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Abstract: Atmospheric aerosol is one of the major factors that cause environmental pollution.
Light detection and ranging (LiDAR) is an effective remote sensing tool for aerosol observation.
In order to provide a comprehensive understanding of the aerosol pollution from the physical
perspective, this study investigated regional atmospheric aerosol pollution through the integration
of measurements, including LiDAR, satellite, and ground station observations and combined the
backward trajectory tracking model. First, the horizontal distribution of atmospheric aerosol wa
obtained by a whole-day working scanning micro-pulse LiDAR placed on a residential building roof.
Another micro-pulse LiDAR was arranged at a distance from the scanning LiDAR to provide the
vertical distribution information of aerosol. A new method combining the slope and Fernald methods
was then proposed for the retrieval of the horizontal aerosol extinction coefficient. Finally, whole-day
data, including the LiDAR data, the satellite remote sensing data, meteorological data, and backward
trajectory tracking model, were selected to reveal the vertical and horizontal distribution characteristics
of aerosol pollution and to provide some evidence of the potential pollution sources in the regional
area. Results showed that the aerosol pollutants in the district on this specific day were mainly
produced locally and distributed below 2.0 km. Six areas with high aerosol concentration were
detected in the scanning area, showing that the aerosol pollution was mainly obtained from local life,
transportation, and industrial activities. Correlation analysis with the particulate matter data of the
ground air quality national control station verified the accuracy of the LiDAR detection results and
revealed the effectiveness of LiDAR detection of atmospheric aerosol pollution.

Keywords: aerosol; LiDAR; horizontal scanning; vertical and horizontal distribution

1. Introduction

The rapid development of the Chinese economy, the fast expansion of urban areas, and the
large increase in urban populations have led to complex regional air pollution problems caused by
atmospheric aerosols. With their increasing prominence, this development has seriously affected the
health of the people and simultaneously restricted the sustainable development of the social economy.
Atmospheric aerosol refers to a liquid or solid particulate matter (PM) suspended in the atmosphere
with a diameter of 0.001–100 µm, is composed of a mixture of PMs from different sources, and is the
main pollutant affecting the urban air quality in China. The effects of aerosols on the atmosphere,
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climate, and public health are among the central topics in current environmental research, and it is of
central importance for climate and public health [1]. On one hand, some PMs can enter the human
body, even the lungs or the alveoli, thereby harming human health due to its own toxicity or the toxic
substances they carry [2–6]. On the other hand, atmospheric aerosol pollution is the fundamental
cause of haze [7–13], reduces atmospheric visibility, and increases the incidence of traffic accidents.
Besides, aerosol pollution not only has an impact on health and radiation balance, but also has a
large impact on quantitative atmospheric remote sensing [14–17]. Therefore, effectively monitoring
atmospheric aerosols in cities can help identify the location of pollution sources, thus providing an
important analytical basis and identifying problems in environmental management to develop targeted
air pollution control programs. Regulating the atmospheric environment is of great significance.

Light detection and ranging (LiDAR) is an effective means of remote sensing for aerosols, and has
a large range of detection, continuous monitoring, and high spatial and temporal resolution, and is
widely used in the field of atmospheric aerosol and environmental pollution monitoring [18–20].
Many studies have focused on LiDAR application in aerosol monitoring. Sun et al. [21] studied the
monthly variation and interaction of aerosol direct radiative forcing and aerosol vertical structure
in the Yangtze River Delta during 2013–2015. Matthias et al. [22] used the Raman LiDAR data of 10
European aerosol research LiDAR network stations to analyze the vertical distribution characteristics
of aerosols in Europe. Niranjan et al. [23] studied winter aerosol characteristics in the Kharagpur
region of northern India. Xia Haiyun et al. [24] presented remote micro-pulse aerosol LiDAR combined
with upconversion detectors that continuously monitor the visibility of the atmosphere for more than
24 h. The results were consistent with the weather forecast and achieved continuous day and night
detection of aerosols. Lu Xianyang et al. [25] used the horizontal data detected by the micro-pulse
LiDAR in combination with the particle counter and the visibility meter to calculate the horizontal
path distribution of the near-surface aerosol in the city. Lv Yang et al. [26] utilized a ground-based
micro-pulse LiDAR to organize a scanning observation experiment in Hebei Province and determined
the location of the scattered pollution source according to the aerosol extinction coefficient.

