges
(see Figure 7). The internal strip is relatively flat and the edges of the strip are rougher. Surface
roughness, reflecting the irregularity of a topographic surface [30], is comparatively larger for the
ridges than for the crop area between two adjacent ridges. This characteristic allows automated ridge
detection from VHR sUAS imagery. As illustrated in Figure 5m–p, the surface roughness of cropland
has a Gaussian distribution in the plain area. It has advantages over ground elevation or slope.

(a) (b) (c)

Figure 7. Typical profile of DSM after processing sUAS images and field photo of actual strips and
ridges. (a) typical DSM data and example profile line; (b) typical orthophoto data and example profile
line; (c) typical DSM profile with black circles marking ridge peaks.

Surface roughness is obtained by calculating DSM deviations using a moving rectangle window.
The window size is set as the ridge width (0.35 m). In order to automated segmentation, the threshold
of surface roughness is determined as the mean of roughness and half of standard deviation. Ridge
binarization (Figure 8b) by this threshold keeps each ridge continuous and its edge smoother. The result
of the binary image is named as f1:

f1 =

{
1, f (x, y) ≥ T1, ridges

0, f (x, y) < T1, non-ridges
(1)

where f (x, y) is the binary value at pixel (x, y), and T1 is the determined threshold.
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(a) (b)

Figure 8. Binary image before (a) and after (b) threshold segmentation. Partial location is displayed in
the left upper corner in Figure 8a. Ridge candidates are valued as 1 in white and non-ridge candidates
are valued as 0 in black.

3.2.2. Ridge Filtering Using Shape Index

Pixel shape index (PSI) [31] is introduced to depict the spatial information around the central pixel.
The PSIs are calculated from a binary image of surface roughness. Four PSIs (Table 4) are used as the
filter to refine ridges from f1, including area, perimeter of minimum enclosing rectangle (MER), major
axis length, and area of MER. Image holes are filled to remove the noise by searching connectivity of
an eight-connected neighborhood. The results of each step can be seen in Figure 9:

S1 = S0 > mean(shape area o f S0)

S2 = S1 > mean(MER perimeter o f S1)

S3 = S2 > mean(major axis length o f S2)

S4 = S3 > mean(MER area o f S3)

(2)

where S0 indicates binary images after threshold segmentation of surface roughness, S1 indicates
binary images after the first filtering, S2 indicates binary images after the second filtering, S3 indicates
binary images after the third filtering, and S4 indicates binary images after the fourth filtering:

f2 =

{
1, S4 a f ter f iltering, ridges

0, otherwise, non-ridges
(3)

where f2 is the outcome from ridge filtering using the four shape indexes.

Table 4. Details of pixel shape indexes (PSIs).

Name Unit Concept

Area pixel2 Actual number of pixels in the region
Area of MER pixel2 Area of smallest rectangle containing the region
Perimeter of MER pixel Perimeter of smallest rectangle containing the region
Major axis length pixel Length of the major axis of the ellipse with the same normalized second central

moments as the objective region
Minor axis length pixel Length of the minor axis of the ellipse with the same normalized second central

moments as the objective region
Orientation degree Angle between the x-axis and the major axis of the ellipse that has the same

second-moments as the region
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(a) (b) (c)

(d) (e)

Figure 9. Extracted results using the shape index filter. Ridge candidates are valued as 1 in white and
non-ridge candidates are valued as 0 in black. (a) binary image ( f1) as S0 segmented from surface
roughness of Plot 1, (b) result (S1) after the first filtering using mean area of S0, (c) result (S2) after the
second filtering using mean MER perimeter of S1, (d) result (S3) after the third filtering using mean
major axis length of S2, (e) result (S4) after the fourth filtering using MER area of S3.

