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Abstract: Irregular spatial dependency is one of the major characteristics of remote sensing images,
which brings about challenges for classification tasks. Deep supervised models such as convolutional
neural networks (CNNs) have shown great capacity for remote sensing image classification. However,
they generally require a huge labeled training set for the fine tuning of a deep neural network.
To handle the irregular spatial dependency of remote sensing images and mitigate the conflict
between limited labeled samples and training demand, we design a superpixel-guided layer-wise
embedding CNN (SLE-CNN) for remote sensing image classification, which can efficiently exploit
the information from both labeled and unlabeled samples. With the superpixel-guided sampling
strategy for unlabeled samples, we can achieve an automatic determination of the neighborhood
covering for a spatial dependency system and thus adapting to real scenes of remote sensing
images. In the designed network, two types of loss costs are combined for the training of CNN,
i.e., supervised cross entropy and unsupervised reconstruction cost on both labeled and unlabeled
samples, respectively. Our experimental results are conducted with three types of remote sensing data,
including hyperspectral, multispectral, and synthetic aperture radar (SAR) images. The designed
SLE-CNN achieves excellent classification performance in all cases with a limited labeled training set,
suggesting its good potential for remote sensing image classification.

Keywords: irregular spatial dependency; superpixel; CNN; layer-wise embedding; remote sensing
image classification

1. Introduction

Remote sensing images generally refer to the pictorial ground information acquired by satellite or
aircraft sensor technologies. With sufficient spectral and spatial information, remote sensing images
have played an important role in many applications, such as urban planning, agriculture management,
climate monitoring, military affairs, etc. [1–3], while for these applications, classification with a fine
accuracy is essential [4]. Different from common optical images, classifying remote sensing images
is more difficult concerning their characteristics, such as having more spectral bands, rich spatial
information, low spatial resolution, and so on [5,6]. Furthermore, remote sensing images usually
have complex ground scenes and irregular objects, thus they are characteristic of irregular spatial
dependency [7], which further cause challenges for classification tasks.
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There have been many methods designed for the classification of remote sensing images, which can
be roughly grouped into three categories, i.e., supervised, semi-supervised and unsupervised methods [8],
according to the manner of the information exploration from labeled or unlabeled samples. On the one
hand, unsupervised methods, generally using clustering strategies, such as fuzzy clustering [9] and fuzzy
C-Means algorithms [10], which attempt to explore patterns from unlabeled samples [11], have been
proved to be efficient but incapable of bridging the gap between clusters and classes [12]. On the
other hand, supervised classifiers, such as support vector machine (SVM) [13,14], multinomial logistic
regression [15,16] and artificial neural networks (ANN) [17,18], which learn from labeled samples to
obtain prior knowledge, have demonstrated impressive performance. However, supervised classifiers
heavily rely on the quantity and quality of labeled samples [19–21]. In real scenarios, sample labeling
is usually difficult, time-consuming, and expensive [22]. Therefore, the labeled samples available
are often insufficient, which leads to the occurrence of Hughes phenomenon [23] and increases the
possibility of overfitting [24,25].

Semi-supervised learning is usually used to relieve the conflict between training demand and
limited labeled sample set. It aims to make use of both limited labeled samples and abundant unlabeled
samples, binds together unsupervised and supervised learning [26]. There exist many semi-supervised
approaches in the literatures [27]. For instance, generative semi-supervised learning methods use
the conditional density to determine labels of unlabeled samples [28–30]. However, those methods
generally under the assumption that unlabeled samples follow a certain distribution which may limit
the performance [11]. Wrapper methods include self-training [22,31,32] and co-training [22,33–35].
The former trains the classifier iteratively with new training samples labeled by the classifier itself,
while the latter employ several classifiers to train with independent subsets of samples and the
unlabeled samples with high reliability are then used to train another classifier. Self-training schemes
may reinforce its poor predictions, while co-training algorithms demand that the samples can be
divided into independent subsets [11]. Low-density separation algorithms, such as the transductive
SVMs [36–38] which perform the classification by maximizing the margin for labeled and unlabeled
samples, also suffer from the poor generalization ability. Graph-based approaches construct graphs to
connect similar observations and spread labeled information in its neighbors by finding minimum
energy function [12,39–42], which also incur some problems such as being sensitive to the graph
structure [43,44].

