
remote sensing  

Article

Combination Analysis of Future Polar-Type Gravity
Mission and GRACE Follow-On

Yufeng Nie 1, Yunzhong Shen 1,* and Qiujie Chen 1,2

1 College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China;
yufeng.nie@tongji.edu.cn

2 Institute of Geodesy and Geo-information, University of Bonn, 53115 Bonn, Germany;
chenqiujie2009@163.com

* Correspondence: yzshen@tongji.edu.cn

Received: 20 December 2018; Accepted: 18 January 2019; Published: 21 January 2019
����������
�������

Abstract: Thanks to the unprecedented success of Gravity Recovery and Climate Experiment
(GRACE), its successive mission GRACE Follow-On (GFO) has been in orbit since May 2018 to
continue measuring the Earth’s mass transport. In order to possibly enhance GFO in terms of
mass transport estimates, four orbit configurations of future polar-type gravity mission (FPG) (with
the same payload accuracy and orbit parameters as GRACE, but differing in orbit inclination)
are investigated by full-scale simulations in both standalone and jointly with GFO. The results
demonstrate that the retrograde orbit modes used in FPG are generally superior to prograde in
terms of gravity field estimation in the case of a joint GFO configuration. Considering the FPG’s
independent capability, the orbit configurations with 89- and 91-degree inclinations (namely FPG-89
and FPG-91) are further analyzed by joint GFO monthly gravity field models over the period of
one-year. Our analyses show that the FPG-91 basically outperforms the FPG-89 in mass change
estimates, especially at the medium- and low-latitude regions. Compared to GFO & FPG-89, about
22% noise reduction over the ocean area and 17% over land areas are achieved by the GFO & FPG-91
combined model. Therefore, the FPG-91 is worthy to be recommended for the further orbit design
of FPGs.

Keywords: gravity field recovery; GRACE Follow-On; orbit configuration; synergistic observation

1. Introduction

The Earth is undergoing complicated and continuous mass transport [1]. To better quantify
the mass changes, the Gravity Recovery and Climate Experiment (GRACE) mission was launched
in 2002, which consists of the twin satellites flying in the same near-polar orbit at about 500-km
altitude and separated by 220 km [2]. The key technology that enables GRACE to observe large-scale
mass variations near the Earth surface is the onboard K-band microwave ranging system (KBR),
which delivers inter-satellite range measurements with an accuracy at micron level to precisely
capture orbit perturbation differences between the two GRACE satellites caused by heterogeneous
mass distribution of the Earth [2,3]. Along with the KBR, other important sensors onboard GRACE
satellites include Global Positioning System (GPS) receivers for precise orbit determination (POD),
high-precision accelerometers for measuring non-gravitational forces and star cameras for attitude
determination [4–6]. Based on the precise data collected by the above sensors, many scientific
institutions have produced high-quality static and temporal gravity field models [7–11], which are
successfully adopted for quantitative researches concerning the Earth’s mass changes, such as global
mean sea-level variations [12,13], continental water balance [14,15], and the Tibetan Plateau and
Antarctic regional ice losses [16,17].
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In view of such a great success achieved by GRACE in terms of the Earth’s mass change
exploration, its successor GRACE Follow-On (GFO) was launched on 22 May 2018 to continue
providing the geodetic observation records [18,19]. As a demonstrator, GFO carries a laser ranging
interferometer (LRI) for measuring inter-satellite ranges with an accuracy level of a few tens nanometers
in addition to the sensors onboard the GRACE satellites [18–20]. However, even with such a dramatic
accuracy improvement for the range observations, some full-scale pre-launch simulations indicated
that only a moderate improvement on gravity field estimation can be reached by GFO as compared to
GRACE [18,21]. The dominant barrier to further improvement on gravity field determination by GFO
is the temporal aliasing issue, which is more intractable than other limiting factors in the GFO error
budget [18,21].

From a digital signal processing aspect, aliasing is due to undersampling of the signal to be
recovered. According to the Nyquist sampling theorem, when sampling frequency is smaller than
twice of the original signal frequency, aliasing definitely occurs [22]. In terms of GRACE monthly
gravity field recovery, temporal aliasing is mainly attributed to those high-frequency signals originating
from the oceanic tidal variations at daily or sub-daily scale, as well as the short-term energy exchange
process (generally within a few hours) between atmosphere and ocean [23,24]. Because of the limited
bandwidth for observations and sparse ground track of GRACE, most part of these signals typically
need to be reduced by priori background models during gravity field recovery process [25], which
are, however, subject to errors [26,27]. Therefore, the remaining high-frequency signals result in the
temporal aliasing errors in monthly-average gravity solutions, which manifest themselves as the
typical north-south stripes in spatial pattern of unfiltered GRACE models [28,29].