Recent studies have mainly focused on the vertical or horizontal observation of aerosols by using
LiDAR, for example, two-dimensional results in horizontal observation [27–29] and one-dimensional
results in vertical observation [30–32]. The acquisition of one or two-dimensional data limits the study
on aerosol distribution and transmission. Although vertical observation can establish the movement of
a certain air mass, the regional aerosol distribution cannot be obtained. The horizontal observation
can be used to discern the aerosol distribution of the region, but it will be affected by the low time
resolution if the complete scanning data is needed. It is also impossible to judge the trajectory of the air
mass and the data continuity is not high. Considering the above problems, we wanted to change the
single vertical or horizontal observation mode when using LiDAR to detect aerosols. Thus, this work
used two LiDARs for atmospheric vertical and horizontal scanning detection to observe the complete
aerosol distribution in urban areas in three dimensions.

First, a micro-pulse LiDAR for horizontal scanning observations that works throughout the day in
Wuqing District, Tianjin, was used to obtain the horizontal distribution data of atmospheric particulate
matter. Another micro-pulse LiDAR was arranged at a distance from the above LiDAR for continuous
vertical detection to obtain vertical distribution data of atmospheric particulate matter. Data on continuous
satellite remote sensing were then used to preliminarily determine the diffusion trend of atmospheric
aerosol pollution. Finally, the correlation between the PM data monitored by the ground station
and the retrieved extinction coefficient of the LiDAR horizontal observation data is combined with
the meteorological data and the backward trajectory tracking model to reveal the three-dimensional
distribution of particulate matter in the area and provide some evidence of the potential sources.

2. LiDARs and Study Area

This vertical observation of aerosol adopted micro-pulse LiDAR with small volume, convenient
movement, and human eye safety to obtain the vertical and horizontal distribution data of atmospheric
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aerosol. The horizontal scanning observation was achieved by using a vertical and horizontal scanning
outdoor integrated LiDAR. The additional vertical and horizontal rotation structure of the LiDAR can
realize all-round scanning and has the advantages of being remote-controlled, unattended, all-weather,
and all-day functioning. The technical indicators of vertical observation and horizontal scanning
LiDAR are shown in Table 1.

Table 1. Technical parameters of the two light detection and ranging (LiDARs).

Parameter Vertical LiDAR Horizontal LiDAR

Wavelength 1064 nm 1064 nm
Pulse energy >100 µJ >20 µJ

Pulse repetition frequency 2.5 kHz 10 kHz
Telescope diameter 100 mm 100 mm

FOV <1 mrad <0.2 mrad
Range resolution 30 m 15 m

Detection blind zone 100 m 150 m

LiDAR: Light Detection and Ranging; FOV: Field of View.

In August 2018, the LiDAR observation test was conducted in Wuqing District located at the central
point of the two municipalities, directly under the Central Government of Beijing and Tianjin. This district
is the intersection of the three provinces and cities of Beijing, Tianjin, and Hebei (Jing-Jin-Ji area, China)
and is one of the main industrial areas in Tianjin. Thus, atmospheric aerosol pollution is evident in this
area. This study aimed to provide data support for aerosol pollution control and treatment using LiDAR
detection methods. Serious areas, key sources, and distribution of aerosol pollution were determined.

The roof of the central residential building in Wuqing City (117.041741E, 39.385506N, 110 m above
the ground) was selected as the horizontal observation LiDAR layout point to address the requirements
of non-obstacles in the horizontal field of view. Another micro-pulse LiDAR aimed at continuous
vertical detection was placed at a distance not far from the horizontal LiDAR. The distribution of the
two LiDARs is shown in Figure 1.
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Figure 1. Distribution of the two LiDARs (light detection and ranging) and the air quality national 
control station. The base map in the satellite figure is a high-definition map. The red dots A, B, and C 
are the locations of the horizontal LiDAR, the vertical LiDAR, and the air quality national control 
station, respectively. The distance between A and B is 752 meters. The distance between B and C is 
803 meters. The distance between A and C is 1147 meters. 

