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Abstract: The soil chronosequence is a useful method for investigating pedological theories.
Soil chemical, physical and mineralogical properties in chronosequences change over time and
exhibit systematic and time-dependent trends, which can be used to analyze the rates and directions
of pedogenic changes. The potential of soil spectroscopy as an emerging, rapid and cost-effective
technique for predicting soil properties has been widely accepted and has motivated the application
of spectroscopic techniques to the analysis of soil chronosequence. We present a soil chronosequence
derived from 1000-year-old calcareous marine sediments and examine changes in six soil properties
over this period. We evaluated the utility of a soil spectroscopic method to detect soil property
changes and to predict the pedogenic properties and soil ages of the chronosequence. The results
show that some soil pedogenic processes, such as soil organic matter accumulation, CaCO3 leaching
and clay migration, can be identified in the millennium chronosequence. Power chronofunctions are
formulated for soil organic matter (SOM) and Logarithmic chronofunctions are fitted for clay, CaCO3

and pH. These pedogenic processes are identified in the reflectance intensity and absorption features
of soil spectroscopy, and pedogenic properties can be calibrated via soil reflectance spectroscopy.
Profile ages can also be predicted via pseudo multi-depth spectra of soil profiles, and soil spectral
curves for 0–30 cm generated the best prediction results (RPD = 1.85). We conclude that soil
properties, changing due to weathering and soil formation, act as a bridge linking spectroscopy and
weathering levels/pedogenic processes. The results imply that applying spectroscopy techniques
to chronosequence study and mapping the degree of soil development in certain areas should
be possible.

Keywords: soil chronosequence; spectroscopy; pedogenic property; soil age; partial least squares
regression

1. Introduction

According to soil genesis theory, soil is a natural body formed through the synthetic actions of
parent materials, climate, topography, organisms, and time [1]. These factors continuously determine
changes in soil-forming processes, resulting in soil evolution [2]. Every soil profile records its genetic
process, developmental history and duration of its exposure to soil-forming factors [3]. A series of
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soil profiles, developed based on similar soil-forming factors with the exception of time, consist of a
soil chronosequence [2] which splices brief segments of the soil evolution history [4]. Consequently,
spatial difference between the soil profiles can be translated into temporal differences [5]. Therefore,
soil chronosequences can reveal the rates and directions of pedogenic changes and provide invaluable
information for examining pedogenic theories and processes [5,6]. Soil properties in a chronosequence
exhibit systematic and time-dependent features, i.e., soil organic matter (SOM) [7,8], iron oxide [9,10],
clay minerals [11], particle size distribution [12], and CaCO3 [13,14]. These properties are also called
pedogenic properties. Therefore, these time-dependent pedogenic properties can be used for relative
age dating [15]. Furthermore, chronofunctions of soil properties were developed to determine the
stage and the rates of soil development, and to ascertain the time of reaching steady state [16].

The chemical and physical properties are conventionally measured through laboratory-based
“wet chemistry” analyses, which are costly and time-consuming, and not suitable for rapid soil
property mapping at multiple spatial scales. Whereas, considerable demand for high-quality and
inexpensive soil data for environmental monitoring, modeling and precision agriculture requires more
efficient and cost-effective methods of soil analysis nowadays [17]. Since Bowers and Hanks [18]
and Condit [19] systematically investigated the relationship between soil properties and reflectance
spectroscopy, the potential of soil spectroscopy as an efficient and cost-effective prediction technique
has been demonstrated by a large number of subsequent studies [20–23]. This technique was also
used in pedogenic research to explore the relationship between the degree of soil weathering and
reflectance spectroscopy [24–27]. Demattê and Terra [28] investigated the reflectance of weathered
soils in a toposequence and noted that soil changes, produced by different weathering levels or
pedogenic processes, reflected spectral behaviors along the profile depth. Zheng et al. [29] concluded
that the pedogenic properties provided a bridge between spectroscopy and the pedogenic processes,
which makes it possible to analyze the chronosequence using spectroscopy. To the best of our
knowledge, Awiti et al. [30] first evaluated the capability of spectroscopy to analyze soil property
changes for topsoil (0–20 cm) across a forest-cropland chronosequence. However, a chronosequence
that utilizes a series of deeper soil profiles with formation age, in addition to topsoils, may provide
more comprehensive and accurate soil property changes and pedogenic processes.

The coastal soil is an important source of agricultural lands in China and the understanding
of soil dynamics under long-term cultivation is critical to planning the sustainable use of the soil
resource. Chen et al. [31] and Cui et al. [32] revealed the dynamic changes in soil properties through
the chronosequence derived from the sediments of the Yangtze River. However, few investigations of
the soil dynamics of chronosequence formed by the sediments of the Yellow and Yangtze Rivers over
the past 1000 years have been published.

In this work, we analyze fairly uniform calcareous marine sediments with exact coastline change
records in order to evaluate the utility of soil profiles’ spectra for a chronosequence. More specific
objectives are (i) to establish a soil chronosequence derived from 1000-year-old calcareous marine
sediments and investigate soil property changes over this period, (ii) to evaluate the potential for
surface soil spectroscopy to detect soil property changes with time in a chronosequence, and (iii) to
assess the feasibility of predicting soil profile age in this area using spectroscopy.