To mitigate the troublesome temporal aliasing effects, post-processing filtering techniques are
generally applied as a standard procedure [28–30]. However, the fundamental solution should be
based on the enhanced signal sampling and gravity field modelling strategy [31–34]. One of the
most straightforward and efficient ways is to increase the number of satellites in space for denser
sampling of gravity signals. Thereby, many researchers have investigated novel concepts of satellite
formation flight (SFF) or satellite constellations dedicated to gravity field recovery, including the
cartwheel, pendulum, and Bender-type configurations [35–39]. Among all, the Bender-type SFF,
formed by two pairs of GRACE-type inline satellites (in polar and inclined orbits), is most promising
from both technological and economic aspects. Therefore, it is selected as the primary candidate for
the Next Generation Gravity Mission (NGGM) concepts [40,41] by the European Space Agency (ESA).
During the service period of GFO, other Future Polar-type Gravity mission (FPG) will be probably
launched [42]. Therefore, the primary motivation of this article is to investigate the optimal FPG orbit
configuration in combination with GFO, under the precondition that the FPG has the same payload
accuracy as GRACE and comparable capability of recovering global static and temporal gravity fields
to GRACE. With this in mind, the search space for FPG’s key orbit elements (i.e., orbit altitude and
inclination) is greatly reduced. Considering a five-year nominal mission lifetime for FPG, its orbit
altitude is similar to GRACE. As such, the emphasis of FPG orbit adjustment will be put on the orbit
inclination selection issue.

The rest of this article is organized as follows. Section 2 presents the details of full-scale simulations
for FPG orbit selection and performance evaluation. Gravity field results from the standalone FPG,
with different inclinations, and jointly with GFO are demonstrated in Section 3. In Section 4, we explain
the underlying mechanism of the presented results and further discuss the practical consideration of
FPG orbit design. Conclusions are given in Section 5.

2. Numerical Simulation Scheme

2.1. Mathematical Model for Gravity Field Recovery

The dynamic approach is adopted in our gravity field model recovery [43], which is widely used
in real GRACE data processing by different scientific institutions [7,8,44–46]. In this section, we outline
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basic formulas of the dynamic approach used in the article, as well as relevant references for more
detailed descriptions.

The Earth gravity field model can be expressed via a set of Spherical Harmonic Coefficients (SHC)
u =

{
Clm, Slm

}
with following Spherical Harmonic (SH) expansion,

V(ρ, ϕ, λ; u) =
GM

ρ

[
1 +

LMAX

∑
l=2

l

∑
m=0

(
RE
ρ
)

l
(Clm cos mλ + Slm sin mλ) · Plm(sin ϕ)

]
(1)

where V is the gravitational potential of an arbitrary point on or outside the Earth with the spherical
coordinate of radius ρ, latitude ϕ and longitude λ, in the Earth-fixed frame. GM is the product of the
gravitational constant and the Earth mass, and RE is the Earth’s mean equatorial radius; l and m stand
for the degree and order of SH expansion, respectively, with LMAX being the maximum degree of the
expansion; Plm is the fully normalized associate Legendre function of degree l and order m.

The estimation of SHC u from satellite observations is based on the Newton’s law of
motion [47], which is formulated as a three-dimensional second-order nonlinear ordinary differential
equation (ODE),

r̈(t) = a(t; r(t), ṙ(t), p, u) (2)

where r(t), ṙ(t), and r̈(t) denote the vectors of satellite’s position, velocity and acceleration at epoch t,
respectively. a is the force acting on the unit mass of the satellite, where p represents the parameters
vector for the force models except the Earth gravity field. In the case of GRACE, p is referred to
accelerometer calibration parameters (e.g., bias and scale parameters) [48]. When the force models are
given, the position and velocity of satellite’s orbit are determined as follows [49],{

r(t) = r(t0) + (t− t0) · ṙ(t0) +
∫ t

t0

∫ τ
t0

a(τ′; r(τ′), r(τ′), p, u)dτ′dτ

ṙ(t) = ṙ(t0) +
∫ t

t0
a(τ; ṙ(τ), r(τ), p, u)dτ

(3)

where (rT(t0), ṙT(t0))
T denote the position and velocity vectors at initial epoch t0 of an orbit arc.

According to Equation (3), the position and velocity vectors at any epoch t within the orbit arc are
the function of parameter vector x = (wT , uT)

T , where w = (rT(t0), ṙT(t0), pT)
T is the arc-specific

parameters vector. Linearizing the Equation (3) with respect to the approximate vector x0 of parameters,
we have,  r(t) = rREF(t) + ∂rREF(t)

∂x0
δx

ṙ(t) = ṙREF(t) + ∂ṙREF(t)
∂x0

δx
(4)

where the vectors of position rREF(t) and velocity ṙREF(t), named as the reference orbit, are numerically
integrated with Equation (3) by replacing x with x0. δx is the correction vector to x0. Substituting
r(t) = rOBS(t) + vr(t) into the first equation of Equation (4), we get the observational equation for
position at epoch t,

vr(t) =
∂rREF(t)

∂x0
δx−

[
rOBS(t)− rREF(t)

]
=

∂rREF(t)
∂x0

δx− ∆r(t) (5)

where rOBS(t) and vr(t) represent the position observation and its correction at epoch t.
The inter-satellite range rate

.
ρ(t) between GRACE-A and B can be expressed as,

.
ρ(t) = eT

AB(t)ṙAB(t) (6)

where, the subscripts A and B denote the values of GRACE-A and B, ṙAB(t) = ṙB(t)− ṙA(t) is the

velocity difference vector and eAB(t) = rAB(t)/
√

rT
AB(t)rAB(t) with rAB = rB − rA. By substituting
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.
ρ(t) =

.
ρ

OBS
(t) + v .