3. Methods 

LiDAR is effectively used to remotely observe atmospheric particulate matter pollution. The 
extinction coefficient is an important physical quantity in characterizing the optical properties of 
atmospheric aerosols. Methods for retrieving the atmospheric aerosol extinction coefficient using 
LiDAR observation data include the Klett [33–35], the Fernald [36], and the Collis slope methods 
[37]. The premise of the slope method is that the atmosphere is evenly distributed. The main 
problem of the Klett and Fernald methods is the determination of the initial values of the reference 
height and the reference extinction coefficient at that height. 

3.1. Vertical Retrieval Method 

In this paper, the vertical observation LiDAR data used the Fernald method to retrieve the 
extinction coefficient. The backward integral formula of Fernald is as follows: α r =
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Figure 1. Distribution of the two LiDARs (light detection and ranging) and the air quality national
control station. The base map in the satellite figure is a high-definition map. The red dots A, B, and
C are the locations of the horizontal LiDAR, the vertical LiDAR, and the air quality national control
station, respectively. The distance between A and B is 752 m. The distance between B and C is 803 m.
The distance between A and C is 1147 m.

3. Methods

LiDAR is effectively used to remotely observe atmospheric particulate matter pollution.
The extinction coefficient is an important physical quantity in characterizing the optical properties
of atmospheric aerosols. Methods for retrieving the atmospheric aerosol extinction coefficient using
LiDAR observation data include the Klett [33–35], the Fernald [36], and the Collis slope methods [37].
The premise of the slope method is that the atmosphere is evenly distributed. The main problem of the
Klett and Fernald methods is the determination of the initial values of the reference height and the
reference extinction coefficient at that height.

3.1. Vertical Retrieval Method

In this paper, the vertical observation LiDAR data used the Fernald method to retrieve the
extinction coefficient. The backward integral formula of Fernald is as follows:
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P(r)r2. exp [2( Sa
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The forward integral formula is:
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where αa(r) is the atmospheric aerosol extinction coefficient; am(r) is the atmospheric molecular
extinction coefficient; and Sa is the LiDAR ratio of aerosol varied in the range of 10 to 100 Sr, which is
defined as the ratio of atmospheric aerosol extinction coefficient and backscattering coefficient [38].
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The study area of this paper was a typical urban near-surface aerosol, so the S was determined to
be 50 [39,40]; Sm is the ratio of molecule extinction coefficient to backscattering coefficient, taking a
constant of 8π/3; αa(rc) is the initial value of the extinction coefficient of the atmospheric aerosol at
the reference height; and αm(rc) is the initial value of the extinction coefficient of the atmospheric
molecules at the reference height. The reference height is the height almost free of aerosols.

3.2. Horizontal Retrieval Method

The segmented Collis slope method and the Fernald method are generally used in the retrieval of
horizontal aerosol extinction coefficient. However, the premise of the Collis slope method is that the
atmosphere is evenly distributed. That is, the retrieval error is large when the non-uniform distribution
of the atmosphere is evident on the horizontal path. In addition, different segmentation distances
affect the retrieval results. By contrast, when the Fernald method is used to retrieve the horizontal
aerosol extinction coefficient, the selection of the reference height and the extinction coefficient will
considerably affect the retrieval results. A new horizontal retrieval algorithm based on the Fernald and
Collis slope algorithms was proposed to reduce the error. The specific ideas are shown in Figure 2,
and the specific steps were as follows:

A. Determined the signal with uniform distribution in each LiDAR signal. The judging criteria indicated
that, within a certain distance (taking 19 detection points as an example), the range-corrected signal
was approximately linear with the distance change, and the goodness of fit (R2) was larger than 0.9.

B. Calculated the mean extinction coefficient of the segmented LiDAR signal by using the Collis
slope method.

C. The extinction coefficient calculated in (B) was used as the initial value αa(rc), and the midpoint
of the distance in (A) was used as the reference point rc. The two values were then incorporated
into the Fernald formula to retrieve the atmospheric aerosol extinction coefficient.

