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Abstract: Urban and Peri-urban Agriculture (UPA) has recently come into sharp focus as a valuable
source of food for urban populations. High population density and competing land use demands
lend a spatiotemporally dynamic and heterogeneous nature to urban and peri-urban croplands.
For the provision of information to stakeholders in agriculture and urban planning and management,
it is necessary to characterize UPA by means of regular mapping. In this study, partially cloudy,
intermittent moderate resolution Landsat images were acquired for an area adjacent to the Tokyo
Metropolis, and their Normalized Difference Vegetation Index (NDVI) was computed. Daily MODIS
250 m NDVI and intermittent Landsat NDVI images were then fused, to generate a high temporal
frequency synthetic NDVI data set. The identification and distinction of upland croplands from other
classes (including paddy rice fields), within the year, was evaluated on the temporally dense synthetic
NDVI image time-series, using Random Forest classification. An overall classification accuracy of
91.7% was achieved, with user’s and producer’s accuracies of 86.4% and 79.8%, respectively, for the
cropland class. Cropping patterns were also estimated, and classification of peanut cultivation based
on post-harvest practices was assessed. Image spatiotemporal fusion provides a means for frequent
mapping and continuous monitoring of complex UPA in a dynamic landscape.

Keywords: Urban and Peri-urban Agriculture (UPA); heterogeneous; spatio-temporal fusion;
synthetic NDVI

1. Introduction

Uncertain climatic conditions, high population growth, commodity price fluctuation, urbanization,
and allocation of agricultural produce to non-food consumption uses all threaten global and regional
food security [1–6]. Eigenbrod and Gruda [3] highlighted the need for analysis of crop area and
production that takes into account changing demographics vis-a-vis urbanization. In a global
assessment of urban and peri-urban agriculture, Thebo et al. [7] noted that, despite the increasing
significance of urban and peri-urban agriculture (UPA), it remains poorly quantified. Common to
UPA-related studies is the need for spatially explicit cropland data [7–9]. Numerous studies and
projects on cropland and crop-type mapping have been conducted to provide information about
crop distribution, crop types, and cropping frequency, at global, regional, and local scales [10–22].
In particular, remote sensing is a critical source of data for agricultural mapping and monitoring, since
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it offers synoptic earth observations with repetitive coverage. Teluguntla et al. [13] found that most
of the cropland mapping activities were applied to multi-temporal moderate resolution (250 m or
more) remotely sensed data or high resolution (Landsat 30 m) limited time-series remotely sensed
data, thus limiting mapping of small, fragmented croplands. Due to competing land use demands
and the high value attached to land in urban and peri-urban areas, UPA agricultural production units
tend to be small, spatially dispersed, and fragmented. This finding is supported by Thebo et al. [7] and
Martellozzo et al. [8], who observed that the scale and methods used to generate cropland information
are ill-suited to capturing urban croplands and that, given the local nature of UPA, global scale analysis
leads to generalizations which can be misleading.

In addition to spatial scale, due consideration for the crop types cultivated and management
practices in UPA croplands are necessary. Vegetables and fruits are the most commonly grown crops
in UPA [4,9]. Mapping of major staples such as rice, wheat, maize, and soybeans using remote
sensing has been successful due to the spatial scale of production and the relatively uniform regional
cultivation and management practices [9,16–22]. However, varied crop types, crop varieties, tillage
practices, and planting times characterize UPA crop production, resulting in misaligned phenological
development and thus necessitating multi-temporal classification approaches which utilize time-series
data [22]. Cropland mapping approaches that use time-series data have been shown to perform better
than single-date methods [15,23]. One of the main challenges of time-series analysis and classification
for cropland mapping is that it requires timely a priori knowledge of the cropland landscape for
labeling of clusters (in the case of unsupervised classification), and derivation of the signature files
needed to guide supervised classification models [14,15,23–25]. Generally, satellite images are, for
most applications, processed and analyzed retrospectively unless the data acquisition and processing
are real-time or near real-time, as is the case for meteorological monitoring and prediction applications.
The most reliable source of reference data is in situ field observations, collected through farmer
surveys and field campaigns [14]. However, the acquisition of this data, especially for large areas
and heterogeneous croplands, is an expensive and time-consuming exercise [14]. The collection of
ground-truth information for UPA croplands, therefore, remains a daunting task that requires an
investigation into the application of novel approaches, such as crop-specific post-harvest practices, for
reference data acquisition.

Another challenge of time-series analysis is missing data due to atmospheric artefacts, which
results in an irregular sampling frequency of the phenomena of interest [15,24,25]. At any one time,
approximately 35% of the global land surface is under cloud cover, thus limiting information retrieval
and meaningful interpretation of optical satellite data [25,26]. Various techniques have been developed
to deal with cloud cover and other causes of missing data, such as sensor failures [26–28]. Shen et al. [26]
broadly classified these methods into spatial, spectral, temporal, and hybrid categories, which vary by
the type of images they can be applied to, and the sources of information used to fill the missing data.
The synthesis of multisource data with complementary information; data integration in the spatial,
spectral, and temporal domains; and development of efficient, accurate, and task-oriented algorithms
are areas of potential improvement for missing data reconstruction [26]. The last decade has seen
a proliferation in the development of multi-sensor image fusion or blending methods that exploit
redundant and complementary information in the spatial and temporal dimensions of remote sensing
data, to enhance interpretation and classification accuracy [29,30]. There are several detailed reviews on
the types of fusion in remote sensing, state of the art best practices, and advancements [30–32]. Fusion of
high spatial–low temporal resolution images (e.g., Landsat 30 m) with low spatial–high temporal
resolution satellite images (e.g., MODIS 250 m or 500 m), to generate synthetic high spatial–high
temporal resolution data, can enable mapping of small, fragmented, and spatially and temporally
heterogeneous UPA croplands at a regular frequency (e.g., seasonally or annually).