2. Materials and Methods

2.1. Study Area and Soil Formation

The study area is located in the coastal plain of Northern Jiangsu Province, China (Figure 1).
The coastal plain east of the Fangong Dike, completed in 1027 AD, is formed of sediments transported
mainly by the Yellow and the Yangtze Rivers over the past 1000 years. Historical changes of the
coastline in Jiangsu Province are shown in Figure 1. This region is characterized by the northern
subtropical monsoon climate. The mean annual precipitation and temperature are 1042.3 mm and
14.6 ◦C, respectively.
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The soil formation and evolution in this area went through three stages. First, the seabeach, which
was formed from sediments, evolved into a meadow solonchak (salt marsh) after the salt in the topsoil
was leached out and salt-tolerant plants appeared. Secondly, SOM in the topsoil accumulated with
the development of salt-tolerant plants, and soils further evolved into saline farming soils with the
cultivation of salt-tolerant crops. Finally, dry-farming soils formed with the cultivation of corn– and
rice–wheat/barley rotations.
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2.2. Soil Sampling and Analysis

Sixteen soil sampling sites are located along three lines (north, middle and south) that generally
run perpendicular to the coastlines (Figure 2a), and soil ages were estimated based on the historical
coastlines to indicate the development degree of soil profiles [33]. The land use of all the sampling sites
was farmland. All the soil profiles belong to the coastal saline alluvial soil, except profile S4, which is
paddy soil according to Chinese Soil Genetic Classification System. To specify the soil property changes
at various profile depths and compare the profile properties, the following sampling-depth intervals
were used for each profile: 0–5, 5–10, 10–20, 20–30, 30–40, 40–60, 60–80 and 80–100 cm and 128 samples
were collected. The samples for every specific depth interval were collected from the whole interval
(Figure 2b) in June, 2013 and the weight for every sample is about 1–2 kg.

The soil samples were air-dried and gently crushed using a wooden pestle to pass through 2 mm
nylon sieves. The subsamples were further ground using agate mortar and passed through 0.250 mm
and 0.150 mm sieves to determine their physical and chemical properties. Soil pH was determined
using the electrode method with a 1:5 (g:mL) ratio of soil and distilled water. SOM was measured by the
potassium dichromate–external heating method, CaCO3 content was measured through neutralization
titration, and the particle size distribution was determined using the pipette method. Total Fe (Fet) was
determined by the HF-HNO3-HClO4 digestion–atomic absorption spectrophotometry method, free Fe
oxides (Fed) were extracted using the dithionite-citrate-bicarbonate (DCB) method [34]. The descriptive
statistics and correlation analysis of soil properties were performed by SPSS 20.0.

2.3. Spectra Determination

The air-dried soil samples passed through a 0.150 mm sieve were used for spectral measurements.
Soil reflectance spectra were measured in a dark room with a FieldSpec 3 portable spectrometer
(Analytical Spectral Devices Inc., Boulder, Colorado, USA). A 50 W halogen lamp set at a vertical
angle of 15◦ (A) and at a distance 30 cm (L) from the samples was used as a light source. The sensor
was vertically positioned 15 cm (H) above the soil samples using a probe set at a 5◦ viewing angle
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(half view angle B = 2.5◦), producing a radius of 0.655 cm (R2) from the center of the sample dish
(radius of sample dish R1 = 2.5 cm) (Figure 3). The dark current was removed prior to collecting the
soil spectra, and a 40 cm × 40 cm diffuse reflection standard reference plate was used to obtain the
relative reflectance. Throughout the measurement process, the soil sample in the container was rotated
on an automatic rotating platform to average out the possible influence of different azimuth angles.
Twenty spectral curves were collected for each sample as the sample was turned 360◦. The reflectance
spectrum for each sample was deemed the average of these 20 spectral curves.
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Figure 2. Locations of soil profiles and sampling depth in a profile: (a) sixteen sampling sites, which,
generally, ran perpendicular to the coastlines; The soil ages were estimated based on the historical
coastlines [33]; (b) eight samples were collected from every profiles according to the following intervals:
0–5, 5–10, 10–20, 20–30, 30–40, 40–60, 60–80 and 80–100 cm.
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Figure 3. Optical setup of the spectrometer.

2.4. Statistical Analysis and Transformation of the Spectral Data

Partial least squares regression (PLSR), first proposed by Wold et al. [35], is a commonly used
modeling technique for calibrating soil properties to reflectance spectroscopy because it can resolve
the issues of high collinearity among predictor variables (reflectance spectroscopy). PLSR integrates
compression and regression steps and can effectively extract comprehensive variables (referred to
as latent variables, LVs) by excluding unexplainable information, thus ensuring that comprehensive
variables are optimally condensed from the raw inputs to explain response variables. Although
various data-mining algorithms have been developed to determine soil properties using visible and
near-infrared (VNIR) diffuse reflectance spectra and gave better performance than PLSR [36,37],
the coefficients of PLSR can give the important wavelength to response variable which is useful
to analyze the prediction mechanism. All calibration and prediction were performed by PLSR
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in Unscrambler X v. 10.0 (CAMO Software AS, Oslo, Norway). The data were centered before
calibration and prediction automatically by checking the center data tick-boxes in this software. Full
cross-validation was used for the cross-validation method in the calibration process. The optimal
number of principal components was determined by the residual variance obtained in the unscrambler.

A continuum removal (CR) technique can be used to isolate particular absorption features for
spectrum analysis and to define the band depth [38,39]. In this work, spectral curves were smoothed
following Savitzky and Golay [40], with a second-order polynomial across 21 smoothing points using
Unscrambler X v. 10.0 (CAMO Software AS, Oslo, Norway). These curves were then transformed via
continuum removal in ENVI 4.7 (ITT Visual Information Solutions Inc., Broomfield, United States).
For each soil profile, the smoothed and continuum-removed spectra from the eight depth intervals
were joined in sequence to create a pseudo multi-depth soil spectral curve (Figure 4) according to
Vasques et al. [41].Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 23 
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Figure 4. Pseudo multi-depth curves of smoothed and continuum-removed spectra for partial profiles.
The pseudo multi-depth curve was created by joining the spectra from the eight depth intervals of a
profile in sequence, which represents the spectra of the whole profile from topsoil to bottom soil.

2.5. Datasets Partitioning and Accuracy Evaluating

All the samples were sorted according to profile number and depth in a profile. Four out of five
samples were used for model development (calibration) and the others (one out of five) for model
evaluation (prediction). The number of samples was 102 and 26 for the calibration and prediction
(evaluation) sets, respectively.

Two principal components were extracted from the pseudo multi-depth curves of
continuum-removed spectra of the sixteen profiles. Six profiles were selected for the prediction
of soil age according to a scatter plot of two principal components and others were used for calibration
of the profile age.