ρ(t) and the second equation of Equation (4) into Equation (6) for both GRACE-A
and B, we get the following observational equation for range rate measurement at epoch t,

v .
ρ(t) =

∂
.
ρ

REF
(t)

∂x0
δx−

[ .
ρ

OBS
(t)− .

ρ
REF

(t)
]
=

∂
.
ρ

REF
(t)

∂x0
δx− ∆

.
ρ(t) (7)

where,
.
ρ

REF
(t) is computed with the reference orbit,

.
ρ

OBS
(t) and v .

ρ(t) stand for the range rate

observation and its correction, respectively. The partial derivatives ∂rREF(t)
∂x0

and ∂ṙREF(t)
∂x0

are numerically

integrated by solving the so-called ‘variational equation’ and ∂
.
ρ

REF
(t)

∂x0
is the combination of them,

which can be referred to [50] (pp. 240–243), [51] (pp. 30–32) and [49] for detailed descriptions.
The observational equations in the form of Equations (5) and (7) for all epochs within one arc, i.e., arc j,
are collected together and briefly expressed in the following form,

vj = Ajδxj − yj =
(

Awj Auj

)( δwj
δu

)
− yj (8)

where vj denotes the vector of all corrections, Aj, Awj and Auj are the design matrices, and yj is the
vector of all constant terms of the arc j. The Normal Equation (NEQ) of the arc based least squares
adjustment is derived as [48],(

Nwjwj Nwjuj

NT
wjuj

Nujuj

)(
δwj
δu

)
=

(
Rwj

Ruj

)
(9)

where Nwjwj = AT
wj

PjAwj , Nujuj = AT
uj

PjAuj , Nwjuj = AT
wj

PjAuj and Rwj = AT
wj

Pjyj, Ruj = AT
uj

Pjyj.
Pj denotes the weight matrix constructed based on the precision of observations. To recover δu
with observations of multiple arcs, such as one month, the arc-specific parameters δwj should be
pre-eliminated arc-wise, forming the reduced normal equation. After that, reduced normal equations
are summed up to J arcs, and then the SHC parameter δu is obtained by solving Equation (10),

ÑJ · δu = R̃J (10)

where ÑJ = ∑
J

Ñj and R̃J = ∑
J

R̃j. Ñj and R̃j are coefficient matrix and the right-hand side of the reduced

normal equation of arc j, with Ñj = Nujuj −NT
wjuj

N−1
wjwj

Nwjuj and R̃j = Ruj −NT
wjuj

N−1
wjwj

Rwj [48].
As regard to the GFO and FPG combination, it can be carried out on NEQ level by Equation (11),

(Ñ
GFO
J + Ñ

FPG
J ) · δu = (R̃

GFO
J + R̃

FPG
J ) (11)

where Ñ
GFO
J , R̃

GFO
J and Ñ

FPG
J , R̃

FPG
J are established by Equation (10) of GFO and FPG, respectively.

It should be mentioned here that the same variance of unit weight must be employed in constructing
the weight matrices of GFO and FPG, otherwise the two normal equations cannot be simply summed
up as in Equation (11).

2.2. Orbit Configuration Selection for FPG

In gravity field recovery, the orbit altitude and inclination play the key role [52] (pp. 41–43).
Since the gravity signals attenuate rapidly with the increase of orbit altitude [47], the ideal gravimetric
satellite should fly as low as possible in order to be sufficiently sensitive to the signals. However, the
lower altitude of the satellite, the stronger atmospheric drag acting on it, which requires more fuels to
maintain the mission operation and thus shortens its lifetime [37]. As regard to the orbit inclination,
it could not be better to select the 90-degree inclination for a global coverage of the Earth. However,
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due to the launch limit, it is a challenge to put satellites in an exact polar orbit. For example, GRACE
was flying in a near-polar orbit with 89-degree inclination, which left two 1-degree-radius circles in
the south and north poles (namely the polar gaps). In general, a large polar gap will significantly
impact the estimation of zonal SHC and eventually corrupt the estimated gravity field. The maximum
recoverable degree and order (d/o) of SHC in the case of a given g-degree polar gap can be roughly
calculated via dividing 180 (degree) by g [51] (p. 205).