This study, therefore, seeks to characterize urban and peri-urban agricultural crop production
units in a complex landscape using satellite earth observation data acquired in one year, by identifying
horticultural croplands and distinguishing them from other land cover types and uses, including



Remote Sens. 2019, 11, 207 3 of 24

paddy fields. Using the Normalized Difference Vegetation Index (NDVI) as a phenological indicator,
the inter-seasonal variations of various crop production units are investigated at pixel-level, to estimate
cropland extent and cropping patterns. An experiment on distinguishing peanuts from other crops
within the year of study, using training and validation samples obtained by inference of post-harvest
practices, is also evaluated. The objectives of this study are, therefore, to generate a cropland mask,
excluding paddy rice fields, determination of cropping patterns intra-annually within the cropland area,
and classification of peanuts versus other crops using post-harvest practices information as training
data, via classification of a dense regular high resolution (30 m) image time series. The overarching
goal of this research is to develop a coherent methodology that promotes acquisition and dissemination
of information on agricultural production units in urban and peri-urban areas with regular frequency,
and compatibility with global and regional scale datasets for food and nutrition security. The image
processing and analysis procedures are implemented mainly using open source software, including R
and QGIS [33,34]. For rapidly urbanizing developing countries, this study is relevant for the provision
of data to support food security initiatives, and the planning and management of urban spaces.

2. Data and Methods

2.1. Site Description

The study area, shown in Figure 1, is made up of seven municipalities within the Chiba prefecture,
which is in the South-eastern part of Japan and is adjacent to the Tokyo Metropolis to the east. The seven
municipalities are Yotsukaido-shi, Inzai-shi, Yachimata-shi, Narita-shi, Sakura-shi, Tomisato-shi,
and Shisui-machi, with a total area of 623.15 km2 and a population of 668,603.

Figure 1. The seven municipalities in the Chiba prefecture that constitute the study area.

The Chiba prefecture is a valuable source of agricultural food crops and was ranked sixth in
agricultural production in Japan, with vegetable production worth more than half a billion yen in
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2015 [35]. It has a varied landscape, comprised of urban or built-up areas, forests (evergreen and
deciduous), grasslands (land covered with grass or shrubs), paddy fields, croplands (also described as
upland cropland), and water bodies. Grasslands in the area consist of two types: Natural and managed.
On the one hand, natural grasslands contain untended grass and shrubs, and include abandoned
croplands and paddy fields. On the other hand, there are the managed grasslands, such as golf courses,
which are numerous due to proximity to Tokyo.

The Chiba prefecture has an annual average temperature of 16 ◦C, with annual and monthly
average maximum and minimum temperatures of 31 ◦C and 2 ◦C, respectively. The annual average
precipitation is 1496 mm, and it receives approximately 2113 h of sunlight yearly, making it highly
favorable for agricultural production [35,36]. The main crops, in the regions selected, are rice (which is
cultivated on irrigated paddy rice fields) and vegetables; including, but not limited to, carrot, daikon
radish, taro, cabbage, and spinach.

2.2. Data Acquisition and Pre-Processing

The overall flow of processing and analysis activities in this study is as depicted in
Figure 2. Two satellite earth observation datasets, Landsat 8 and Moderate Resolution Imaging
Spectroradiometer (MODIS) data, were acquired from the United States Geological Survey’s (USGS)
EarthExplorer site [37]. Landsat 8 has a spatial resolution of 30 m and a temporal resolution of 16 days,
while the MODIS data used in this study were daily 250 m images. In an initial application needs
assessment, the suitability of the independent use of Landsat with respect to the study’s objectives and
knowledge of the prevailing conditions on the ground was evaluated. Table 1 shows all of the images
for the year 2015 for the Landsat tile, WRS Path/Row 107/035 covering the study area, and their
corresponding land cloud cover. Twelve of the images had more than 30% land cloud cover and were
excluded from any further evaluation.

Moreover, the period between April and September (that is, spring to fall) is critical, as crops in
the field are in the vegetative phase and are thus useful for remote sensing detection. In June, July,
and September, four images had 100% cloud cover—thus ruling out single sensor reconstruction [26,27].
Also, approximately 75% of the cultivated land in the study area is less than 5 Ha, as shown in Figure 3,
including paddy rice fields and land under permanent crops. The Landsat 8 30-m resolution is suitable
for the mapping of paddy rice fields since they are spatially contiguous, have relatively uniform
cultivation and management practices, and the phenology of rice is well understood [38,39].