The model accuracies were evaluated using the coefficient of determination (R2, subscripts c
for calibration, p for prediction) and residual prediction deviation (RPD). Viscarra Rossel et al. [17]
classified RPD values into six classes: RPD < 1.0 indicates very poor results which are not recommended;
RPD between 1.0 and 1.4 indicates poor results where only high and low values are distinguishable;
RPD between 1.4 and 1.8 indicates fair results which may be used; RPD between 1.8 and 2.0 indicates
good results where quantitative predictions are possible; RPD values between 2.0 and 2.5 indicate very
good, quantitative model/predictions, and RPD > 2.5 indicates excellent model/predictions.

3. Results

3.1. Basic Statistics of Soil Properties

The descriptive statistics of soil properties are presented in Table 1. SOM were mainly distributed
between 1.4 g kg−1 and 33.4 g kg−1 with a mean of 7.1 g kg−1, indicating a low SOM level in this area.
Clay varied from 1.9% to 18.3% with a mean of 7.7% and a standard deviation of 4.0. CaCO3 ranged
from 0.9 g kg−1 to 63.8 g kg−1 with a mean of 30.8 g kg−1. The value of pH varied from 6.4 to 9.2 with a
mean of 8.5, indicating alkalinity because of CaCO3 in soil. Fed and Fed/Fet ranged from 1.8 g kg−1 to
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6.6 g kg−1 and from 7.8% to 26.8%, respectively. SOM was the most variable property among these soil
properties (CV = 86.9%), followed by CaCO3 (CV = 54.4%).

Table 2 lists the correlation coefficients of six soil properties. SOM had significant positive
correlation with clay, while negative correlations with CaCO3 and pH. There were significant negative
correlations between CaCO3 and clay, Fed and Fet, while there was a positive correlation with pH.

Table 1. Basic statistics for six soil properties.

Soil Property Min Max Mean SD CV (%) Skew Kurt

SOM 1.4 33.4 7.1 6.2 86.9 1.5 2.5
Clay 1.9 18.3 7.7 4.0 51.3 0.7 −0.3

CaCO3 0.9 63.8 30.8 16.8 54.4 0.0 −1.0
pH 6.4 9.2 8.5 0.4 5.1 −1.7 5.3
Fed 1.8 6.6 3.3 0.7 20.5 0.9 3.7

Fed/Fet 7.8 26.8 15.0 3.3 21.7 0.8 2.0

Note: Min: minimum; Max: maximum; SD: standard deviation; CV: coefficient of variation; Skew: skewness; Kurt:
kurtosis; soil organic matter (SOM): g kg−1; Clay: %; CaCO3: g kg−1; Fed: g kg−1; Fed/Fet: %; Hereinafter inclusive.

Table 2. Correlation coefficients of six soil properties.

SOM Clay CaCO3 pH Fed Fed/Fet

SOM 1.00 0.75 ** −0.64 ** −0.48 ** −0.08 −0.03
Clay 1.00 −0.76 ** −0.41 ** 0.20 * 0.21 *

CaCO3 1.00 0.39 ** −0.28 ** −0.33 **
pH 1.00 0.09 0.10
Fed 1.00 0.89 **

Fed/Fet 1.00

Note: ** Significant correlation at the 0.01 level; * Significant correlation at the 0.05 level.

3.2. Soil Property Changes in Chronosequence and Pedogenic Interpretations

SOM, clay, pH, and CaCO3 exhibited direct dependences on age, and the vertical distribution of
these properties changed regularly with depth (Figure 5). Trends over time and the vertical distribution
of Fed were not evident. The changes in the properties in the top surface (0–5 cm) were fitted to
analyze the chronofunctions. The four functions, including linear, power, exponential and logarithmic
models, were used to fit the scatter, and the best fitted results were determined by the coefficients of
determination and shown in Figure 6.

SOM increased with soil age between profiles and decreased with depth in a profile (Figure 5a).
The vertical distribution of SOM in younger profiles (M1 and N1) is relatively uniform throughout the
0–100 cm soil depth. However, the differentiation in the vertical distribution of SOM in the profiles
increased with soil age, i.e., older soils presented greater SOM differentiation between the topsoil and
subsoil. In other words, the shapes of depth function of SOM changed gradually from uniform to
exponential with soil age [42]. In addition, SOM was similar in the subsoil under a depth of 40 cm,
except in the M3 and N4 profiles. The results suggested that SOM accumulation mainly occurred
in the top 40 cm due to cultivation and biological activity of salt-tolerant plants. Brauer et al. [43]
showed that paddy rice cultivation will lead to a dense plough pan and seriously reduces, but not
totally prevents, downward transport of organic matter.

A scatter was plotted with SOM in the top soil sample (0–5 cm) as dependent and soil age as
independent (Figure 6a). The functions, fitting to the scatter, were named chronofunctions, which were
formulated relating the pedogenic properties to the ages of the soils [44]. A logarithmic model for SOM
is common because it suggests that the SOM will approach a steady state [16]. However, power function
got the best result (largest R2) among linear, logarithmic and power functions in this study (Figure 6a),
which suggests that SOM in this area has not reached a steady state. The soil in this area can continue
to play the role of carbon sequestration. This curve still displayed the general pattern of rapid increase
in the first period and then a lower rate of accumulation [32,44,45]. The rate of SOM accumulation is
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different in many studies. Chen et al. [31] analyzed some studies about the time taken to reach a steady
state and concluded that different environmental conditions may produce different response times.
However, many studies proved that positive anthropogenic activities, especially rice–barley rotation
and fertilization [6,7], will enhance the accumulation of SOC. Furthermore, the mass fraction of SOC
was widely used for modeling chronofunction, but we think SOC density or stock is better for SOC
accumulation analysis.