Considering the twin satellites of GFO separated by 220 km both in the near-circular orbit of
490-km altitude and 89-degree inclination [18], its initial orbit configuration in the following simulations
will be kept fixed as listed in Table 1. In consideration of a nominal five-year mission lifetime, the FPG
initial orbit altitude is currently supposed to be the same as GRACE (namely 500 km) [2]. With regard
to the inclination choice of FPG, the relationship between the polar gap and the maximum recoverable
SHC d/o, as mentioned above, should be taken into consideration. For typical monthly temporal
gravity field model up to 60 d/o, it requires the polar gap smaller than 3 degrees, while for static
gravity field models up to 180 d/o, the polar gap should be within 1 degree in theory. Once the polar
gap size is determined, there exist two kinds of orbits, namely the prograde orbit (inclination smaller
than 90 degrees) and the retrograde orbit (inclination larger than 90 degrees) [53] (p. 99). For example,
the previously dedicated gravity missions CHAllenging Mini-satellite Payload (CHAMP) (87-degree
inclination) [54] and GRACE (89-degree inclination) are in prograde orbits, while Gravity field and
steady-state Ocean Circulation Explorer (GOCE) (96.5-degree inclination) [55] is in a retrograde orbit.
In general, the retrograde-orbit satellites require more fuel than the prograde ones during launch in
order to overcome the Earth’s rotation speed, but it is not a technical problem to launch either prograde
or retrograde satellites.

In the following simulation study, we preliminarily select four sets of FPG configurations, which
differ only in orbit inclinations. Their initial orbit elements are listed in Table 1 and denoted as
FPG-87, FPG-89, FPG-91, and FPG-93 (corresponding to the inclinations of 87, 89, 91, and 93 degrees,
respectively). Note that the initial Right Ascension of Ascending Nodes (RAAN) are selected as
0 degree for GFO, FPG-87, FPG-91, and FPG-93 while 180 degrees for FPG-89, which is designed
to avoid the nearly full overlay of ground tracks of GFO and FPG-89 when combining the two [32].
The initial inter-satellite distances for all GFO and FPG configurations are fixed as 220 km.

Table 1. Initial orbit configurations of GFO and FPG for simulation study

Orbit
Configuration

Altitude
(km)

Inclination
(deg.) Eccentricity Inter-Satellite

Distance (km)

GFO 490 89 0.0015 220

FPG-87

500

87

0.0015 220
FPG-89 89
FPG-91 91
FPG-93 93

2.3. Numerical Simulation Procedures

The simulation procedures involving the forward and the backward simulation steps [18] are
shown in Figure 1. In the forward simulation step, we apply a set of true background models
to generate the simulated observations. The true background models are listed in Table 2, where
EIGEN6C4 [56] is used as the true static gravity field model and EOT11a (including main wave and
interpolated secondary wave) [57] is treated as the true ocean tide model. For non-tidal variation
signals, the AOHIS component of ESM is adopted to represent the integrated signal of atmosphere
(A), oceans (O), terrestrial hydrological water (H), continental ice-sheets (I), and the solid earth
(S) [24]. The maximum degree and order for all models is chosen as 100 [18]. Given the initial
orbit elements defined in Table 1, the satellite orbits for both GFO and FPG can be generated by
numerical integration [50] (pp. 117–146). The combined eighth-order Runge–Kutta and eighth-order
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Gauss–Jackson integrator with an integration step of 5 s is applied to generate the error-free data, which
include satellite orbit positions and inter-satellite range-rates. To produce more realistic observations,
above error-free data should be added with sensor noises. In this work, the sensor noises are treated
as Gaussian white noise with zero expectation [31,32], while more sophisticated noise models can be
found in [58]. The standard deviations (SD) of major onboard sensors’ noises, listed in Table 3, are based
on their performances in real GRACE data. As shown, 1-cm SD is selected for orbit positions [31–33].
With regard to the range-rate data, we add noise with SD of 0.2 µm/s to KBR measurements in
GFO and FPG [18,45], while with SD of 10 nm/s to LRI measurements in GFO [18]. Although the
non-gravitational forces are not simulated during orbit integration, the accelerometer’s noise with
SD of 0.3 nm/s2 is directly simulated during the integration of orbit [52] (pp. 50–51). We simulate
full-year observations in 2006 for all orbit configurations, which are subsequently used in the backward
simulation step for gravity field model recovery.
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Table 2. Background models for numerical simulation. True models are used for simulated observations
generation while the reference models are applied to gravity field recovery.

Force Categories True Model Reference Model

Static Field EIGEN6C4 (100 d/o) EIGEN6C4 (100 d/o)
Ocean Tide EOT11a (100 d/o) FES2004 (100 d/o)

Non-tidal Variation ESM AOHIS (100 d/o) ESM DEAL + AOerr (100 d/o)

In the backward simulation step, we recover the monthly gravity field model up to 100 d/o [18]
by the dynamic approach using above simulated observations. For parameterizations, we choose
the orbit arc length as 6 h for the initial position and velocity estimation [44–46], and estimate the
accelerometer parameters (bias and linear drift) every 1.5 h (orbital period) [45]. Observations’ weight
matrices in Equation (9) are constructed based on corresponding SD values listed in Table 3 with the
same variance of unit weight. The reference background models, used for reference orbit and partial
derivatives integration in Equations (5) and (7), are listed in Table 2. As shown, FES2004 [59] is applied
as reference ocean tide model, and DEAL plus AOerr components of ESM [27] are used to represent
the AO components of AOHIS in true background models [24]. Since the emphasis of the article
is on temporal gravity model recovery, the true and reference static models are identical [21,33,35].
The differences between true and reference background models are designed to introduce the temporal
aliasing errors to the recovered gravity model [18,21,33,37]. As shown in Figure 1, the temporal signal
we want to recover in each monthly model is the average HIS of this month, which is the integrated
signal of terrestrial hydrological water (H), continental ice-sheets (I), and the solid earth (S) [18,24].
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Table 3. The standard deviations (SD) of white Gaussian sensor noises used for the generation of
simulated observations