However, the upland croplands tend to be small, fragmented, dispersed, and have diverse
cropping patterns and crop varieties, due to varied management practices. Single-date Landsat image
classification would therefore not adequately capture these food production units since, at any one
time, not all fields have crops and bare or fallow parcels would be classified as bare land or grassland.
Thus, time-series classification was more suitable [15,23]. Further evaluation of the Landsat images
for cloud cover, focussing on the study area, was carried out, and eight images were finally selected,
resulting in an irregular time series.
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Figure 2. Schematic representation of the overall research methodology. The Normalized Difference
Vegetation Index (NDVI) was computed for the Moderate Resolution Imaging Spectroradiometer
(MODIS) and Landsat Surface Reflectance Climate Data Record (LSR-CDR) datasets. Synthetic NDVI
images were generated using the Enhanced Spatio-Temporal Adaptive Reflectance (ESTARFM) Fusion
of the NDVI images. The Maximum Value Composite NDVI (MVC-NDVI) was computed using
Landsat NDVI and used to generate reference data.

Table 1. Landsat 8 images for the study area’s scene Path/Row 107/035 in 2015.

Date (Year 2015) Day of Year (DOY) % Land Cloud Cover

10th January 10 16.31
26th January 26 50.37

11th February 42 50.63
27th February 58 31.79

15th March 74 83.76
31st March 90 3.71
16th April 106 9.11
2nd May 122 1.92
18th May 138 59.24
3rd June 154 100
19th June 170 100
5th July 186 100
21st July 202 10.38

6th August 218 3.52
22nd August 234 52.59

7th September 250 100
23rd September 266 19.39

9th October 282 0.92
25th October 298 2.28

10th November 314 68.93
26th November 330 42.17
12th December 346 12.42
28th December 362 15.26
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Figure 3. Proportions of cultivated land area in 2015 [35].

Two daily MODIS surface reflectance products (MOD09GA and MOD09GQ) were acquired,
for horizontal tile 29 and vertical tile 5 (h29v05), for the period spanning 1 January 2015 to
31 December 2015. The two surface reflectance bands contained in the MOD09GQ scientific dataset
(SDS), red (620–670 nm) and near-infrared (NIR) (841–876 nm), and the state 1 km SDS in MOD09GA
SDS, were extracted. MODIS data are delivered in the sinusoidal projection, and were therefore
reprojected to the Universal Transverse Mercator Projection (UTM) zone 54N. The reflectance bands
and state 1 km SDS were then subset to the Chiba prefecture bounds. A scale factor of 0.0001 was
applied to the red and NIR bands, prior to computation of NDVI. The state 1 km SDS was used to
retrieve cloud-specific information during quality assessment, because this parameter has not been
populated in the reflectance band quality SDS included in the MOD09GQ product since MODIS version
3, as detailed in [40,41]. The Quality Control (QC) masks from the state 1 km SDS were resampled to
250 m using bilinear interpolation, and applied to the NDVI images through masking. The resulting
daily NDVI images at 250 m resolution had gaps due to masking, and gap-filling was carried out via
linear interpolation in the temporal dimension [42].

2.3. Spatio-Temporal Image Fusion

Landsat 8 irregular time-series data and daily MODIS images were fused to generate a regular
time series. MODIS data supports Landsat via fusion to inform phenological traits and maintain
temporal continuity in the observed phenomena [23,25]. Fusion methods are categorized by the
mathematical relationships between the reference and observation data into four groups, including
weighted function based, unmixing based, dictionary-pair learning based, and data-assimilation based
algorithms [29,43]. The weighted function based methods include the Spatial and Temporal Adaptive
Reflectance Fusion Model (STARFM) and the Enhanced STARFM (ESTARFM) , which assume that
no land cover type changes occur between the reference and prediction dates [43,44]. While this
assumption limits the performance of weight function based algorithms in heterogeneous landscapes
where rapid, abrupt changes occur, they are popular since they require no auxiliary data as inputs
and are robust enough to predict pixels with changes in biophysical attributes [44–46]. In remote
sensing, indices enhance spectral information and class separability and are, therefore, an essential
basis for the estimation of the biophysical characteristics of land cover, such as vegetation vigor [44,46].
Fusion may be applied to the reflectance bands of images or the indices, via Blend-then-Index (BI) or
Index-then-Blend (IB), respectively [43]. Research has found that IB is more computationally efficient
and accurate, and its performance is influenced less by choice of algorithm [45,46]. Li et al. [46] found
that the use of a MODIS 8-day composite surface reflectance product (MOD09A1 and MYD09A1) with
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a temporal mismatch between the Landsat and MODIS images resulted in weaker correlations between
the observed and synthetic images, due to the day-to-day variation in the MODIS viewing geometry.
Table 2 shows the relative distribution of the eight selected Landsat 8 images for this study, and the
corresponding available dates in MODIS 8-day composite data, which shows a one-day difference. For
this study, we used the daily MODIS surface reflectance products (MOD09GQ and MOD09GA), thus
allowing the selection of a start date within the MODIS daily time-series that would fully match the
available Landsat image time-series.

Table 2. Relative temporal distribution of irregular Landsat 8 time-series to MODIS 8-day composite.