3.2.3. Ridge Cleaning by Removing Impacts of Vegetation Coverage

Vegetation prevents precise ridge detection. Removing vegetation allows a better ridge delineation
in Figure 10b than the rough border in Figure 10a. Fortunately, an orthophoto is obtained from
sUAS photogrammetry, which can be used to mask the vegetation coverage in an image. Vegetation
segmentation mainly focuses on determining a segmentation threshold using a statistical histogram of
an image color space characteristic or vegetation index [32].

The segmentation method is adopted from [33] for the same camera employed as this paper, as it
had better performance than vegetation index segmentation using a global threshold [34]. The Hue
histogram is extracted after converting the color space of the image from red-green-blue (RGB) to
hue-saturation-value (HSV). Next, the threshold is detected from the fitted graph of the Hue Gaussian
based on the filtered Hue histogram. Finally, the binary image is created using the detected threshold.
The binary image of the vegetation mask ( f3) is divided into vegetation (value 0) and non-vegetation
(value 1).
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f3 =

{
1, f (x, y) ≤ T2, non-vegetation

0, f (x, y) > T2, vegetation
(4)

where f (x, y) is a binary value at pixel (x, y), and T2 is equal to 0.
The result after the vegetation filter ( f4) is obtained via a point operation, pixel-specific

multiplication between the ridge candidates ( f2) and the vegetation mask ( f3). The result can be
found in Figure 10:

f4 = f2 · f3 (5)

(a) (b)

Figure 10. Ridge extraction before (a) and after (b) removing vegetation impacts in partial
Plot 1. Overlaying images are the ridge candidates (red lines) and vegetation coverage (green).
Significantly improved ridges are marked with black ellipses.

3.2.4. Ridge Smoothing Using Morphological Operation

To refine the delineation of cropland ridges, morphological operations are conducted by selecting
adequate structural elements (SE) [35], including image opening using multi-directional structuring
elements (MDSE), pixel area filtering to remove tiny objects, image closing using structuring element
of line (SEL), and image thinning.

Image opening employs image dilation after erosion, which can diminish local small blocks of
bright regions. MDSE (g1), with appropriate values for direction and length, allows for excluding
the pixels associated with main ridges. Branches with only four directions and a small window have
demonstrated a favorable balance [36] between computational efficiency and precision. SE of g1 is
constructed as the following equation:

g1(xi, yi) =


yi = xi tan(αi), xi = 0,±1, . . .

± (L−1) cos(αi)
2 , i f |αi| ≤ 45◦

xi = yi cot(αi), yi = 0,±1, . . .

± (L−1) sin(αi)
2 , i f 45◦ < |αi| ≤ 90◦

(6)

where g1(xi, yi) is the pixel value of g1 at pixel (xi, yi), αi is the i-th directional angle, interval of i ranges
from −90◦ to 90◦, and L denotes length of the window size of the structuring element. The angle was
set to 45◦ and L to one ridge width (13 pixels for the original image resolution of 2.5 cm):

f5 = f4 ◦ g1 = ( f4 	 g1)⊕ g1 (7)

where g1 denotes a multi-directional structuring element.
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Small artifacts were removed by filtering by object area:

f6 =

{
1, f5 ≥ T3, ridges

0, f5 < T3, non-ridges
(8)

where T3 is the filtering threshold of the object area, set as 1000 pixels.
Image closing uses image erosion after dilation. SEL (g2) with a proper slope and length is

adopted to connect patches in each ridge. In order to automate operation, the median slope was used
to avoid the effect of outliers, and the length was set to 0.5 times pixel number of the major axis length
acquired from ridges in each plot:

f7 = f6 · g2 = ( f6 ⊕ g2)	 g2 (9)

where g2 denotes structuring element of line.
The thinning algorithm mentioned in [37] is adopted in which the iterative thinning algorithm

generates the skeleton of objects by iteratively checking and removing the contour pixels in a sequential
means. The skeleton of detected ridges is achieved as a binary image ( f8). The results of each step can
be seen in Figure 11.