Obs. Type Orbit Pos. GFO/FPG-KBR GFO-LRI Accelerometer

SD Value 1 cm 0.2 µm/s 10 nm/s 0.3 nm/s2

2.4. Evaluation Metrics for Recovered Gravity Field Model

In a simulated world, the quality of the recovered gravity field model can be easily evaluated by
comparing the true and the recovered fields. In this article, the evaluation metrics for recovered gravity
field models are derived based on monthly SHC differences {∆Clm, ∆Slm}, which are calculated by
subtracting the recovered model from the true static model (EIGEN6C4 100 d/o) plus the true monthly
HIS signal (100 d/o) as shown in Equation (12) according to [18],

∆Clm = CEIGEN6C4+HIS
lm − CREC

lm , ∆Slm = SEIGEN6C4+HIS
lm − SREC

lm (12)

where the superscripts EIGEN6C4, HIS, and REC represent the SHC from EIGEN6C4, monthly HIS and
the recovered models in simulations. Given SHC differences, the degree geoid height error (DGHE)
and cumulative geoid height error (CGHE) of the recovered model can be calculated by

DGHE(n) = RE ·

√
l

∑
m=0

(∆C2
lm + ∆S2

lm), (l = n)

CGHE(n) = RE ·
√

n
∑

l=2

l
∑

m=0
(∆C2

lm + ∆S2
lm)

(13)

where DGHE(n) represents the DGHE of degree n and CGHE(n) represents the CGHE up to degree
n. One can also construct spatial-domain metrics by the spatial differences plot (SDP) [60] (pp. 24–25).
For the k-th grid point on the Earth surface, its geoid height difference can be calculated by
Equation (14) [60] (p. 22), with (1) and (12),

∆Nk(ϕk, λk) = RE ·
LMAX

∑
l=2

l

∑
m=0

(∆Clm cos mλk + ∆Slm sin mλk) · Plm(sin ϕk) (14)

where ∆Nk stands for the geoid height difference, and other symbols are the same as those defined
in Equation (1); LMAX is chosen as 100. Based on Equation (14), the SDP can be created by plotting
all grids’ ∆Nk within a specific spatial range Ω on the world map given corresponding geographic
locations. Ω can be global or regional, e.g., oceans, Amazon basin. The grid size (interval) is chosen as
1-by-1 degree in the followings. Additionally, the latitude-weighted root mean square (wRMS) [60]
(pp. 24–25) of above SDP can be calculated by Equation (15),

wRMS(Ω) =

√√√√√√ ∑
∀k∈Ω

(∆N2
k · cos ϕk)

∑
∀k∈Ω

cos ϕk
(15)

where all grids within Ω are summed based on their area weights reflected by latitudes.
Since metrics in (13) and (15) represent absolute errors (positive values) of the recovered model,

comparisons between any two recovered models, in terms of DGHE, CGHE, or wRMS, can be carried
out by calculating error reduction rate (ERR) of the model i over the model j as shown in Equation (16),

ERRi
j(q) =

qj − qi

qj
× 100% (16)
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where q can be any value of DGHE, CGHE and wRMS.

3. Results and Analysis

3.1. Standalone Models of FPG

We first evaluate standalone models recovered by different FPG configurations listed in Table 1.
The results in January (2006) are demonstrated in Figure 2, while other months show similar results.
In Figure 2, the black curve represents the true average HIS signal in January (an integrated signal of
terrestrial hydrological water, continental ice-sheets, and the solid earth [24]), while other curves are
the degree geoid height errors (DGHE) of different FPG standalone models in this month. Observing
signal (in black) and error (in colored) curves, we find that the recovered models are gradually
dominated by noises after degree n = 26, which is indicated by the intersection point of signal curve
and error curves around degree 26. Among four FPG standalone models, the FPG-91 in general
produces smaller errors especially for degrees beyond 60. When looking to low-degree SHC near the
intersection point, we find that the retrograde FPGs (FPG-91 and FPG-93) outperform the prograde
ones (FPG-89 and FPG-87). The expected degradations of FPG-87 and FPG-93 due to their larger polar
gaps compared to FPG-89 and FPG-91, however, is not apparent in Figure 2. This can be explained
by denser ground tracks gained by FPG-87 and FPG-93 in the mid and low latitudes, which finally
compensate the negative effects caused by large missing polar data, as discussed in [51] (pp. 204–214).
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Figure 2. True HIS signal and degree geoid height errors (DGHE) of different FPG standalone models
in January 2006.