Day of Year (DOY)

Available Landsat 8 Images (Cloud Cover < 20%) 10 90 106 122 202 218 282 298
MODIS 8-day Composite 9 89 105 121 201 217 281 297

Spatio-temporal fusion via IB was implemented using the MODIS Daily 250 m NDVI and Landsat
8 intermittent NDVI images, as described in [45]. The MODIS NDVI images were first resampled to 30
m through bilinear interpolation to reduce the effects of geo-referencing error, then cropped to match
the extent of the Landsat 8 NDVI images using R (v3.4.4) [33]. Fusion was implemented in ENVI IDL
version 4.8 (Exelis Visual Information Solutions, Boulder, Colorado) using the open-source Enhanced
Spatio-Temporal Adaptive Reflectance Fusion Model (ESTARFM) [47]. Many spatiotemporal fusion
models have been developed, but ESTARFM has been found to be effective in generating synthetic
high-resolution images for heterogeneous regions [44–47].

ESTARFM requires at least two pairs of temporally coincident fine-resolution (moderate to high
spatial resolution–low temporal resolution) and coarse resolution (low spatial resolution–high temporal
resolution) images as inputs. Using a specified moving window size within the image, and thereby
having a central pixel, similarity of pixels with reference to the central pixel is evaluated and weights
computed. Working on the assumption that, for a heterogeneous landscape, the changes in reflectance
within a mixed pixel are representative of the weighted sum of changes for each land cover type,
and that these changes do not occur significantly over a short period of time, the relationship then can
be inferred from the pixel value of the fine resolution pixels [45]. Additionally, given that predictions
for fine-resolution pixels are likely to be more accurate from a pure coarse-resolution pixel, larger
weights are assigned to these pixels, and so conversion coefficients are thus computed and used to
predict the fine-resolution reflectance or index value per pixel. As the objective of this study was
to classify land cover annually and, specifically, to discriminate cropland from non-cropland, the
prediction of land cover changes was not necessary and the ESTARFM algorithm has been found to
predict phenology changes satisfactorily [43–47]. The fine-resolution reference images, used in the
fusion process, were the most cloud-free Landsat 8 NDVI images for 2015, acquired in late winter (10th
January), early spring (16th April), and mid-fall (9th and 25th October). For computational efficiency,
an 8-day interval was chosen.

2.4. Training and Validation Data Collection

Two main land cover and cropland datasets were evaluated as potential sources of training and
validation data. The Japan Aerospace Exploration Agency’s (JAXA’s) High Resolution Land Use
and Land Cover map of Japan (HRLULC Ver.18.03) is a 30 m land cover map of Japan, generated
using multi-temporal, multi-source data. The data includes Landsat 8 OLI collection 1 images, 10 m
geographical and topographic data from the Geographical Survey Institute (GSI) of Japan, Advanced
Land Observing Satellite (ALOS-2)/ Phased Array type L-band Synthetic Aperture Rader(PALSAR)
25 m 2015 mosaic dataset, and ALOS Panchromatic Remote-sensing Instrument for Stereo Mapping
(PRISM) Digital Surface Model (DSM). A Bayesian estimation classifier, followed by post-classification
editing, was used for the latest version. The JAXA High Resolution land use/land cover maps have
a regular update frequency, and were identified in Waldner et al. [48] as a freely available regional
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cropland-related dataset for Japan. It has ten land use/land cover classes, including water, urban, rice
paddy, crop, grass, deciduous hardwood forest, deciduous softwood forest, evergreen broad-leaved
forest, evergreen conifers forest, and bare land. The reported producer’s and user’s accuracy for the
cropland class are 83.8% and 74.1%, respectively. However, since the data used in its production is not
temporally specific and ranges from 2014 to 2016, it was decided to use this dataset for validation of
the results of this study. Further details on its production are available in [49].

In addition, the recently released Global Food Security-Support Analysis Data at 30 m
(GFSAD30), benchmarked for 2015, was evaluated [50]. The Southeast and Northeast Asia dataset
(GFSAD30SEACE) were acquired and assessed for suitability as a source of training and validation
data in this study. The cropland extent in this dataset represents all cultivated land including paddy,
irrigated, and rainfed areas. As the discrimination between paddy rice fields and other croplands was
an objective of this study, the GFSAD30SEACE dataset was used for validation of our result, in terms
of total cropland extent.

In the absence of a reference dataset that was temporally specific to the year 2015 and
representative of the intended cropland class, reference data samples were generated using the
Maximum Value Composite NDVI (MVC-NDVI), computed between consecutive NDVI images of the
sparse Landsat image time series. In addition to minimizing the effects of cloud cover, the seasonal
MVC-NDVI Red-Green-Blue (RGB) composite stacks, as shown in Figure 4, revealed inter-seasonal
pixel-level NDVI changes which made it possible to determine seasonal behavior of the major land
cover types and set rules for distinguishing the major land cover classes and cropping patterns.
Through raster math of the MVC-NDVI layers, masks were generated for each land cover class. The
raster masks were then vectorized and cleaned-up, by comparison with the Google Earth (GE) image
available for 9th October 2015. A dense point cloud was then generated for each land cover class by
joining the vector land cover masks with a 30 m point vector grid of the study area. The training and
validation points were then selected via stratified random sampling of the dense point cloud.