(a) (b) (c) (d)

Figure 11. Final results using morphological operation. Ridge candidates are valued as 1 in white and
non-ridge candidates are valued as 0 in black. (a) binary image ( f4) after removing vegetation coverage
of Plot 1, (b) result ( f5) using image opening with MDSE, (c) result ( f6) after removing small regions
with threshold: 1000 pixels, (d) result ( f7) using image closing with SEL.

The parameters of cropland ridge detection are summarized in Table 5.

Table 5. Parameter summary of cropland ridge detection.

Step Substep or Index Threshold or Method Section

Ridge segmentation surface roughness >mean and half of standard deviation Section 3.2.1
Ridge filtering shape area >mean Section 3.2.2

MER perimeter >mean Section 3.2.2
major axis length >mean Section 3.2.2

MER area >mean Section 3.2.2
Ridge cleaning vegetation segmentation detected value from Hue histogram Section 3.2.3

ridge mask image operation Section 3.2.3
Ridge smoothing image opening MDSE with angle 45◦ and length 13 pixels Section 3.2.4

pixel area filtering >1000 pixels Section 3.2.4
image closing SEL with half of major axis length Section 3.2.4

image thinning infinite Section 3.2.4
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3.3. Cropland Strip Mapping

Each cropland strip is bounded by two adjacent ridges and is thus just a polygon with two
polyline boundaries. Therefore, the point set of each ridge is first detected (Section 3.3.1) and labeled
(Section 3.3.2), then ridges are drawn by connecting points detected one by one after point improvement
(Section 3.3.3). Finally, strips are mapped by connecting adjacent ridges (Section 3.3.4).

3.3.1. Point Detection Using Hough Transform

The Hough Transform (HT) can be used to detect linear objects, such as cropland ridges. HT is
the classical method to detect straight lines [38], and then was improved to employ polar coordinate
space [39]. HT can also be used to detect curves or other shapes [40]. HT transforms the shape from
image coordinate space into Hough parameter space. Every straight line in the spatial domain has a
corresponding point in Hough space, and the converse situation is also true. Generally, the HT requires
three steps: (1) defining a parameter space of HT, (2) voting and identifying peaks in parameter space,
and (3) extracting line segments using intersection points (ρ-θ) in HT space [41].

Detected angle (θ) and HT spacing along the angle axis (ρ) are the key parameters in HT space.
The line angle to be detected is set as the median angle of ridge candidates with a range of 3◦, which is
a good tradeoff between computational efficiency and the resulting accuracy. Spacing (ρ) represents
the distance from the origin to the closest point on the line, which is set as 0.25. Then, the parameter
space is constructed as a matrix.

Peaks are a crucial factor in parameter space and indicate extrema after accumulation. Every peak,
as a curve intersection in HT space, has a corresponding line segment in image space. The number
of peaks is 300 in this study. Finally, the peaks in HT space are transformed into line segments in
coordinate space, and recorded as a table with several pairs of point pixel coordinates. In addition,
point coordinates are then transformed from pixel space to projection space using the following
equation. The detected result is shown in Figure 12a:{

x = x0 + npxr0

y = y0 − npyr0
(10)

where npx and npy denote pixel coordinates in the image, r0 denotes image resolution, x and y denote
the corresponding projection coordinates, and x0 and y0 denote the projection coordinates of the image
at the point of the left upper corner.

3.3.2. Point Labeling and Sorting

Different point sets are labeled by their relation with the MER of each ridge, and sorted using
their coordinates. This step can be seen in Figure 12b.

Coordinate rotation is performed around the centroid point to make the ridge direction from
north to south using the following equation:[

x′

y′

]
=

[
cos θ − sin θ

sin θ cos θ

] [
x
y

]
(11)

where x and y denote the coordinates before transformation, x′ and y′ denote the coordinates after
transformation, and θ denotes the rotation angle.
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(a) (b)

Figure 12. Point detection using the Hough Transform and point labeling and sorting. The binary
image of the ridge candidates is the background. (a) result of point detection using Hough Transform
for Plot 1; (b) point labeling and sorting.