Further comparisons are carried out in terms of absolute SHC differences (|∆Clm|, |∆Slm|) of
each degree l and order m, as drawn in Figure 3. Subfigures (a), (b), (c), and (d) stand for results
of FPG-87, FPG-89, FPG-93, and FPG-91, respectively. Now we can clearly observe the deficiencies
of FPG-87 and FPG-93 in zonal SHC, i.e., Cl0, estimation, which are demonstrated by larger |∆Cl0|
values in (a) and (c) compared to that in (b) and (d). Recall the approximate relationship between the
polar gap size and the maximum recoverable gravity signal in Section 2.2, the weaknesses of FPG-87
and FPG-93, with 3-degree polar gaps, are expected to become much more pronounced in terms of
high-degree, e.g., 180 d/o [11], static gravity model recovery.
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Figure 3. Absolute spherical harmonic coefficients (SHC) differences of different FPG standalone
models in January 2006: (a) FPG-87; (b) FPG-89; (c) FPG-93; (d) FPG-91.

3.2. Combined Models of GFO-LRI and FPG

Since GFO carries both LRI and KBR, the combinations between GFO and FPG will be carried
out in GFO-LRI & FPG and GFO-KBR & FPG modes respectively. In the GFO-LRI & FPG mode, the
information from GFO-LRI will dominate the combined model because it has much larger weight
in Equations (9) and (11) than the KBR of FPG, based on Table 3. Therefore, we can expect only
minor differences among different GFO-LRI & FPG combined models. Even so, comparisons can
still be carried out by calculating the error reduction rate (ERR) of different GFO-LRI & FPG models
with respect to the GFO-LRI standalone model. Here, we use the ERR in terms of DGHE, and
therefore set qi = DGHEGFO-LRI & FPG and qj = DGHEGFO-LRI in Equation (16). Figure 4 plots
the degree-wise ERRGFO-LRI & FPG

GFO-LRI (DGHE) for all four GFO-LRI & FPG models, which can be regarded
as contributions of adding different FPGs’ information to the GFO-LRI data.

As expected, the contributions are not significant. Among four combined models, GFO-LRI
& FPG-93 has the largest ERR for the majority of SHC, and GFO-LRI & FPG-91 is next after that.
Moreover, even with the same polar gap, retrograde FPGs (FPG-91 and FPG-93) outperform the
prograde ones (FPG-89 and FPG-87). This can be attributed to the more isotropic integrated system
of GFO & retrograde-FPG than GFO & prograde-FPG, as learnt from Bender-type SFF design [37].
More specifically, the orbit inclination differences between the GFO (in prograde orbit) and retrograde
FPGs are larger than that in GFO & prograde-FPGs, which enables the GFO & FPG integrated system
to observe the gravity signals in a more isotropic sense. However, degradations occur at some very
low degrees of the combined models, which is likely due to insufficiently perfect data weighting
between GFO-LRI and FPG [61].
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Figure 4. Error reduction rate (ERR) of different GFO-LRI & FPG combined models with respect to the
GFO-LRI standalone model in terms of degree geoid height error (DGHE) in January 2006.

3.3. Combined Models of GFO-KBR and FPG

More representative results can be demonstrated by GFO-KBR & FPG combined models.
In Figure 5, we plot the true HIS signal (black curve) of January 2006, as well as error curves (in
colored) of four GFO-KBR & FPG models in terms of DGHE in this month. Basically, the results are
comparable with those in Figure 4, that is, the retrograde FPGs generally outperform prograde ones for
their lower DGHE. Table 4 records the ERR of GFO-KBR & FPG combined models with respect to the
GFO-KBR standalone model in terms of cumulative geoid height error (CGHE) in Equation (13), which
is calculated by setting qi = CGHEGFO-KBR & FPG and qj = CGHEGFO-KBR in Equation (16). It shows
that the retrograde FPGs start highlighting their advantages after degree 50.
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Table 4. Error reduction rate (ERR) of different GFO-KBR & FPG combined models with respect to the
GFO-KBR standalone model in terms of cumulative geoid height error (CGHE) in January 2006

Degree GFO-KBR &
FPG-87

GFO-KBR &
FPG-89

GFO-KBR &
FPG-91

GFO-KBR &
FPG-93

25 −3.6% 16.7% 7.9% 7.9%
50 17.5% 15.1% 14.6% 16.7%
75 31.1% 16.7% 33.6% 41.6%
100 28.0% 14.7% 39.5% 31.7%
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To observe the error patterns in spatial domain, we draw the global spatial differences plots (SDP),
introduced in Section 2.4, of above four GFO-KBR & FPG combined models. As shown in Figure 6,
obviously fewer stripes can be found in the retrograde-orbit based GFO-KBR & FPG combined models,
comparing subfigure (a) GFO-KBR & FPG-87 with (c) GFO-KBR & FPG-93 or (b) GFO-KBR & FPG-89
with (d) GFO-KBR & FPG-91. These typical north-south stripes are, to a large extent, the product of
temporal aliasing errors, which are caused by errors in both ocean tide model and Atmosphere and
Ocean De-Aliasing (AOD) product [25,26]. It seems that the retrograde FPGs, in combination with
GFO, are more effective on reducing the temporal aliasing errors than prograde ones, especially in
low-latitude areas within (30◦S, 30◦N). However, only marginal improvement can be observed over
high-latitude regions in Figure 6.
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3.4. One-Year GFO-combined Model Series of FPG-89 and FPG-91