In this study, distinguishing peanuts from other crops growing in the study area was tested.
Peanuts, grown for their commercial value, are a popular crop in this region. Approximately 75%
of Japan’s domestic supply of peanuts comes from the Chiba prefecture [51–53]. From moderate
resolution satellite images, it is impossible to distinguish, with certainty, one crop (e.g., peanuts) from
another (e.g., carrots) during the growing season. As such, to know which crop was growing at a
certain location at a given time, field photos or farm surveys are necessary during the growing season
in every year, since farmers regularly change crops cultivated, especially in the case of horticultural
food crops. Constant and regular acquisition of crop type information is time-consuming and costly.
Thus, creative means of inferring and deciphering such information from existing data are necessary.
In this study, the post-harvest practice of jiboshi by peanut farmers in Japan makes it possible to know
where peanuts had been growing, within at least a month from harvesting.

After harvest, peanut pods have approximately 50% moisture which renders them prone to
contamination with mycotoxins, which are a major food safety concern and may lead to considerable
economic losses [54,55]. Peanut farmers in the Chiba prefecture will, after harvest, leave the peanut
plants and pods in inverted windrows, which allows air to circulate around the pod and for the
moisture content to diminish significantly, for about a week [55]. Thereafter, the peanut plants and
pods are piled into solitary heaps, as shown in Figure 5a, in a process referred to as jiboshi (drying on
the ground) for about a month. These piles or heaps are referred to as bocchi, and are visible from GE
images (as shown in Figure 5b), thus allowing one to infer that peanuts had been growing on that field
within at least a month of acquisition of the image. Training and validation samples were collected
within the study area, for locations which were visible in the GE image of 9th and 29th October 2015.
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Figure 4. Red-Green-Blue (RGB) composites of the seasonal Maximum Value Composite-Normalized
Difference Vegetation Index (MVC-NDVI). (a) The winter-spring-summer composite, and (b) the
spring-summer-fall composite for 2015. Off-white regions in both (a) and (b) depict dense vegetation,
such as forests, which have high NDVI with minimal variation intra-annually. The black and grey
regions are urban and water features, which have low NDVI with minimal variation within the year.
Red, blue, green, cyan, yellow, and magenta regions represent vegetation whose maximum NDVI
corresponds with the seasonal order in the RGB composite.

Figure 5. The post-harvest practice of on-field drying of peanuts, known as jiboshi; (a) shows the heaps
(bocchi), as seen on Google Maps Street View on 29th October, 2015, and (b) shows the aerial view of
the same field, as seen on Google Earth (35◦37′N, 140◦14′E) on 9 October 2015.
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2.5. Time Series Classification

The Random Forest (RF) classification algorithm was used in this study. RF is a robust ensemble
machine learning classifier, which has been used in numerous agricultural mapping application
studies [56–61]. RF has been found to be stable and efficient, with better performance in classification
of croplands with high intra-class variability than other classifiers, such as conventional decision trees
and time-weighted dynamic time warping (TWDTW) [15,61]. In this study, RF was implemented
using the RStoolbox (ver.0.2.3) package in R, by use of the ’superClass’ function [62]. The function
takes, as input, the raster image and reference data—either as spatial points or a spatial polygon data
frame, containing position and class attribute information. A separate validation dataset can also be
provided but, if not, the training dataset is split based on a partition proportion ranging from zero to
one, provided by the user. The model tuning parameters are the number of samples per land cover
class, the number of levels for each tuning parameter, and the number of cross-validation resamples,
for robust prediction performance [56]. To ensure non-overlap between training and validation data,
a minimum distance, in terms of pixels, can be provided [62]. Several combinations of the tuning
parameters, informed by the RStoolbox package literature, were tested with a 70% training data and
30% validation data split. The configuration with the best sensitivity in the cropland class was chosen.

2.6. Accuracy Assessment

The classification results were evaluated using error matrix accuracy assessment metrics, which
include producer’s, user’s, and overall accuracy, as well as the kappa coefficient, as defined in
Equation (1). The mathematical notation of the kappa coefficient, with respect to the error matrix, is
shown in Equation (2) [63,64].

K̂ =
Observed accuracy− Expected accuracy

1− Expected accuracy
(1)

K̂ =
N ∑r

i=1 xii −∑r
i=1(xi+ ∗ x+i)

N2 −∑r
i=1(xi+ ∗ x+i)

, (2)

where K̂ is the kappa coefficient, N is the total number of observations, r is the number of rows in the
error matrix, xii is the number of observations in row i and column i, and xi+ and x+i are the marginal
totals of row i and column i, respectively [64]. The kappa coefficient provides a measure of how much
better the classification performed, compared to the probability of randomly assigning pixels to the
correct class.

3. Results

3.1. Fusion Results

Performance of the fusion process in generating synthetic NDVI images was evaluated
quantitatively by comparing the synthetic NDVI images to the reference observed Landsat NDVI
images. Overall, there was a strong agreement between the synthetic images and the observed Landsat
images, with R2 > 0.9 for all dates, as depicted in Figure 6. A higher association was found in the
mid-fall images (9th and 25th October) (Figure 6c,d), than in the late winter (10th January) (Figure 6a)
and early spring (16th April) (Figure 6b) images. Phenological changes in the landscape can also be
inferred from the point density in the scatterplots, shown by color—with blue being low density and
red showing high density. In the late winter and early spring images (when vegetation vigor is low),
there are two data clusters. The first, albeit lower density, lies in the mid NDVI ranges (0.125 to 0.5),
and the second within the higher NDVI ranges (0.6 to 0.8). However, in the mid-fall images (when
vegetation vigor is high), the scatterplot tapers with high density in the higher NDVI ranges. This may
be attributed to the intra-annual changes in vegetation density, and is demonstrative of more pure
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vegetation pixels in the fall than in late winter and early spring. These observations may not hold
for other years of study for the same region, or other regions with different land cover and climate,
and require further investigation.