D. The aerosol extinction coefficients at the distance exceeding rc and those at the distance shorter
than rc were obtained by Equations (1) and (2), respectively.
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Figure 2. Flow chart of the retrieval method for the horizontal light detection and ranging (LiDAR) signal.

It should be noted that, when the vertical LiDAR signal is retrieved by the Fernald forward
integration method, the result will be sensitive to the calibration value and the retrieval result is
unstable. However, the atmospheric backscatter signal profile received by the horizontal LiDAR was
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significantly different from the vertical one. For the horizontal detection LiDAR, the Fernald forward
integral was integrated from the calibration point to the detection point. Thus, the expansion effect
in the horizontal LiDAR of the backscattering coefficient of aerosol at the distance r caused by the
differential of the calibration value would be mitigated, and the calibration error was not as sensitive
as the vertical observation. Meanwhile, the calibration value determined by the slope method was
small, so the error introduced by the forward integration in the horizontal detection was also small.

The basic equation of LiDAR is as follows:

P(R) = P0CR−2β(R) exp [−2JR
0 α(r)dr], (3)

where P0 is the LiDAR transmission power; C is the LiDAR constant; β(R) is the atmospheric backscatter
coefficient at distance R; and α(R) is the aerosol extinction coefficient at distance R.

When setting S(R) = ln [R2P(R)], Equation (3) could be converted to S− S0 = ln β
β0
− 2
∫ R

R0
α(r)dr.

After the differential calculation, the following can be obtained:

dS
dR

=
1
β

dβ
dR
−2 α. (4)

In the case of uniform aerosol distribution, dβ/dR = 0, the least square liner fit can be performed
on S and R. The slope of the fitted curve is, generally, the atmospheric extinction coefficient. During the
retrieval of the horizontal observation data, the mean value of the extinction coefficient of the
approximate uniform segment of the LiDAR signal was calculated by the Collis method, and the
data can be treated as the reference value in the Fernald method. The horizontal atmospheric aerosol
extinction coefficient could be retrieved by using Equations (1) and (2).

4. Results

This paper selected the vertical and horizontal observed LiDAR data on 17 August 2018 for
analysis. Vertical observation was used to analyze the transport and sedimentation of particulate
pollutants. The horizontal distribution of the aerosol was determined by horizontal LiDAR scanning.
The vertical and horizontal distribution characteristics and potential sources of the aerosol in this area
were revealed by combining the weather data of the day, the backward trajectory tracking model,
and the satellite remote sensing monitoring results. Correlation analysis of the particulate matter
monitoring data of the ground air quality national control station was conducted to verify the accuracy
of the LiDAR detection results.