3.3.3. Point Reduction and Improvement

Point reduction (named as P1) preserves ridge shape using fewer points considering Euclidean
distance, normal angle, and curvature [42]. In this study, a ridge is a straight line consisting of many
line segments. The tolerance distance between adjacent points is set as 3% of ridge length. Two
adjacent points in given point set are iteratively replaced by their midpoint if the distance between
them is smaller than the tolerance distance.

Point improvement includes three intermediate determinations, as follows: the central point of
the MER minor axis (P2), the four corner points of each plot (P3), and the outlier of endpoints (P4).
The coordinate rotation is conducted to compare these points. The endpoint coordinate is added using
the central point of the corresponding MER minor axis if it is close to the centroid. For the top and
bottom of a given plot (where ridges begin and end) the median of the ridge endpoints is calculated.
Corner points (the endpoints of the outside ridges) are replaced by the median ridge endpoint for a
given side. The outlier of endpoints is replaced by the intersection point between the corresponding
ridge and the line segment composited by its two adjacent endpoints. The tolerance of endpoint outlier
is the ridge width (0.35 m). Subsequently, the point closest to ridge endpoint at its side is removed if
their distance is less than the threshold point reduction adopted (3% of ridge length). The result is
shown in Figure 13.
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(a) (b)

Figure 13. Results of four steps after point reduction and improvement for Plot 1. The binary image of
ridge candidates is the background. (a) overlaying results of point reduction (P1) and comparison with
central points of MER minor axis borders (P2); (b) endpoint improvement for corner parts (P3) and
other endpoints (P4).

3.3.4. Polyline (Ridge) Drawing and Polygon (Strip) Mapping

As discussed above, the point set generates in a simple and optimal order. Each polyline of the
ridge is drawn by linking one point to another according to the sorted order and the label of the
corresponding ridge. Finally, strips or polygons are finished by connecting adjacent ridges in the
counterclockwise direction.

3.4. Accuracy Assessment

The automated method and manual digitization were compared at both the ridge- and strip-levels.
The evaluation methods are based on those used with road detection [43] for ridges and cadastral
standards for strips.

3.4.1. Accuracy Assessment of Ridges

Ridge accuracy is assessed, like road detection, using completeness and correctness [43]. As is
shown in Figure 1 of Heipke et al. (1997) [43], completeness is the proportion between the reference
data and the extracted data lying around its buffer, which is also called recall. Correctness is the
percentage correctly extracted from the total region of extracted objects, which is also called precision.

Considering the width range of ridges, we determine the buffer width (35 cm) with 17.5 cm on
both sides. The buffer zone is generated from ridges both automatically and manually extracted,
and an overlay analysis is implemented between buffer zones and extracted ridges. True positive (TP)
is the situation if automatically extracted ridges are matched with the buffer of manually extracted
ridges, otherwise it is false positive (FP). A false negative (FN) is when the reference data are not in
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the buffer around the ridges extracted by the proposed method. Accuracy assessment equations are
given below:

Recall =
TP

TP + FN
(12)

Precision =
TP

TP + FP
(13)

Length error ratio =
L1 − L0

L0
(14)

where TP denotes the total matched extracted data, FP denotes the total unmatched extracted data, FN
denotes the total unmatched reference data, L1 is the extracted length of a single ridge, and L0 is the
reference length of the corresponding ridge.

3.4.2. Accuracy Assessment of Strips

Strip accuracy is estimated by comparing extracted polygons using the true polygon boundaries.
Reference data were obtained by manual extraction of strips. Average extraction accuracy (AEA) and
Kappa coefficient (KC) are used to assess strip accuracy [44]. AEA is computed by the average ratio of
extracted strips using the proposed method to the corresponding reference data for each plot:

AEA =
1
n

n

∑
i=1

Ai
Ari

(15)

where n is the total number of strips, Ai is the extracted area of the i-th strip, and Ari is the reference
area of the i-th strip.