Figure 7 shows the qualitative assessment of the fusion results, in terms of the temporal evolution
of NDVI in the smoothed fusion series and the original Landsat 8 series for the main vegetation
cover types in the study area. The shape or configuration of the temporal profiles of the synthetic
NDVI time series are analogous to those of the observed NDVI, for all of the main vegetation cover
classes. The standard error in the synthetic NDVI time-series are also reflective of intra-class behavior.
For forest or dense vegetation, there is minimal variation throughout the year also detected in the
observed MVC-NDVI, as shown in Figure 4.

Internal variability is exhibited in the other vegetation types, and varies with season. In the case
of the grassland temporal evolution of NDVI, sample points were taken from both the artificial and
natural grasslands, and therefore exhibit high intra-class variability. However, towards the end of
the year (as winter commences), vegetation vigor decreases and the intra-class variability diminishes,
as seen from the error bars in that profile. The observed images do not cover this later part of the
temporal behavior of the grassland land cover, as the series ends in early fall, and demonstrates the
predictive capabilities of the ESTARFM fusion model. Based on the temporal information inferred
from the available coarse resolution images, the changes in the biophysical characteristics of land cover
features can be elicited, even in the absence of complete annual coverage of the fine resolution images.

Figure 6. Scatterplots of the comparisons of synthetic Landsat images (generated by fusion) with the
original Landsat images: (a) 10 January 2015; (b) 16 April 2015; (c) 9 October 2015; (d) 25 October 2015.
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Figure 7. NDVI temporal evolution of the major vegetation land cover types in the study area, in the
fusion and original Landsat NDVI time-series. Dates along the time series are expressed as Day of Year
(DOY).

The temporal profiles of the cropland and paddy classes also reveal characteristics inherent to
these land cover classes. Intra-class variability in the cropland class exhibits a double cropping pattern,
where fluctuations are detected during the growing seasons and abate (albeit minimally when the
curve is in decline and recovery). Contrastingly, for the paddy class, fluctuations are detected most
when it is expected that paddy rice is not on-field. That is, January to April and October to December,
or late winter to spring and late fall into the winter. This behavior is akin to that observed within the
grassland class, and is indicative of post-harvest vegetation whose vigor is not subject to management
practices by the farmer. However, as in the case of grassland land cover, the concluding part of the
year and the information elicited arises from the synthetic dataset, and would not have been available
within the available Landsat imagery. Overall, both the quantitative and qualitative assessments of
the fusion result, in comparison to the observed Landsat dataset, vis-à-vis conventional land cover
temporal changes, establish the value of fusion in providing information about land cover prior to
classification. Figure 8 depicts the temporal evolution of NDVI in the synthetic time-series stack for
representative sample points in the major land cover types of the study area. From this graph, the
significance of the synthetic time-series dataset is substantiated further, since we see that for grassland,
paddy, and cropland, the spring-summer seasons provide the best distinction points with continuity.
The observed Landsat image time-series was sparse, due to inundation with cloud cover during this
crucial period, hence making information unavailable; especially in the cropland class.
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Figure 8. NDVI temporal evolution of the major land cover types of the study area in the fusion NDVI
time-series.

3.2. Classification Results

3.2.1. Cropland Extent

The cropland extent in the context of this study is all land used for crop cultivation, excluding
paddy fields. An initial land use/land cover classification was carried out for the main land use/cover
types in the region, as shown in Figure 9. An overall accuracy of 91.7% was achieved, with a stratified
random sample of over 1000 points per class. The dominant land use/cover classes of forest, grassland,
paddy, and urban and water had the highest producer’s (PA) and user’s accuracies (UA), both more
than 90%. The cropland area estimation had the lowest PA and UA, of 79.8% and 86.4%, respectively,
but was deemed to be acceptable, given the heterogeneity of the landscape. The estimated area of
croplands, excluding paddy fields, for the study area in 2015 was 85.5 Km2, as is depicted in Figure
10. Table 3 shows the classification’s error matrix. Vegetation along urban features and banks of
water bodies were also misclassified as cropland and paddy. Within the paddy field class, the timing
of post-harvest vegetation in the fall within some paddy fields manifested as two peaks, similar to
croplands with double cropping, leading to misclassification as croplands.

Table 3. Confusion matrix of cropland extent classification.

Cropland Forest Grassland Paddy Urban & Water Total User’s Accuracy (UA) (%)

Cropland 542 2 38 15 30 627 86.4
Forest 7 691 4 0 0 702 98.4

Grassland 38 0 638 27 0 703 90.8
Paddy 36 0 11 597 7 651 91.7

Urban & Water 56 0 0 12 640 708 90.4
Total 679 693 691 651 677 3391

Producer’s Accuracy (PA) (%) 79.8 99.7 92.3 91.7 94.5
Overall Accuracy (OA) (%) 91.7

Kappa 0.9
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Figure 9. Cropland extent map and other land cover types in 2015.
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Figure 10. Cropland extent in 2015, derived from this study.