4.1. Analysis of Aerosol Vertical Distribution

The aerosol extinction coefficient can directly reflect the concentration of atmospheric aerosol.
This paper selected the continuous vertical observation LiDAR data on 15–19 August 2018 and used
the Fernald algorithm for the retrieval of the aerosol extinction coefficient. The reference height was
selected at an altitude of 10 km. Figure 3a shows the continuous aerosol extinction coefficient observed
by vertical LiDAR in Wuqing District on 15–19 August 2018. We can see that the particulate matter
(PM) mainly accumulated below 2.0 km, and the boundary layer height also changed around 1 to
2 km. From 1:00 on August 15 (local time, the same below), the concentration of PM continued to
increase until 3:00, then decreased sharply, and began to decrease after a slight increase from 8:00 to
12:00. From 13:00 on the 15 August 2018 to 12:00 on 16 August 2018, the PM concentration fluctuated
up and down with small amplitude. Clouds were detected at noon on 16 August 2018, then the aerosol
began to spread until noon, and increased until 24:00 on 17 August 2018. From the change chart of the
aerosol extinction coefficient on 18 August, we can clearly see that the aerosols were mainly divided
into three layers in the morning and began to gather on the ground in the afternoon. August 19 was
the opposite of August 18.
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Given that Wuqing District is located at the intersection of Beijing, Tianjin, and Hebei provinces,
with busy traffic and developed industry, additional construction sites were found around the vertical
LiDAR. The analysis of vertical distribution and the change characteristics of aerosol based on the
vertical detection LiDAR data in Wuqing District on 15–19 August 2018 indicated that the atmospheric
aerosol pollution in Wuqing District was mainly comprised of local sources. Meanwhile, the particulate
pollutants mainly came from the pollution caused by traffic, construction, and the exhaust gas emitted
by industrial production. From Figure 3a, we can clearly see that there was no transmission of
pollutants at high altitude, which proved the feature of local pollution. Meanwhile, considering the
observation characteristics of the LiDAR, the hourly averaged AOD on 15–19 August 2018, as shown in
Figure 3b, and it was compared with the ground PM concentration, as shown in Figure 4. The AOD is
the integration result of the aerosol extinction coefficients. It can be seen from Figure 3b that the AODs
had five obvious numerical peaks, which showed a good agreement with that of the PM concentration,
as shown in Figure 4. When comparing the two figures, we can see that the change in AOD and
PM concentrations had a relative strong consistency. This high correlation verified the feasibility of
detecting PM concentration by LiDAR.
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Figure 3. (a) Aerosol extinction coefficient results for 24-hour continuous vertical observation by light
detection and ranging (LiDAR) on 15–19 August 2018. (b) Hourly averaged AOD (Aerosol Optical
Depth) observed by LiDAR on 15–19 August 2018.
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Figure 4. Hourly averaged PM10 and PM2.5 (particulate matter) observed by the air quality national
control station on 15–19 August 2018.

Figure 5 is the wind rose of Wuqing District from 15–19 August 2018. The reanalysis data is
provided by ECMWF (European Centre for Medium-Range Weather Forecasts). This figure shows that
during this period, the east wind dominated in Tianjin. On the other hand, according to information on
the official website of the Tianjin Meteorological Bureau (www.tjqx.gov.cn), on 17 August, the dominant
east wind speed in Wuqing District was about 23 m/s. Considering the deviation in geography,
wind effect may be the main reason for the incomplete synchronization of the monitor results of the
vertical LiDAR and the air quality national control station.Remote Sens. 2019, 11, 2339 10 of 18 
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Figure 5. The wind rose of Wuqing District on 15–19 August 2018.

4.2. Horizontal Scanning to Monitor the Distribution of Aerosol Pollution Sources

The horizontal distribution of the aerosol was detected by the horizontal scanning LiDAR
positioned at the top of the residential building. The single scan time was set to 20 s, the scan step
angle was 2◦, the horizontal direction scan could be finished in 1 hour, and the clockwise rotation was
continuously scanned from the north direction to ensure the signal-to-noise ratio. Extinction coefficient
retrieval was performed by the proposed horizontal retrieval algorithm. Figure 6a shows a distribution
map of the atmospheric aerosol extinction coefficient observed in one hour in the horizontal direction
(19:54–20:54 on 17 August), where the region with a large extinction coefficient indicates a high aerosol
concentration. During this period, the aerosol pollution was mainly concentrated within 1 km of

www.tjqx.gov.cn
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the observation point and a band of contaminated area with high concentration was observed in the
direction of the northwest.
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scanning in one hour—illustrates the results covering an area with a radius of 5 km after one hour of 

Figure 6. Aerosol extinction coefficient detected by the horizontal light detection and ranging (LiDAR).
The top figure (a)—aerosol extinction coefficient detection result by horizontal LiDAR scanning in
one hour—illustrates the results covering an area with a radius of 5 km after one hour of continuous
observation, and the bottom figure (b)—aerosol extinction coefficient fused results in 24 h—shows the
fused results highlighting areas with heavy pollution.
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Figure 6b shows the fused results after 24 h of consecutive observations. This figure reflects
the distribution of heavily polluted areas in the area within 24 h. The method adopted involved the
extraction of aerosol data in highly polluted areas, removal of low pollution parts, and fusion of these
parts into a single map. Six heavily polluted areas were observed on 17 August 2018. According to field
investigation, area 1 is an industrial area and industrial activities were the main cause of high aerosol
concentration. Areas 2 to 6 are densely populated and have heavy traffic. Industrial production, living,
and transportation were the main causes of high aerosol concentration in these regions.