KC is determined from the confusion matrix using the following equation:

KC =
N ∑n

i=1 xii −∑n
i=1(xi+x+i)

N2 −∑n
i=1(xi+x+i)

(16)

where n is the number of rows in the confusion matrix, xii is the number of observations in row i and
column i, xi+ and x+i are the marginal totals of row i and column i, respectively, and N is the total
number of observations.

4. Results

4.1. Improvement of Point Quality

Point reduction and improvement are important to improve extraction quality. Four steps were
carried out to enhance the quality of ridge identification and strip extraction. The original dataset
consists of the points detected by the Hough Transform (as P0). Recall and average extraction ratio
were used to assess the accuracy of ridge and strip extraction, respectively. Point reduction and
improvement improves the accuracy by which ridges are identified and thus, by extension, improves
cropland strip area (Table 6).

4.2. Accuracy of Ridge Detection

Ridges were accurately identified, with length error ratios ranging from -1.24% to -0.3%. As seen
from Table 7 and Figure 14, detected ridges are in good agreement with the corresponding manual
extraction. Recall was over 96.8% and precision over 95.4% for all plots. Similar or lower accuracies
were noted in similar cases of linear extraction, such as detection of roads, landslide scarps, and subway
tunnel cracks. Road detection recalls across several recent studies are reported as 82% [45], 90% [46]
and 93% [47], with precisions of 76% [45], 93% [46] and 95% [47]. Landslide scarp recognition using
surface roughness index [21] had a recall of 66% and a precision of 88%. Classification accuracy of
subway tunnel crack detection [48] was over 90%.
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Table 6. Accuracy assessment of point reduction and improvement.

Plot and Detected Mean Length of Ridges Recall Total Area of Strips AEA
Step Points (m) (%) (m2) (%)

1P0 286 172.7 94.1 16,658 95.4
1P1 223 172.4 94.4 16,634 95.2
1P2 261 177.8 97.3 17,161 98.3
1P3 261 179.3 98.1 17,250 98.8
1P4 232 181.2 98.6 17,439 99.9
2P0 275 224.7 92.4 23,447 94.8
2P1 246 224.7 92.4 23,439 94.7
2P2 290 235.2 96.5 24,475 98.9
2P3 290 235.1 96.5 24,472 98.9
2P4 262 236.6 96.8 24,626 99.5
3P0 296 47.1 88.9 5565 90.2
3P1 92 39.9 76.2 4685 75.9
3P2 130 49.5 94.7 5889 95.5
3P3 130 49.8 95.4 5913 95.8
3P4 105 51.5 97.4 6106 99.0
4P0 292 64.7 91.5 8354 92.0
4P1 208 62.0 88.0 8031 88.5
4P2 264 67.6 95.3 8731 96.2
4P3 264 67.9 95.6 8748 96.4
4P4 222 69.6 97.1 8975 98.9

Table 7. Accuracy assessment of ridge detection.

Plot Average Extracted Average Actual Length Error Length Error Recall Precision
Length (m) Length (m) (m) Ratio (%) (%) (%)

1 181.2 181.5 −0.30 −0.16 98.6 98.8
2 236.6 237.8 −1.24 −0.52 96.8 95.4
3 51.5 52.0 −0.49 −0.94 97.9 96.9
4 69.4 70.3 −0.95 −1.35 97.1 97.5

4.3. Performance of Strip Extraction

The mapped strips are displayed as Figure 15. As is shown in Table 8, the extraction ratio is high,
ranging from 98.9% to 99.9%. The KC range is from 97.4% to 99.9% with an average of 99.1%. There is
no distinct difference among KCs from the 85 strips across four plots.