The changes in clay content were similar to those in SOM (Figure 5b). Clay content in the
youngest profile was uniform, and differentiation between the topsoil and subsoil increased with age
because larger particles physically and chemically weathered to smaller particle sizes over time [46,47].
The vertical distribution of clay content within a depth of 0–40 cm or less in every profile was more
uniform than that of SOM, suggesting that clay migration and illuviation mainly occurred at this
depth during the past 1000 years. Artificial irrigation and drainage during cultivation can favor clay
accumulation and differentiation [48], which may be the cause of the difference of vertical distribution
between clay and SOM. The total mass of accumulated clay is an excellent indicator of relative soil age
during all stages of soil development [15]. However, the relationship between clay and age is different.
Bockheim [49] concluded that the logarithmic model resulted in the best fit of clay in B horizon and
Huang et al. [10] got the same result. However, VandenBygaart and Protz [44] indicated that a linear
chronofunction was the best model to fit the increase in clay with soil age. In this study, logarithmic
chronofunction obtained the best result (Figure 6b).

The CaCO3 content showed an inverse trend relative to SOM and clay. The CaCO3 contents
were high and remained uniform in profile M1 and N1 and decreased with soil age due to leaching
(Figure 5c), consistent with the results of previous studies [13,44]. A logarithmic curve fit to the scatter
plot yielded a high determination coefficient (Figure 6c). In this study, high CaCO3 contents and rapid
leaching rates appeared in the profiles of less than 600 years; low CaCO3 contents and lower leaching
rates were found in the >600-year profiles in this study area. However, Chen et al. [31] found that
CaCO3 was completely leached from paddy soil within a 300-year period. Wissing et al. [50] indicated
that the upper 20 cm of soil was free of carbonates in 100-year-old paddy soils. Vidic and Lobnlk [13]
discovered that carbonate clasts vanished from the upper horizons after 62 ka. Precipitation and the
farming system of the study areas caused this difference, as precipitation (and resulting soil wetness)
and vegetation type were the two main factors that affected the rate of carbonate weathering and
the depth of leaching in carbonate-rich soils [44]. To the contrary, CaCO3 accumulation is the most
characteristic age-related pedofeature in the semiarid regions where precipitation is insufficient [51].
The content of CaCO3 can be seen as an intrinsic threshold [52] because the changes in CaCO3 may be
responsible for many successive processes. Firstly, the leaching of carbonates in soils is commonly a
prerequisite to clay migration by eluviation. Secondly, Fed illuviation occurred only when carbonates
were eventually leached because CaCO3 will retard the transformation of silicate Fe to Fe oxide [31].
There are significant negative correlations between CaCO3 and clay and Fed in this study (Table 2),
which suggests that the leaching of CaCO3 is very important to clay and Fed.

Generally, the soil pH value decreased with soil age, following changes in the CaCO3 content
(Figures 5d and 6d). After about 1000 years of development, the soil pH decreased from >8.5 to nearly
7.5. The relationship between pH and CaCO3 is significant and positive (Table 2). Therefore, the best-fit
curve of pH scatter was logarithmic, the same as that of CaCO3 (Figure 6d). There were significant
negative relationships between pH and SOM and Clay (Table 2). Vidic and Lobnlk [13] demonstrated
that carbonate leaching and the corresponding decrease in pH created favorable conditions for
clay translocation.

In contrast with the above-listed properties, Fed and Fed/Fet did not exhibit evident trends
correlated with soil age. The vertical distributions of these two properties were relatively uniform in
each profile, compared with the above four properties (Figure 5e,f). The fitted chronofunctions of these
two properties still showed positive linear relationships with soil age (Figure 6e,f). In general, Fed and
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Fed/Fet increased with age due to the irreversible transformation degree from primary iron silicate
minerals to secondary iron oxide [32,53].Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 20 
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Figure 5. Depth distribution of soil properties depending on the age of soil profiles: (a) soil organic
matter (SOM); (b) clay; (c) CaCO3; (d) pH; (e) Fed; (f) Fed/Fet.
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Figure 6. Changes in six soil properties with time in topsoil (0–5 cm) samples: (a) SOM; (b) clay;
(c) CaCO3; (d) pH; (e) Fed; (f) Fed/Fet.

3.3. Spectroscopy Analysis of Top Soil

Soil spectroscopy is a cumulative property derived from the intrinsic spectral behavior of a
heterogeneous combination of soil constituents [54]. SOM, clay minerals, carbonate, iron oxides,
moisture, and particle size are important factors for reflectance [55]. These soil properties simultaneously
determine the reflected energy [24] and form spectral curves. Therefore, changes in the soil properties
can be studied based on diagnostic absorption features [56].

In order to describe the changes in the soil spectroscopy clearly, these profiles were divided into
three groups, i.e., north line, middle line and south line, and each group is perpendicular to historical
coastlines (Figure 2a). The original and continuum-removed spectral curves of topsoil were plotted in
Figure 7. In the range of 350–1300 nm, the original reflectance density increased rapidly and the curves
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were convex with some broad absorption features by electronic processes of iron (Figure 7a,c,e). In the
range, 1300–2500 nm, the original reflectance curves were almost parallel with some sharp absorption
features by vibrational processes. The absorption features were more prominent after transformation
by the continuum removal algorithm [38] (Figure 7b,d,f).

Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 23 

 

sharp absorption features by vibrational processes. The absorption features were more prominent 
after transformation by the continuum removal algorithm [38] (Figure 7b,d,f). 

SOM, an important soil component, has a significant effect on soil reflectance. Generally, 
reflectance intensity decreases due to strong absorption of SOM and increases considerably following 
SOM removal [24]. In this study, the original reflectance intensity in the whole wavelength decreased 
with soil age (Figure 7a,c,e). This difference in intensity was mainly attributable to SOM changes, i.e., 
overall changes in reflectance intensity demonstrated the process of SOM accumulation with age. The 
reflectance intensities of N6, M4 and S4 were lowest in every group because their contents of SOM 
are highest in their respective group. Some exceptions existed in every group because the reflectance 
intensity was affected by other properties such as clay minerals, iron oxide and carbonate. This is also 
the reason that some spectral curves were similar, although SOM content is different (for example, 
S1 and S2, M3 and M4).  