In view of FPG-87 and FPG-93′s deficiencies in zonal SHC determination, we therefore choose
FPG-89 and FPG-91 in further GFO-joint gravity model recovery for the entire year 2006. We produce
12 monthly GFO-KBR & FPG models for FPG-89 and FPG-91, respectively. Monthly wRMS values of
their global SDPs are demonstrated in Figure 7. As expected, GFO-KBR & FPG-91 outperforms the
GFO-KBR & FPG-89 for its lower wRMS values over the whole year. Furthermore, we can observe
slight variations in wRMS values of GFO-KBR & FPG-91 and GFO-KBR & FPG-89 models from month
to month. Therefore, April and October are selected for further illustrations with corresponding results
plotted in Figure 8.
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Figure 8. True monthly HIS signal spatial plots and global spatial differences plots (SDP) of GFO-KBR
& FPG-89 and GFO-KBR & FPG-91 in April and October 2006: (a) HIS signal in April; (b) HIS signal in
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GFO-KBR & FPG-91 in April; (f) SDP of GFO-KBR & FPG-91 in October.
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On a global scale, results in April and October are plotted in the left and right columns of
Figure 8, respectively. Subfigures in the top row represent the spatial signal plots of monthly true
HIS signals, which are created the same way as SDP except that the (∆Clm, ∆Slm) = (CHIS

lm , SHIS
lm ) in

Equation (14); The middle and bottom rows represent SDPs of GFO-KBR & FPG-89 and GFO-KBR &
FPG-91, respectively. As shown, the GFO-KBR & FPG-91 apparently suffers less from the temporal
aliasing errors, especially in low- and medium-latitude areas. The error reductions in these areas
are beneficial to the scientific study of global water cycle since the world’s major river basins (e.g.,
the Amazon and Yangtze Rivers), as well as the majority of oceans, are located in the low and
medium latitudes.

On a regional scale, yearly-average wRMS of GFO-KBR & FPG-89 and GFO-KBR & FPG-91 are
respectively calculated based on their regional SDPs. The regions that we select basically represent
typical basins in low, medium, and high latitudes as marked in Figure 9. Besides, the ocean and
land areas are also separately analyzed. As listed in Table 5, the superiority of GFO-KBR & FPG-91
over GFO-KBR & FPG-89 is mainly presented in the low- and medium-latitude regions, including the
Amazon basin, North Murray–Darling basin and North China Plain (NCP). The last column of Table 5
shows ERR of GFO-KBR & FPG-91 over GFO-KBR & FPG-89 in terms of regional wRMS by setting
qi = wRMSΩ

GFO-KBR & FPG-91 and qj = wRMSΩ
GFO-KBR & FPG-89 in Equation (16). It demonstrates that

the GFO-KBR & FPG-91 reduces about 22% errors in ocean and 17% in land areas with respect to
GFO-KBR & FPG-89. However, ERR mainly decreases with higher latitude and is even negative in the
Greenland. The series of GFO-LRI & FPG-89 and GFO-LRI & FPG-91 models are not demonstrated
here because of their indistinctive differences in spatial domain.
Remote Sens. 2019, 11 FOR PEER REVIEW  14 

 

 

Figure 9. Typical regions selected for GFO & FPG-89 and GFO & FPG-91 models’ comparisons. 

Table 5. Yearly-average latitude-weighted root mean squares (wRMS) of regional spatial differences 
plots (SDP) in GFO-KBR & FPG-89 and GFO-KBR & FPG-91 models. The final column shows the 
error reduction rate (ERR) of GFO-KBR & FPG-91 with respect to GFO-KBR & FPG-89 in terms of 
regional wRMS. 

Area wRMS of GFO & 
FPG-89 (cm) 

wRMS of GFO & 
FPG-91 (cm) 

GFO & FPG-91 Error 
Reduction Rate (%) 

Amazon 2.76 1.98 28.3 
North Murray–

Darling 
3.56 2.54 28.7 

Yangtze 2.63 2.32 11.8 
NCP 3.19 2.89 9.4 

Greenland 1.01 1.15 -13.9 
Ocean 3.09 2.41 22.0 
Land 2.53 2.09 17.4 

4. Discussion 

The advantages of GFO & retrograde-FPGs over GFO & prograde-FPGs are believed to be 
contributed by two aspects. On one hand, since the prograde and retrograde orbits sample the 
Earth in different directions, combining the two can obtain an integrated system that observes the 
Earth in a more multi-perspective view. Furthermore, as GFO is flying in a prograde orbit, adding 
retrograde FPGs (rather than the prograde ones) can make the GFO & FPG integrated system more 
isotropic [37]. On the other hand, according to the Kaula’s linear perturbation theory [47], the 
RAANs of prograde and retrograde orbits precess in different directions in the inertial frame. 
Therefore, when projected into the Earth-fixed frame, the satellite ground tracks of the two evolve 
with different rates since the Earth rotates eastwards. As such, the signal sampling of the two 
differs in time domain. Once combined, they contribute to a more homogeneous system for signal 
sampling in terms of temporal resolution. 