4.4. Effects of Spatial Resolution

The AEA of strips is high with minimal bias (less than 1%). However, ridge detection accuracy
worsens as the spatial resolution of surface roughness is decreased. Recall decreases from over 90% to
around 60% for all four plots (see Figure 16). A spatial resolution of 4–5 cm enables accurate ridge
detection. Significant decreases were observed in the accuracy of cropland ridge detection and strip
mapping once spatial resolution exceeded 5 cm (Figure 16a–c). As can be seen, a lower acquisition
resolution (as was the case with the 4.2 and 6.5 cm DSMs) is necessary to truly assess the effects of
resolution on mapping performance.
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(a) (b)

(c) (d)

Figure 14. Ridge detection assessment result. True positives (TP) are black and false positives (FP) are
red. (a) Plot 1, (b) Plot 2, (c) Plot 3, (d) Plot 4.
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(a) (b)

(c) (d)

Figure 15. Extracted strips of four plots filled with different colors. (a) Plot 1, (b) Plot 2, (c) Plot 3, (d)
Plot 4.

Table 8. Accuracy assessment of strip extraction.

Plot Automated Extracted Total Reference Total Area Total Area KC Range
Area (m2) Area (m2) Error (m2) Extraction Ratio (%) (%)

1 17,439 17,466 −26.9 99.9 97.6–99.4
2 24,626 24,743 −117.3 99.5 97.4–99.3
3 6106 6170 −63.8 99.0 98.6–99.8
4 8975 9075 −99.6 98.9 98.5–99.9
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(e)

Figure 16. The impacts on mapping performance of different resolution images: (a) recall and AEA,
(b) length ratio error, (c) area ratio error; typical images of cropland ridge: (d) orthophoto and (e) DSM in
different GSD with the actual extent: 2.1 m × 3.5 m.

5. Discussion

5.1. Suitable Sites and Data Acquisition

This study is conducted in a simplified area, which is cropped from a complete orthophoto
derived from sUAS images into small plots with a few cropland ridges and strips. It is relatively
straightforward to extract ridges and map strips under this ideal situation. As such, a priority for
subsequent algorithm development is developing the ability to map cropland strips accurately even
in more heterogeneous landscapes. In this paper, ridge detection relies primarily on segmentation
of surface roughness. Other potentially suitable sites are those with significant differences in terrain
or geomorphology indexes amid an otherwise regular cropland distribution, such as rice cultivated
land in plain areas (Chiang Mai, Thailand: 18°55′25′′N, 98°57′18′′E) [49] and terrace landscapes in
mountainous areas (Yuanyang, China: 23°6′47′′N, 102°44′53.9′′E [50] and Apline regions, Itlay [51]).

Images should be acquired in the early stages of crop growth, particularly before the elongation
stage of wheat or corn. Otherwise, the ridges will be occluded as the crops grow, especially for those
crops with large canopy cover, such as summer corn.

5.2. Accuracy: Ridges as Line Detection

Line detection from images remains a hot topic in remote sensing, with detected features including
roads [36], building edges [52], windthrown trees [53], ground cracks [54], etc. Line detection methods
include heuristic reasoning, dynamic programming, statistical inference, and map matching [55–57].
Knowledge- [58] and morphology-based [59] approaches are also extensively used. In croplands, each
strip, as a single polygon, is contained by two neighboring ridges, which are not straight lines but
polylines. The Hough Transform allows for detecting objects that have regular features or could be
represented by mathematical expressions, such as lines, circles, and ellipses. Therefore, the proposed
method could in principle be extended to other objects with regular shapes, such as areas under center
pivot irrigation (Dalhart, TX, USA: 36°3′5′′N, 102°27′43′′W) [9], vineyards [20] and plastic-mulched
farmland [60].