The iron oxides are the most active factor in the visible and near-infrared (VNIR) range because 
nearly all electric features in this range are produced from various forms of iron [57]. Crystalline iron 
was responsible for concavities in the 450, 850 and 1100 nm, but amorphous iron only reduced the 
intensity of reflectance and did not alter the concavities [58]. Goethite and hematite are the most well-
known iron oxides and have respective characteristic absorption features (Figure 8). Ben-Dor et al. 
[25] indicated that the position of the absorption feature of goethite and hematite mixture shifted 
between the original absorption of the pure mineral absorption and this shift in the Fe absorption 
features enabled the recognition of hematite and goethite occurrences. In this study, the presence of 
distinct absorption features near 420, 485–490, 660–670 and 900–910 nm in the spectral curves 
following continuum-removed spectra indicated the presence of more goethite and little hematite in 
these soil samples. However, these absorption features of Fe did not present evident changes with 
soil age. 

Hunt and Salisbury [59] concluded that five characteristic bands appear near 1900, 2000, 2160, 
2350 and 2550 nm for carbonates in the NIR range. The absorption feature of CaCO3 near 2341 nm 
can be used to estimate carbonate content via continuum-removed reflectance spectroscopy [60–62]. 
In this study, the absorption depth at 2345 nm decreased from younger soil to older soil with a 
decrease in CaCO3 in every group (Figure 7b,d,f). This absorption depth at 2345 nm was positively 
correlated with CaCO3, i.e., the absorption depth increased linearly with increasing CaCO3 content 
(Figure 9a). In addition, the change in the absorption depth at 2345 nm with soil age is distinct and a 
logarithm function fitted the relationship between the absorption depth and soil age (Adj. R2 = 0.7103) 
(Figure 9b). Therefore, we can conclude that the spectral feature near 2345 nm can be used to estimate 
the CaCO3 content and to reveal the soil CaCO3 leaching process in this area. 

The obvious absorption features near 1412, 1918, 2210, 2345 and 2445 nm and the two shoulders 
near 1465 and 2095 nm in these CR curves (Figure 7b,d,f) suggested that the clay mineral in these soil 
samples is mainly illite. Montmorillonite has absorptions near 1412, 1918, 2210 and the two shoulders, 
but the absorption depth at 2210 nm is near half of that at 1918 nm (Figure 10). Therefore, 
montmorillonite is also present in these samples.  

 

  
500 1000 1500 2000 2500

0.1

0.2

0.3

0.4

0.5

0.6

Re
fle

ct
an

ce

Wavelength (nm)

 N1
 N2
 N3
 N4
 N5
 N6
 N7

Age SOM Clay CaCO3 Fed Fed/Fet

(year) (g·kg-1) (%) (g·kg-1) (g·kg-1) (%)
N1 150 7.2 5.0 47.2 8.5 2.6 13.5
N2 270 11.2 9.8 27.0 8.3 3.3 15.6
N3 390 16.0 11.5 15.0 8.5 3.1 16.2
N4 450 19.3 13.3 11.1 8.6 3.1 13.5
N5 600 24.4 12.5 1.4 7.8 3.6 17.9
N6 820 33.4 13.3 1.2 7.8 2.6 14.5
N7 900 15.6 17.3 1.1 7.7 3.8 17.9

Label pH

(a)
500 1000 1500 2000 2500

0.88

0.90

0.92

0.94

0.96

0.98

1.00

(b)

Co
nt

in
uu

m
-re

m
ov

ed
 R

ef
le

ct
an

ce
Wavelength (nm)

 N1
 N2
 N3
 N4
 N5
 N6
 N7417

485

676
900 1120

1412

1918

2210

2345

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 23 

 

  

  

Figure 7. Original and continuum-removed spectra of topsoil samples (0–5 cm): (a), (c), (e): original 
spectra of topsoil samples for north line, middle line and south line, respectively; (b), (d), (f): 
continuum-removed spectra of topsoil samples for north line, middle line and south line, respectively. 
The overall changes in the reflectance intensity of original spectra primarily showed SOM 
accumulation with age. The changes in the absorption depth at 2341 nm revealed the CaCO3 leaching 
process with age. The absorption features around 420, 485, 670 and 900 nm in continuum-removed 
spectra showed the difference in goethite content. 

  

500 1000 1500 2000 2500

0.1

0.2

0.3

0.4

0.5

0.6

(c)

Age SOM Clay CaCO3 pH Fed Fed/Fet

(year) (g·kg-1) (%) (g·kg-1) (g·kg-1) (%)
M1 40 5.5 4.6 54.0 8.7 2.9 14.1
M2 200 13.6 9.1 34.0 8.1 3.2 15.2
M3 400 11.9 10.1 14.5 8.1 2.4 12.4
M4 550 17.1 11.5 5.2 7.9 2.2 12.6
M5 860 16.6 12.9 9.6 8.2 3.7 19.0

Label

R
ef

le
ct

an
ce

Wavelength (nm)

 M1
 M2
 M3
 M4
 M5

500 1000 1500 2000 2500

0.90

0.92

0.94

0.96

0.98

1.00

(d)

Co
nt

in
uu

m
-re

m
ov

ed
 R

ef
le

ct
an

ce

Wavelength (nm)

 M1
 M2
 M3
 M4
 M5425

490

660

910
1120

1410

1920

2210

2345

500 1000 1500 2000 2500

0.1

0.2

0.3

0.4

0.5

0.6

(e)

Age SOM Clay CaCO3 pH Fed Fed/Fet

(year) (g·kg-1) (%) (g·kg-1) (g·kg-1) (%)
S1 180 9.8 9.0 33.0 8.3 3.0 13.9
S2 330 14.2 14.4 19.3 8.3 3.4 14.5
S3 410 14.3 15.3 13.5 8.4 3.7 16.1
S4 890 20.2 15.6 1.9 8.3 4.2 21.1

Label

R
ef

le
ct

an
ce

Wavelength (nm)

 S1
 S2
 S3
 S4

500 1000 1500 2000 2500

0.88

0.90

0.92

0.94

0.96

0.98

1.00

(f)

485

Co
nt

in
uu

m
-re

m
ov

ed
 R

ef
le

ct
an

ce

Wavelength (nm)

 S1
 S2
 S3
 S4

415

675

900 1125

1410

1920

2210

2350

Figure 7. Original and continuum-removed spectra of topsoil samples (0–5 cm): (a), (c), (e): original
spectra of topsoil samples for north line, middle line and south line, respectively; (b), (d), (f):
continuum-removed spectra of topsoil samples for north line, middle line and south line, respectively.
The overall changes in the reflectance intensity of original spectra primarily showed SOM accumulation
with age. The changes in the absorption depth at 2341 nm revealed the CaCO3 leaching process with
age. The absorption features around 420, 485, 670 and 900 nm in continuum-removed spectra showed
the difference in goethite content.