3.2.2. Cropping Regimes

Two main cropping patterns or regimes were estimated, as shown in Figure 11: Single cropping,
where a pixel had a singular peak within the year, in a season or within two consecutive seasons;
and double cropping, for pixels with two peaks in non-consecutive seasons—that is, winter-summer,
winter-fall, and spring-fall. The cropping regimes estimation confusion matrix is as shown in Table 4.
Most of the croplands were found to be under double cropping intensity, while paddy rice was under
single cropping. This is expected, since the upland cropland is used mainly for the production of
horticultural food crops that have short durations of growth. Table 5 shows the best periods of market
availability for some of the Chiba prefecture’s representative crops. This table can be taken to represent
an inverse crop calendar, where periods of non-availability represent the growing periods. Therefore,
apart from taro and peanuts, which have high market availability for only one period within a year,
the rest of the crops can be said to be planted twice by one farmer or continuously by various farmers,
within the year. Taro has a long growth period between transplanting and maturation, approximately
six to eight months. The table also does not take into account market availability as a result of imports
from other regions or countries. Consequently, it is expected that most upland croplands will exhibit
double cropping, as our result indicates. Most paddy rice fields had a single cropping pattern, with
the exception of a few. This can be attributed to the fact that paddy rice fields are highly sensitive
to changes in soil composition, and therefore farmers prefer to leave the land fallow post-harvest in
order to maintain the soil nutrient balance necessary for paddy rice. In addition, paddy rice cultivation
is a highly specialized skill in Japan and is resource- and labor-intensive. Therefore, apart from the
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cultivation of other crops for subsistence consumption, which is normally carried out on other parcels
of land, paddy rice farmers tend to focus only on paddy rice.

Figure 11. Cropping patterns estimated for 2015 in this study.

Table 4. Confusion matrix of cropping regimes estimation

Double Cropping Forest Grassland Paddy Single Cropping Urban & Water Total User’s Accuracy (UA) (%)

Double Cropping 1546 4 65 17 716 48 2396 64.5
Forest 11 3217 1 0 104 0 3333 96.5

Grassland 124 1 3015 109 312 0 3561 84.7
Paddy 49 0 44 2467 82 41 2683 91.9

Single Cropping 735 27 173 80 1295 84 2394 54.1
Urban & Water 125 0 0 60 328 3068 3581 85.7

Total 2590 3249 3298 2733 2837 3241 17,948
Producer’s Accuracy (PA) (%) 59.7 99.0 91.4 90.3 45.6 94.7

Overall Accuracy (OA) (%) 81.4
Kappa 0.776
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Table 5. Market availability of various crops.

Crop Type Market Availability

* Cabbage March∼May; September and October
* Carrot April and May; September∼December

* Spinach April and May; September∼December
* Taro September∼December

* Turnip May; October∼January
** Peanuts September∼December

* [51]. ** Inferred from this study; Does not consider imports.

3.2.3. Peanuts and Other Crops

A total of 378 sample points representing peanuts were collected, as described in Section 2.4.
Non-cropland land cover classes including forest, grassland, paddy, and urban and water were masked
out from the fusion time-series, using the cropland mask produced in this study. A stratified random
sampling of the peanut samples and other croplands not designated as peanuts was carried out to yield
200 points per class, and a binary classification was implemented. The overall accuracy was 67.1%,
and the PA and UA for the peanut class were 63.2% and 71.2%, respectively. Given the limited amount
of reference data and the fact that peanuts are cultivated at the same time as other crops, as seen in
Table 5, we found this classification accuracy to be sufficient. The phenological similarity between
peanuts and other crops, as well as high intra-class variability within the cropland class, requires
that a large number of training datasets is used to train the RF classifier [57]. Further research on the
determination of the distinct spectral-temporal characteristics of peanuts and other crops cultivated in
the region, with more training data and predictors, could improve the classification accuracy.

4. Discussion

In this study, the application of a high temporal density image time-series to intra-annual cropland
extent and cropping regime estimation was evaluated. Validation of the cropland extent or distribution
was carried out by comparing this study’s result with two existing cropland maps; that is, the regional
JAXA HRLULC and the global GFSAD30SEACE datasets. The upland cropland extent, according to
the JAXA HRLULC (version 18.03) map, was approximately 367.9 Km2, while, in the GFSAD30SEACE
data set (which includes paddy fields), it was 129.4 Km2. The cropland extent in this study was
85.5 Km2. Sharma et al. [65] produced a land use/land cover map of Japan for 2013 to 2015, the
JpLC-30 map, and compared their result to the JAXA HRLULC map (version 14.02). Disparities
between the JpLC-30m map and the JAXA HRLULC map (version 14.02) were detected, including:
Croplands in forests, water-bodies in forests, water in croplands, and herbaceous land cover in
croplands. Based on this comparison, the classification of croplands in the JAXA HRLULC map
(version 14.02) was severely affected. The improvement over the earlier version (16.03) in cropland
classification accuracy is significant. In version 16.03, the reported producer’s and user’s accuracy
for the cropland class were 63.9% and 45.2%, respectively, while, in version 18.03, the producer’s
and user’s accuracy for the cropland class were 83.8% and 74.1%, respectively. Figure 12 depicts the
cropland extent, as per this study, excluding paddy fields, and the JAXA HRLULC (version 18.03)
cropland. The cropland extent within the JAXA HRLULC (version 18.03) map far exceeds the extent
in this study. Further inspection of the land use/land cover map shows misclassification of urban
land cover as cropland in the JAXA map, as shown in Figure 13. This phenomenon, which has also
been observed in other regional land use/land cover maps, such as the GlobeLand30 map, may be
attributed to spatial heterogeneity, but further investigations are necessary [46].
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Figure 12. Cropland extent for 2015 in this study and in the JAXA HRLULC map.