Due to the designed polar orbit for polar-type satellites, the low- and medium-latitude areas 
suffer from much sparser ground tracks than the polar region. The former, however, is just the 
place where most of temporal aliasing errors appear. Therefore, improved ground tracks in these 
areas matter much to the final gravity solution, and that is where most of the gains of GFO & 
FPG-91 come from. However, we also observe the degradation of GFO & FPG-91 at high latitudes 
such as the Greenland compared with GFO & FPG-89, which is possibly due to the pattern change 
of GFO & FPG-joint ground tracks at the intersection of prograde FPG-89 and retrograde FPG-91. 
Similar degradations in the intersection of two Bender-type orbits are also found in [60] (pp. 108–
111), which needs further investigations. 

Figure 9. Typical regions selected for GFO & FPG-89 and GFO & FPG-91 models’ comparisons.

Table 5. Yearly-average latitude-weighted root mean squares (wRMS) of regional spatial differences
plots (SDP) in GFO-KBR & FPG-89 and GFO-KBR & FPG-91 models. The final column shows the
error reduction rate (ERR) of GFO-KBR & FPG-91 with respect to GFO-KBR & FPG-89 in terms of
regional wRMS.

Area wRMS of GFO &
FPG-89 (cm)

wRMS of GFO &
FPG-91 (cm)

GFO & FPG-91 Error
Reduction Rate (%)

Amazon 2.76 1.98 28.3
North Murray–Darling 3.56 2.54 28.7

Yangtze 2.63 2.32 11.8
NCP 3.19 2.89 9.4

Greenland 1.01 1.15 -13.9
Ocean 3.09 2.41 22.0
Land 2.53 2.09 17.4



Remote Sens. 2019, 11, 200 14 of 17

4. Discussion

The advantages of GFO & retrograde-FPGs over GFO & prograde-FPGs are believed to be
contributed by two aspects. On one hand, since the prograde and retrograde orbits sample the Earth
in different directions, combining the two can obtain an integrated system that observes the Earth in a
more multi-perspective view. Furthermore, as GFO is flying in a prograde orbit, adding retrograde
FPGs (rather than the prograde ones) can make the GFO & FPG integrated system more isotropic [37].
On the other hand, according to the Kaula’s linear perturbation theory [47], the RAANs of prograde
and retrograde orbits precess in different directions in the inertial frame. Therefore, when projected into
the Earth-fixed frame, the satellite ground tracks of the two evolve with different rates since the Earth
rotates eastwards. As such, the signal sampling of the two differs in time domain. Once combined,
they contribute to a more homogeneous system for signal sampling in terms of temporal resolution.

Due to the designed polar orbit for polar-type satellites, the low- and medium-latitude areas suffer
from much sparser ground tracks than the polar region. The former, however, is just the place where
most of temporal aliasing errors appear. Therefore, improved ground tracks in these areas matter much
to the final gravity solution, and that is where most of the gains of GFO & FPG-91 come from. However,
we also observe the degradation of GFO & FPG-91 at high latitudes such as the Greenland compared
with GFO & FPG-89, which is possibly due to the pattern change of GFO & FPG-joint ground tracks at
the intersection of prograde FPG-89 and retrograde FPG-91. Similar degradations in the intersection of
two Bender-type orbits are also found in [60] (pp. 108–111), which needs further investigations.

5. Conclusions

In this paper, we investigate the orbit configurations for Future Polar-type Gravity missions (FPG)
with emphasis on orbit inclination selection via full-scale simulations based on both standalone and
joint GFO constellations. Four monthly models in January 2006 under FPG configurations with varying
inclinations (87, 89, 91, and 93 degrees) show similar performances except that FPG-87 and FPG-93
suffer from relatively serious deficiencies in the zonal SHC estimation. To improve the GFO-only
monthly models, the information from different FPGs are respectively added to them, leading to
different GFO & FPG combined models. Among combined models, the retrograde-orbit FPGs (FPG-91
and FPG-93) generally outperform the prograde ones (FPG-89 and FPG-87). The advantages are
revealed not only in spectral domain by smaller degree geoid height error (DGHE) and cumulative
geoid height error (CGHE), but also in the spatial domain by obvious fewer north–south stripes,
especially at low and medium latitudes. More comprehensive investigation is carried out for FPG-89
and FPG-91 by analyzing one-year time series of GFO-KBR joint monthly models, which further
highlights the superiority of FPG-91 over FPG-89. Detailed regional analysis shows that improvements
mainly reside over those low- and medium-latitude regions. The mechanism behind is explained by
more isotropic GFO & FPG observation system that integrates two different orbit types (prograde and
retrograde). Based on our study, the FPG configuration with 91-degree inclination is therefore worthy
to be recommended for the further orbit design of FPG.
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