SOM, an important soil component, has a significant effect on soil reflectance. Generally,
reflectance intensity decreases due to strong absorption of SOM and increases considerably following
SOM removal [24]. In this study, the original reflectance intensity in the whole wavelength decreased
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with soil age (Figure 7a,c,e). This difference in intensity was mainly attributable to SOM changes,
i.e., overall changes in reflectance intensity demonstrated the process of SOM accumulation with age.
The reflectance intensities of N6, M4 and S4 were lowest in every group because their contents of SOM
are highest in their respective group. Some exceptions existed in every group because the reflectance
intensity was affected by other properties such as clay minerals, iron oxide and carbonate. This is also
the reason that some spectral curves were similar, although SOM content is different (for example, S1
and S2, M3 and M4).

The iron oxides are the most active factor in the visible and near-infrared (VNIR) range because
nearly all electric features in this range are produced from various forms of iron [57]. Crystalline iron was
responsible for concavities in the 450, 850 and 1100 nm, but amorphous iron only reduced the intensity
of reflectance and did not alter the concavities [58]. Goethite and hematite are the most well-known
iron oxides and have respective characteristic absorption features (Figure 8). Ben-Dor et al. [25]
indicated that the position of the absorption feature of goethite and hematite mixture shifted between
the original absorption of the pure mineral absorption and this shift in the Fe absorption features
enabled the recognition of hematite and goethite occurrences. In this study, the presence of distinct
absorption features near 420, 485–490, 660–670 and 900–910 nm in the spectral curves following
continuum-removed spectra indicated the presence of more goethite and little hematite in these soil
samples. However, these absorption features of Fe did not present evident changes with soil age.
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Hunt and Salisbury [59] concluded that five characteristic bands appear near 1900, 2000, 2160,
2350 and 2550 nm for carbonates in the NIR range. The absorption feature of CaCO3 near 2341 nm can
be used to estimate carbonate content via continuum-removed reflectance spectroscopy [60–62]. In this
study, the absorption depth at 2345 nm decreased from younger soil to older soil with a decrease in
CaCO3 in every group (Figure 7b,d,f). This absorption depth at 2345 nm was positively correlated
with CaCO3, i.e., the absorption depth increased linearly with increasing CaCO3 content (Figure 9a).
In addition, the change in the absorption depth at 2345 nm with soil age is distinct and a logarithm
function fitted the relationship between the absorption depth and soil age (Adj. R2 = 0.7103) (Figure 9b).
Therefore, we can conclude that the spectral feature near 2345 nm can be used to estimate the CaCO3

content and to reveal the soil CaCO3 leaching process in this area.
The obvious absorption features near 1412, 1918, 2210, 2345 and 2445 nm and the two shoulders

near 1465 and 2095 nm in these CR curves (Figure 7b,d,f) suggested that the clay mineral in these
soil samples is mainly illite. Montmorillonite has absorptions near 1412, 1918, 2210 and the two
shoulders, but the absorption depth at 2210 nm is near half of that at 1918 nm (Figure 10). Therefore,
montmorillonite is also present in these samples.



Remote Sens. 2019, 11, 2336 12 of 19
Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 23 

 

 

  

Figure 9. Changes in the absorption depth at 2345 nm with CaCO3 and time. The absorption depth at 
2345 nm increases linearly with CaCO3 content (a) and decreases logarithmically with soil age (b). 

  

0 10 20 30 40 50 60

0.010

0.015

0.020

0.025

0.030

2300 2350 2400

0.98

0.99

1.00

Y = 0.000311967X + 0.01207
Adj. R2 = 0.8670

A
bs

or
pt

io
n 

de
pt

h

CaCO3 (g·kg-1)

(a) C
on

tin
uu

m
-re

m
ov

ed
 R

ef
le

ct
an

ce

Wavelength (nm)

A
bs

or
pt

io
n 

de
pt

h

0 200 400 600 800 1000

0.010

0.015

0.020

0.025

0.030

(b)

A
bs

or
pt

io
n 

de
pt

h

Soil age (year)

Y = -0.00575ln(X) + 0.5167
Adj. R2 = 0.7103

Figure 9. Changes in the absorption depth at 2345 nm with CaCO3 and time. The absorption depth at
2345 nm increases linearly with CaCO3 content (a) and decreases logarithmically with soil age (b).
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Complex SOM components complicate the assignment of absorption features to specific 
functional groups [63,64], although Viscarra Rossel and Behrens [35] concluded that SOC is related 
to wavelengths that represent absorptions due to organic molecules and proteins. SOM is the most 
frequently studied soil property via reflectance spectroscopy and the prediction results were superior 
[20], even at a large scale [65]. In this study, the SOM model provided the best results among six 
properties (RPD = 3.04). 

The CaCO3-leaching process exhibited an inverse trend with SOM accumulation (Figures 5c and 
6c), producing a negative correlation between CaCO3 and SOM (Table 2). This correlation and the 
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Figure 10. Continuum-removed spectra of illite and montmorillonite (USGS Mineral spectral library).
These two clay minerals have absorptions near 1410, 1918, 2210 and two absorption shoulders near
1465 and 2095 nm.

3.4. Soil Property Predictions

The PLSR results for the soil properties of the calibration and prediction with smoothed spectra
are shown in Table 3. Good and excellent calibrations and prediction (R2

c ≥ 0.80, R2
p ≥ 0.80 and RPD

≥ 2.30) were obtained for SOM, CaCO3, and clay. The pH, crystalline Fe and Fed/Fet produced an
acceptable result (R2

c ≥ 0.37, R2
p ≥ 0.31 and RPD ≥ 1.23).