Recently, deep learning structures have attained great success owing to its outstanding
generalization capacity compared with traditional shallow structures [45]. Some of the recent
developments are focused on semi-supervised learning, which exploits both labeled and unlabeled
information to tackle the issue of overfitting, i.e., a limited number of labeled information and huge
number of parameters involved [46]. This new trend has been successfully applied for remote sensing
image classifications. For instance, Ma et al. [11] use a deep hierarchical structure to learn highly
discriminative representation and pre-labels unlabeled samples, where multi-decision schemes are
formed to update the labeled training data set and thus realize semi-supervised learning. However,
this kind of purely discriminative and self-learning style semi-supervised way often rely on iterative
training, thus are time-consuming and resource-consuming. He et al. [8] apply popular GANs
(Generative adversarial networks) to study the latent representation of the input data, whose model
resorts to the regularization techniques to explore the information in unlabeled samples and hence
assist the discriminative classification tasks. In that generative model, unsupervised embeddings or
hidden representations are often used to help supervised objectives [47]. Nevertheless, such latent
variable models are still not suitable enough to match hidden representation with supervised tasks
at hand. Rasmus et al. [48] propose a Ladder Network by combining supervised learning with
unsupervised learning in deep neural networks, which needs only a small number of labeled samples.
However, the method lacks the mining to spatial information of unlabeled samples, which weakens its
capacity and applications, especially for remote sensing images.
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Remote sensing images have complex ground scenes and irregular objects; thus, they are naturally
characteristic of irregular spatial dependency [7], causing difficulties for classification. Deep supervised
models such as CNNs are robust classifiers but require many training samples for fine tuning the
network parameters, which conflicts with the reality that only a small number of labeled samples
are available. To address these challenges, in this paper, we design a superpixel-guided layer-wise
embedding CNN framework (SLE-CNN) for remote sensing image classification. It can automatically
determine the neighborhood covering for a spatial dependency system and thus provide more a priori
information of high quality for labels, which can improve the training performance of the deep network
in a semi-supervised manner. We use a superpixel-based random sampling strategy to select unlabeled
samples since superpixels are adaptive to real scenes of remote sensing images [7]. The involved
layer-wise embedding CNN can fuse deep autoencoder (AE) and CNN in a layer-wise embedding
fashion where unsupervised reconstruction cost and supervised cross entropy loss are optimized
simultaneously, thus achieving an end-to-end structure. This structure can use information from both
labeled and unlabeled samples and efficiently reduce the overfitting risks, therefore, well adapting
to semi-supervised tasks. Moreover, instead of applying the unsupervised auxiliary tasks as only a
part of pre-training procedure followed by normal supervised learning, the layer-wise embedding
CNN shares the hidden representations between unsupervised generative representation and its
discriminative counterpart, thus helps more informative unsupervised features to be learned for a
discriminative purpose. All the above aspects contribute to the better classification performances for
remote sensing images.

The main research objectives of this paper can be identified as follows:

• Considering the fact that remote sensing images are characteristic of irregular spatial dependency,
we introduce the superpixel sampling strategy to guide the use of unlabeled samples, which can
achieve an automatic determination of the neighborhood covering for a spatial dependency
system and thus adapting to real scenes of remote sensing images. With the aid of these highly
representative and informative unlabeled samples, the training process will be boosted, leading
to better classification results.

• Deep CNNs are efficient classifiers, but it requires many labeled samples for training which
conflicts with the reality that only limited labeled samples are available. To reduce the demand
for labeled samples, we develop an SLE-CNN, which can take advantage of many unlabeled
samples with the guide of superpixel-based random sampling. It regards CNN as the encoder
part of the AE model and appends a reconstruction loss at each layer of the network that plays a
role of extra supervision, thus combining the strong generalization capacity of deep CNN model
with the detail preserving ability of AE.

• To demonstrate the performance of our framework for classification tasks of different types
of remote sensing data, we conducted experiments to provide the latest results on benchmark
problems. In addition, we compared our framework with several typical semi-supervised and
supervised methods, which also verifies the effectiveness of our proposed framework.

The remainder of the paper is organized as follows. Section 2 presents our newly developed
framework in detail. Experimental results with hyperspectral, multispectral and SAR image data are
shown in Section 3. Some discussions with extra experiments are placed in Section 4. Finally, Section 5
draws some conclusions.

2. Methodology

The block diagram of the proposed classification framework for remote sensing images is shown
in Figure 1. The core of the framework is SLE-CNN (shown in the purple block in Figure 1), which is
mainly composed of two sequential steps: heuristic sampling based on superpixel segmentation and
the layer-wise embedding CNN. To exploit the full potential of remote sensing data, both limited
labeled samples and sufficient unlabeled samples are used to construct a training dataset. Considering
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the irregular spatial dependency in remote sensing images, the random sampling strategy based
on superpixels is employed to guide the selection of unlabeled samples. Superpixels are adaptive
to real scenes of remote sensing images, which can improve the performance of the framework
considering the variations of spatial characteristics of remote sensing images. Samples close to
superpixel boundaries, viewed as samples likely to be class boundaries with difficulty to distinguish,
are of high representativeness and entropy and can strengthen the generalization capacity of classifiers.
Unlabeled samples along with a limited size of labeled samples are subsequently organized in the
form of patches and both input to the layer-wise embedding CNN to fine tune the deep network and
search for the best generalization of the input data. At last, classification maps can be obtained through
the input of patches from remote sensing images to the fine-tuned layer-wise embedding CNN.