Comparing the results in Figures 3 and 6b, the source of local pollutants in Wuqing District on
17 August 2018 was mainly the areas with serious pollution seen in Figure 6b. For the meteorological
data, the wind in Wuqing District blows from north or northeast at a speed of level 1 to 3. Therefore,
industrial area 1 may be one of the main sources of pollutants.

Under normal circumstances, the aerosol extinction coefficient cannot be directly converted
to absolute particle mass concentration; however, there is evidence showing that a certain linear
relationship exists between the particle concentration and the extinction coefficient obtained by LiDAR
detection [41]. Fitting research and correlation analysis between the LiDAR horizontal scanning results
and the ground station hourly averaged PM10 data, as well as PM2.5, were conducted to initially
verify the accuracy of LiDAR detection results. The fitting results are shown in Figure 7. The aerosol
extinction coefficients of the horizontal LiDAR in Figure 7 are the LiDAR results at the position of the
air quality national control station (point C in Figure 1). We set the single data integration time as 20 s
and the step angle as 2◦, thus a complete scan took one hour. Therefore, we believed that the aerosol
extinction coefficient at such point was also hourly averaged.
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Figure 7. Linear fitting relationship between the aerosol extinction coefficient with PM10 and PM2.5

concentrations monitored by the air quality national control station in 14 days, respectively. The black
squares represent PM10 and the red dots represent the PM2.5. PM: particulate matter.

The empirical fitting formula for the PM10 concentration and the retrieved aerosol extinction
coefficient is as follows:

Y = 499.63 × X + 5.78, (5)

where Y is the PM10 particle concentration in µg/m3 and X is the aerosol extinction coefficient observed
by horizontal LiDAR in the unit of km−1.

The goodness of fit between the aerosol extinction coefficient and the PM10 concentration
monitored by the air quality national control station was 0.84, and the number of samples was N = 334,
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collected in 14 days. As for PM2.5, the goodness of linear fit was 0.69, which was less than that of PM10.
Thus, we believe that, in this experiment, the fitting result of PM10 shows a relatively high degree of
linearity. Therefore, the LiDAR can be utilized when obtaining the empirical formula for a certain time
period, and the horizontal distribution map of the aerosol extinction coefficient detected by the LiDAR
can directly reflect concentration of the particulate matter, especially for PM10, in the scanning area.

5. Discussion

For a more comprehensive analysis, we added the satellite remote sensing monitoring results
and backward trajectory model analysis. The satellite remote sensing data used in this paper was the
hourly observation data of surface PM2.5 concentration of the Himawari-8 satellite in Jing-Jin-Ji area,
China, from 15–19 August 2018 [42]. The hourly surface PM2.5 mass concentrations were obtained from
the official website of the China Environmental Monitoring Center (CEMC: http://106.37.208.233:20035).
Satellite remote sensing monitoring has the advantage of wide coverage and can use large-scale satellite
remote sensing to scan the distribution of atmospheric pollutants and determine the overall diffusion
trend of pollutants [43–45]. According to the backward trajectory model and monitoring results, the
pollution source in Wuqing District could be determined as an extraterritorial pollution source or a
pollution source within the domain.

Figure 8 shows the spatial distribution of PM2.5 daily concentration of fine particulate matter
retrieved from satellite remote sensing monitoring data from 15–19 August 2018. The blue marked area
is Wuqing District, Tianjin. The PM2.5 pollution level in the entire Jing-Jin-Ji region, including Wuqing
District, was low from 15–16 August. On 17 August, slight pollution was observed in the north of the
Jing-Jin-Ji region and was further strengthened on 18 August, resulting in the two heavily polluted
areas centered on Shijiazhuang City and Tangshan City and increased pollution level in Wuqing
District. On 19 August 19, the PM2.5 pollution level in the Jing-Jin-Ji region significantly decreased.
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Figure 8. Spatial distribution of fine particulate PM2.5 concentration in Beijing-Tianjin-Hebei region 
from 15–19 August (daytime) 2018. PM: particulate matter. 