Table 3. Calibration and prediction of the soil properties.

Soil Property LVs Number
Calibration (n = 102) Cross Validation Prediction (n = 26)

RMSEC R2
c RMSECV R2

cv RMSEP R2
p RPD

SOM 9 1.76 0.92 2.22 0.88 1.98 0.89 3.04
Clay 9 1.35 0.89 1.74 0.82 1.62 0.81 2.33

CaCO3 10 4.40 0.93 5.40 0.90 7.13 0.83 2.42
pH 3 0.31 0.38 0.34 0.31 0.42 0.37 1.28
Fed 3 0.49 0.48 0.52 0.43 0.52 0.34 1.26

Fed/Fet 3 2.61 0.37 2.75 0.31 2.56 0.31 1.23

Note: LVs is latent variables, RMSEC is root mean square error for calibration, RMSECV is root mean square error for
cross validation, RMSEP is root mean square error for prediction, R2

c is coefficient of determination for calibration,
R2

cv is coefficient of determination for cross validation, R2
p is coefficient of determination for prediction, and RPD is

residual prediction deviation. Hereinafter inclusive.
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Complex SOM components complicate the assignment of absorption features to specific functional
groups [63,64], although Viscarra Rossel and Behrens [35] concluded that SOC is related to wavelengths
that represent absorptions due to organic molecules and proteins. SOM is the most frequently studied
soil property via reflectance spectroscopy and the prediction results were superior [20], even at a large
scale [65]. In this study, the SOM model provided the best results among six properties (RPD = 3.04).

The CaCO3-leaching process exhibited an inverse trend with SOM accumulation
(Figures 5c and 6c), producing a negative correlation between CaCO3 and SOM (Table 2).
This correlation and the absorption features of carbonate (2345 nm) may render it possible to predict
CaCO3 levels in the soils studied.

The fact that clay is primarily composed of phyllosilicate minerals with special features and the
correlation between clay and iron oxides (Table 2) might have contributed to the clay prediction via
reflectance spectroscopy [35,63,66]. The pH value, a chemical property, is spectrally featureless, thus
its correlation with clay, CaCO3 and SOM (Table 2) was an important prediction mechanism [67].
The diagnostic absorption features can be used to calibrate the content of Fed in soil [68–70], which makes
it possible to predict Fed.

3.5. Soil Age Calibration Using Spectra From Multiple Depths

In this study area, the absolute soil age is indicative of the development degree of the soil profile.
Eight partial least squares regressions were constructed with soil age data as the response variable
and spectral data as the predictor variable. The predictor variables were multi-depth soil spectral
curves after continuum-removal transformation from the topsoil (one layer) to the entire profile (eight
layers), respectively.

Soil chronosequence reflectance spectroscopy can be used to predict soil ages (Table 4). In general,
all the models achieved fair or good results (RPD > 1.57). The number of principal components increased
with the soil layer number. The calibration results (R2

c) decreased slightly and increased remarkably with
the soil layer number. Otherwise, the prediction results began to decrease after they reached the best
result (RPD = 1.85). That is to say that more principal components extracted from more soil layers did
not produce better prediction results. The topsoil regression results (0–5 cm) were acceptable because
topsoil properties, such as SOM, clay, and CaCO3, changed with soil age (Figure 6a–c). Obtaining the
chemical and physical properties of more layers provided more information on pedogenic processes
than those of the topsoil (0–5 cm). Therefore, better results should be obtained when additional layer
spectral curves are used to calibrate the soil age. Although the two- or three-layer spectra did not
produce better calibration and prediction results than topsoil as we supposed, the prediction results
for four layers (0–30 cm) were best. The possible reason is that four-layer soil contains more pedogenic
information than topsoil and the pseudo multi-depth spectra, joined by four-layer spectra, includes
enough information about the difference between soil profiles of different degrees of development.

Table 4. Calibration and predication of the profile age using multi-depth spectroscopy.

Layer Number Depth LVs Number
Calibration (n = 10) Cross Validation Prediction (n = 6)

RMSEC R2
c RMSECV R2

cv RMSEP R2
p RPD

1 0–5 cm 2 131.11 0.80 188.88 0.66 138.72 0.62 1.79
2 0–10 cm 2 137.59 0.77 198.75 0.62 157.58 0.51 1.57
3 0–20 cm 2 141.37 0.76 206.70 0.59 155.19 0.53 1.60
4 0–30 cm 2 133.98 0.79 201.96 0.61 133.63 0.65 1.85
5 0–40 cm 3 99.76 0.88 167.47 0.73 140.78 0.61 1.76
6 0–60 cm 4 80.94 0.92 177.19 0.70 145.15 0.59 1.71
7 0–80 cm 4 78.10 0.93 187.05 0.66 148.85 0.57 1.66

8 0–100
cm 4 72.38 0.94 201.58 0.61 154.29 0.53 1.61

Note: Conventions are shown in Table 3.
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The regression coefficients can show the importance of the specific wavelength. These important
wavelengths (Figure 11) included all the absorption features in the continuum-removed spectra in
Figure 7. These absorption features are attributed to Fe (372, 444, 535, 666, 908 and 1131 nm), clay
minerals (1412, 1914 and 2217 nm) and CaCO3 (2347 nm). This suggested that these soil properties,
producing these absorption features, were very important in the calibration and prediction of profile age.

The correlation coefficients were calculated to analyze which soil properties were correlated with
the two latent variables in the topsoil model (Table 5). These two latent variables explained 68% and
12% of the spectroscopy information, respectively. The 1st latent variable is positively correlated
with SOM and clay and negatively correlated with CaCO3. The correlation coefficients between the
second latent variable and clay and CaCO3 were significant. Although it is very difficult to assign
the absorption features to SOM, SOM is one of the most important properties in the calibration and
prediction of profile age. We can conclude that these three soil properties, SOM, clay and CaCO3,
changed with soil age and primarily resulted in the observed changes in the spectra. Thus, the changing
soil properties with time act as a bridge and make it possible to analyze soil age or pedogenic processes
with spectroscopy.
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Figure 11. Regression coefficients of topsoil model.