Figure 14 shows our cropland and paddy extent, and the GFSAD30SEACE cropland extent.
The GFSAD30 product does not make a distinction between types of croplands—that is, upland
cropland and paddy rice—and, while it adequately captures the paddy fields and compares favorably
with our result, it underestimates the upland cropland. This may be attributed to the heterogeneous
nature of the upland croplands, which leads to misclassification of upland cropland as non-cropland
in the GFSAD30 framework. Our result overestimated paddy fields, with commission errors of
2.3% and 4.15% as cropland and grassland, respectively. However, this was almost balanced out by
misclassification of some paddy fields as croplands, and can be attributed to the fact that only NDVI
was used as a classification metric. Using other metrics for the same one-year data-set, such as the
NDWI index or shape and texture features, may solve this [66].

Statistical survey data at local and national scales can be useful in assessing the results of remote
sensing classification and estimates. While it can be time consuming and expensive, it allows for
various government agencies and stakeholders to engage directly with farmers. However, there
is no standard approach to collection and dissemination of such data and, for regional and global
upscaling, statistical data can prove to be problematic due to (among other issues) language barriers.
Understanding what variables are measured and how they are measured is key to consideration of
statistical data for reference.
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Figure 13. Comparison of the land use/land cover map of this study with the JAXA HRLULC map. Figures (a,d) show the land use/land cover map produced in this
study, while (b,e) show the JAXA HRLULC map. Figures (c,f) show the Google Earth images of the areas shown in (a,b,d,e).
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Figure 14. Cropland extent for 2015 in this study and in the GFSAD30SEACE map.

Japan carries out an agricultural census every five years via questionnaires, and the last census
was released on 1 February 2015. It is, therefore, not representative of the agricultural production
situation in the year 2015 but, rather, represents the preceding five years. Farmers respond to
questionnaires by regions referred to as ‘agricultural villages’, and respond to (among other questions)
how much land is under cultivation, whether the production is for commercial or subsistence purposes,
and what they grow. However, the boundaries of the agricultural villages do not match the current
national administrative boundaries. This, therefore, makes merging and comparison of this data
with data obtained based on administrative boundaries difficult. The total reported area of cropland
in the statistical data was 129.5 Km2. This figure is close to our estimated area of paddy rice fields
(123.21 Km2), and also matches the GFSAD30 cropland area. Spatial distribution of crops and cropping
regimes could not be inferred, due to the incongruence between the boundaries used in this study with
those of the statistical data. The results of this study, therefore, provide a base-map compatible with
national administrative boundaries, for future analysis and monitoring of agriculture in the region.

The fusion results confirmed that implementing Index-then-Blend with MODIS dates matching
the Landsat dates generates synthetic images with a strong agreement with the observed images.
However, the fusion process takes a long time and, for this reason, we applied fusion to a subset of the
Landsat scene covering the Chiba prefecture, rather than the entire scene. This led to the loss of data in
the northern part of our study area, which also coincides with the boundary of Chiba prefecture. It
would, therefore, be better to apply fusion to entire Landsat scenes or a mosaic of scenes, then subset
to the intended study area.

This study demonstrates that using the simple, yet robust, NDVI with high temporal frequency,
dynamic heterogeneous landscapes can be adequately mapped and monitored using data available
within a year. From a policy development perspective, this aspect of our methodology is desirable, as
it allows for changes taking place within the landscape to be catalogued using the most recent data
and disseminated with reasonable frequency and accuracy.



Remote Sens. 2019, 11, 207 21 of 24

5. Conclusions

Intra-annual cropland area estimation and distinction from other land cover types in
heterogeneous landscapes can be challenging, due to inadequate information. In this study, we
demonstrated how, using the intermittent moderate resolution Landsat and daily MODIS surface
reflectance imagery, information that can be used to distinguish croplands from other land cover
types can be retrieved. Fusion of the MODIS NDVI and Landsat NDVI images yielded synthetic
Landsat imagery with R2 > 0.9, indicating strong agreement with the observed NDVI. The regular
moderate resolution image time-series, with an 8-day interval, proved to be adequate for the task
of estimating cropland area and cropping patterns in a complex heterogeneous urban landscape.
In addition, using knowledge of post-harvest practices of peanut farmers in the region, we were able to
distinguish peanuts from other crops with reasonable accuracy. The Random Forest classifier requires
a large amount of training data, which was acquired based on the seasonal MVC-NDVI. However, this
was made possible by the availability of images in each season which met the cloud-cover threshold,
and may not be the case when carrying out analysis in other years or regions that are heavily inundated
with cloud cover. In this regard, efforts to establish spectral-temporal libraries for various land cover
types in disparate geographical locations would go a long way in enhancing local- and national-scale
annual cropland mapping. This study also demonstrates the importance of local-scale cropland
mapping towards validating regional- and global-scale cropland datasets. Future research work
will involve evaluation of the applicability of the methodology to larger regions, and in different
geographical locations which have different land cover and climate characteristics.
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