5.3. Accuracy: Cropland Strips as Regions vs. Cadastral Requirements

With respect to region mapping, this study performs well with the KC ranging from 97.4% to 99.9%
and a total extraction ratio over 98.9%. According to Regulation Practice for the Right of Rural Land
Contractual Management of China (NY/T 2537-2014), the point mean error in cadastral surveying
should be lower than 0.25 m, 0.5 m, and 1.0 m at scales of 1:500, 1:1000, and 1:2000, respectively.
Generally, a scale of 1:500 supports the investigation of residential land. Area error is required to be
less than 5%. In this study, the strip extraction ratio ranges from 98.9% to 99.9%. As such, the outlined
protocol meets current cadastral mapping accuracy standards.
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5.4. Impact of Spatial Resolution

A spatial resolution of 4–5 cm appears optimal (given the study constraints) for detecting the
narrow ridges between cropland strips, enabling both high extraction accuracy and high computational
efficiency. However, ridge width may vary from field to field and region to region. As such, different
spatial resolutions may be necessary even in the NCP.

6. Conclusions

This study reports on an effort to automatically extract typical cropland strips from cm spatial
resolution imagery captured by a small UAS mounted on a consumer-level digital camera at one
point in time. Surface roughness was important for identifying small linear objects with different
microtopographies in plain areas. Typical cropland strips were well identified with AEAs over 98.9%
and KCs over 97.4%. Ridges were also well detected with favorable recall (over 96.8%) and precision
(over 95.4%). A spatial resolution of 4–5 cm worked well for extracting ridges and strips with the
presented method. Cropland strips can thus be mapped at high accuracy using VHR images captured
from sUAS in similar agricultural landscapes, especially in the North China Plain. In addition, this
study also demonstrates the great potential of VHR sUAS imagery in identifying small objects with
high accuracy. Other research conducted in small fields could benefit from this flexible sUAS technique.

This automated method was developed and tested in cropped farmland images with elongated
ridges, which is a relatively simple use case at the local scale. It could be extended to similar cases,
such as plastic mulch farmland. Actual cropland can be more complicated than the experimental plots
in this research. Landscape- to regional-scale application (villages or even the whole NCP) will require
dealing with more heterogeneity, including road, pond, or forest patches among the strips or different
ridge lengths in a given plot. Larger regions could be divided into smaller patches with relatively
consistent landscapes. Images acquired by diverse sUAS using different flight altitudes should be
further explored for detecting cropland ridges and strips to verify the robustness of the proposed
method. Thresholds mentioned in this paper should still be tested in other areas. More complex
use cases should also be explored to enable gradual process improvement, with eventual potential
contribution to smart farm or automated cadastral mapping.
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Abbreviations

The following abbreviations are used in this manuscript:

sUAS small unmanned aircraft systems
UAS unmanned aircraft systems
UAV unmanned aerial vehicles
DSM digital surface model
NCP North China Plain
GSD ground sampling distance
RTK-GPS real-time kinematic global positioning systems
VHR very high resolution
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DEM digital elevation model
SfM structure from motion
TLS terrestrial laser scanning
ISO international standards organization
CMOS complementary metal–oxide–semiconductor
JPEG joint photographic experts group
AGL above ground level
GPS global positioning systems
IMU inertial measurement units
GCP ground control point
GNSS global navigation satellite system
RMSE root mean squared error
GIS geographic information system
PSI pixel shape index
MER minimum enclosing rectangle
RGB red-green-blue
HSV hue-saturation-value
SE structural elements
MDSE multi-directional structural elements
SEL structuring element of line
HT Hough transform
TP true positive
FP false positive
FN false negative
AEA average extraction accuracy
KC Kappa coefficient
FVC fractional vegetation coverage

Appendix A

Table A1. Specific steps and parameters of UAS image processing.

Step Substep Parameter Setting

Initial processing General Keypoints image scale Full
Matching Matching image pairs Aerial grid or corridor

Calibration Targeted number of keypoints Automatic
Calibration method Standard

Internal parameters optimization All
External parameters optimization All

Rematch Automatic
Point cloud Point cloud Image scale 1/2, half image size
and mesh Point density Optimal

Minimum number of matches 3
3D textured mesh Mesh resolution Medium

DSM, DSM and orthomosaic Resolution Automatic
Orthomosaic DSM filters-1 Use noise filtering
and index DSM filters-2 Use surface smoothing-Sharp
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