Figure 9 shows the distribution of the daily trajectory of the air mass from 15–19 August 2018, in 
Wuqing District, Tianjin. The backward trajectory model we mentioned in this paper was generated 
by using the HYSPLIT-4 model [46]. It was developed by the National Oceanic and Atmospheric 
Administration. This model simulation uses 1° × 1° global meteorological data from the NCEP 
Global Data Assimilation System. On 15 August, the near-surface air mass route to Wuqing District 
was from Inner Mongolia, Liaoning, and other places. The high-rise air masses originated from the 
Bohai Sea and the Yellow Sea. Therefore, the main airflow to Wuqing was clean air. On 16 to 17 
August, the air mass reached the Wuqing through long-distance transportation and passed through 
Heilongjiang, Liaoning, and other places, affecting the air quality in the northern part of Beijing, 
Tianjin, and Hebei to some extent. On 18 August, the air mass was mainly from the interior of the 
Jing-Jin-Ji region and was introduced into Wuqing from the northeast, resulting in the accumulation 
of fine particulate pollutants in the area. On 19 August , the air masses arriving in Wuqing 
originated from the adjacent Bohai Sea and the Yellow Sea. The clean air flow improved the air 
quality in Wuqing District and the entire Jing-Jin-Ji region. 
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Figure 9 shows the distribution of the daily trajectory of the air mass from 15–19 August 2018,
in Wuqing District, Tianjin. The backward trajectory model we mentioned in this paper was generated
by using the HYSPLIT-4 model [46]. It was developed by the National Oceanic and Atmospheric
Administration. This model simulation uses 1◦ × 1◦ global meteorological data from the NCEP Global
Data Assimilation System. On 15 August, the near-surface air mass route to Wuqing District was from
Inner Mongolia, Liaoning, and other places. The high-rise air masses originated from the Bohai Sea
and the Yellow Sea. Therefore, the main airflow to Wuqing was clean air. On 16 to 17 August, the air
mass reached the Wuqing through long-distance transportation and passed through Heilongjiang,
Liaoning, and other places, affecting the air quality in the northern part of Beijing, Tianjin, and Hebei to
some extent. On 18 August, the air mass was mainly from the interior of the Jing-Jin-Ji region and was
introduced into Wuqing from the northeast, resulting in the accumulation of fine particulate pollutants
in the area. On 19 August, the air masses arriving in Wuqing originated from the adjacent Bohai Sea
and the Yellow Sea. The clean air flow improved the air quality in Wuqing District and the entire
Jing-Jin-Ji region.

The results from of Figures 3a, 4, 5, 6 and 8 and Figure 9 indicate that the particulate matter
pollutants affecting the air quality of Wuqing District on the 15–19 August were mainly generated by
local sources, including pollution from the production of residents, life, transportation, and industrial
production activities.
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6. Conclusions

This study observed the atmospheric aerosol pollution in Wuqing District through the integration
of sky and ground measurement (LiDAR, satellite, and ground observation station) and combined
the backward trajectory model trace to reveal the vertical and horizontal distribution characteristics
and provide some evidence of potential sources of the aerosol pollution in the area. The calibration
and correlation fitting analysis of the particulate matter data of the ground air quality national control
station showed that LiDAR can effectively detect atmospheric aerosol pollution.

1. On 17–19 August 2018, the particulate matter pollutants in Wuqing District were mainly from the
local area. The particulate matter mainly accumulated at 2.0 km and the boundary layer height
also changed around 1 to 2 km.

2. The distribution of aerosol pollution in the scanning area was obtained by using the horizontal
scanning LiDAR positioned on the top of a building to obtain the horizontal distribution result
of aerosol.

3. Using the LiDAR network observation and combining the satellite and ground-integrated observation
mode in a certain area was conducive to the study of the regional distribution characteristics of
pollutants and the cross-boundary transport of pollutant air masses. Providing reliable data support
for regional atmospheric defense joint control policies and means was also beneficial to this study.
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