Table 5. Correlation coefficients of latent variables and soil properties.

SOM Clay CaCO3 pH Fed Fed/Fet

LV-1 (68%) 0.78 ** 0.52 * −0.62 * −0.41 −0.14 0.33
LV-2 (12%) 0.46 0.66 ** −0.71 ** −0.37 0.39 0.35

Note: ** significant at the 0.01 level (two-tailed); * significant at the 0.05 level (two-tailed); LV-1: the first latent
variable; LV-2: the second latent variable.

4. Discussion

4.1. Reflectance Spectroscopy and Soil Genesis

Soil visible and near-infrared (VNIR) diffuse reflectance can provide rich information on soil
physical and chemical properties, which implies the possibility of using soil spectroscopy to aid in
the analysis of soil genesis. Our results showed that pedogenic processes, such as SOM accumulation
and CaCO3 leaching, can be evaluated, and iron oxides and clay minerals can be identified by
soil spectroscopy. The application of soil spectroscopy in soil genesis is mainly divided into the
following aspects: firstly, the soil weathering degree or weathering indices can be estimated using
spectral reflectance [24,71]. Furthermore, Crouvi et al. [72] found that it is possible to map alluvial
ages by measuring spectral parameters of three independent chromophores, namely, iron, clay,
and carbonates. Secondly, pedogenetic processes, such as organic carbon accumulation, oxide iron
variation, and soil rubification process, were identified with soil spectral reflectance [26,28]. Thirdly,
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soil genetic horizons were distinguished or recognized, and horizon boundaries were defined using
soil spectroscopy [73–75]. Fajardo et al. [74] indicated that soil spectroscopy offers more information
than the traditional description and avoids observer bias when describing a soil core. In addition, soil
classes were identified or allocated with surface or profile spectral reflectance [76–81]. Since the use of
soil spectral reflectance applied to soil science studies has seen exponential growth in the past decades,
a new term “spectral pedology” was defined by Demattê and Terra [28].

4.2. Combination of Horizontal Spectroscopy

The study object of soil genesis should be the entire soil profile, not only topsoil or a certain
horizon. Therefore, a critical issue when using this new methodology to characterize the entire soil
profile is how to combine the spectroscopy of soil horizons for individual profiles [78]. At present,
there are four methods to integrate spectral curves for the soil profile. Viscarra Rossel and Webster [73]
averaged the spectra for topsoil and subsoil to represent the spectra of a profile. This simple average
method may weaken some spectral features of a certain genetic horizon. Vasques et al. [41] constructed
a pseudo multi-depth spectrum for profiles by combining the spectra for three depth layers sequentially.
This method effectively retains the spectral information for every horizon, but it can be used only when
the number of spectral curves in each profile is the same. Thirdly, Ogen et al. [75] used hyper-depth
spectral data to classify soils and distinguish soil horizons, where the X-axis presents the wavelength
in nm, the y-axis is the depth in cm, and the color scale displays the reflectance value. This method
translated the spectral curves in a profile into a spectral surface and retained all the information
contained in soil spectroscopy. However, Fajardo et al. [74] found that the depth interval should be
≤2 cm in order to efficiently capture the soil depth changes in a soil core. Therefore, this spectral
surface can be used to classify soil classes, but a smaller sampling interval is needed to distinguish the
genetic horizon. The last method is to integrate the spectra of a genetic horizon by depth-weighted
averaging [78], similar to the method of Viscarra Rossel and Webster [73]. The above methods
serve as efficient tools for integrating spectra of legacy soil samples. For the future profile study,
Ben-Dor et al. [82] noted that imaging spectroscopy (IS) technology can provide high spectral and
spatial resolution data and has the ability to track chemical and physical properties that can serve as
tracers to monitor soil genesis and formation.

4.3. Limitation of Research

This work attempted to estimate the profile age in a chronosequence with combined spectral
data and obtained a good performance. In this study, the pedogenic properties, such as SOM, clay,
and CaCO3, which change with time and are spectrally active, act as the bridge between the profile age
or pedogenic processes and spectra. However, this result only suggested the feasibility of this study
area and more study in this direction is still required for other chronosequences. It is possible that
other properties, such as clay minerals and iron oxides, would be important for spectral analysis and
age prediction in a chronosequence of tens of thousands or millions of years.

5. Conclusions

Changing soil properties in a chronosequence that are produced through different weathering levels
and pedogenic processes can be reflected through spectral behaviors. These properties serve as a bridge
linking soil spectroscopy and weathering levels/pedogenic processes. This study, conducted using a
coastal soil chronosequence developed on fairly uniform calcareous marine sediments, demonstrated
that profile spectroscopy can detect property changes in a chronosequence and be further used to
calibrate soil age.

In this millennium chronosequence, soil pedogenic processes, such as SOM accumulation, CaCO3

leaching and clay migration were detectible. Fed and Fed/Fet did not show remarkable sequential
changes with soil age. These three soil properties changing with soil age, SOM, clay and CaCO3,
primarily resulted in the observed changes in the spectra. Therefore, these pedogenic processes can
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be reflected through the reflectance intensity and absorption features of soil spectroscopy. These soil
properties, some of which are featureless, can be calibrated through soil reflectance spectroscopy.
The pseudo multi-depth spectral curve of a soil profile, a method used to integrate reflectance
spectroscopy data for various depths, provided more information on pedogenic processes and
produced better soil age calibration and prediction than a spectral curve of topsoil. However, more
profiles are needed in the future to further prove this conclusion, and this idea and method can be
used in other regions and calibration models according to local soil samples.

Therefore, soil spectroscopy for chronosequence study not only serves as a new technique for
pedogenesis research but also represents a new application of spectroscopy techniques. Further
studies on how spectroscopy can be applied to chronosequences of other time scales are needed, e.g.,
a chronosequence of millions of years. The other properties, such as clay minerals and iron oxides,
may be important properties for spectral analysis and age prediction in the thousands or millions of
years chronosequence.
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