In this section, we will thoroughly present structure of SLE-CNN. In the first two parts, we will
first introduce the basic background and knowledge of the proposed method, including the detailed
description of the proposed superpixel-based random sampling strategy for unlabeled samples in
Section 2.1 and the structure of an autoencoder, one of the basic architectures used in our classifier,
in Section 2.2. At last, in Section 2.3, we will illustrate the whole structure of the designed SLE-CNN
in detail.

Test samples

Labeled patches

Superpixel guided 

patches

Training samples

Layer-wise

embedding CNN

Fine 

tuning

Remote sensing 

images

Classification map

Superpixel based 

random sampling

Superpixel guided layer-wise embedding CNN

Irregular spatial 

dependency

Figure 1. The block diagram of the proposed classification framework. The core part is the
superpixel-guided layer-wise embedding CNN. To reduce the demand for training samples, unlabeled
samples are also used for fine tuning the designed layer-wise embedding CNN. Considering the
irregular spatial dependency of remote sensing images, superpixels are introduced to guide the selection
of more valuable unlabeled samples (superpixel-guided patches in the figure) since superpixels are
adaptive to real scenes of remote sensing images.

2.1. Superpixel-Based Random Sampling

To ensure both the representative ability and efficiency, we need to bring in a random sampling
strategy to select just a portion of unlabeled dataset instead of using them all during the training
process. However, absolute random strategy is not enough to exploit the potential of the unlabeled
samples. To deal with this, we design a superpixel-based random sampling strategy.

Pixels close to the class boundaries usually have a higher error probability to be misclassified,
which makes it informative for sample collection. After a beforehand segmentation, we can actually
obtain a strong prior on both spectral and spatial domain. In addition, samples close to the boundaries
are more likely to be those near the class boundaries. We can strengthen the generalization capacity of
classifiers by taking into account these high entropy samples [49].
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Considering the irregular spatial dependency of remote sensing images, we use superpixels
segmentation to produce the segmentation results in view of its adaptive ability to different scenes of
remote sensing images.

Simple Linear Iterative Clustering (SLIC) [50,51] algorithm is used as the method to obtain
superpixels mainly considering its efficient computational performance compared to other algorithms.
SLIC, which is a simple and efficient segmentation method based on k-means clustering, generates
superpixels by clustering pixels in both spectral and spatial domains with each pixel linked to a feature
vector ψ(p, q):

ψ(p, q) = [ αp αq I(p, q) ]T (1)

where I(p, q) is the spectral vector at position (p, q). α is a coefficient to balance the spectral and spatial
components of the vector, α = c

S . S is the nominal size of superpixels, and c is a variable to control the
compactness of superpixels.

The algorithm starts by dividing image into A× B tiles (A =
⌈

iw
rs

⌉
, B =

⌈
ih
rs

⌉
, where iw and ih are

the number of rows and columns in an image, respectively. rs is the expected spatial size of superpixels.
d·e represents ceiling function which maps a number to the least integer greater than or equal to the
number) with initial cluster center (pi, qj) (pi =

⌈
i ∗ iw

A

⌉
, qj =

⌈
j ∗ ih

B

⌉
). To avoid placing centers at

edges and selecting noisy pixels, the cluster centers are moved in a 3× 3 window with the lowest
gradient. The gradient is defined as:

G(p, q) =‖I(p + 1, q)− I(p− 1, q)‖2+

‖I(p, q + 1)− I(p, q− 1)‖2
(2)

where ‖·‖ is the L2 norm.
Then the superpixels are obtained by k-means clustering, where each pixel is assigned to the

nearest initial cluster center, and a new center is recomputed as the average of the feature vectors
of pixels belonging to the cluster. The process is iteratively repeated until convergence. After the
k-means clustering, the SLIC algorithm assigns disjoint segments to the largest neighboring cluster to
enforce connectivity.

Based on the SLIC algorithm, we can sample the most representative unlabeled data. With simple
random sampling strategy, samples are selected randomly and may be biased, which cannot meet the
need for semi-supervised learning [52]. To select highly informative unlabeled samples automatically
and reduce the demand of enlarging training samples, we introduce a superpixel segmentation-based
random sampling strategy, which can also be regarded as a process to mine samples that are hard
to distinguish:

• Images are segmented to superpixels, and all pixels in images are recorded as set A;
• Randomly choose a part of set A as set B;
• Pixels located on the boundaries of superpixels are detected and recorded as set C;
• For each pixel in set B, if its spatial distance to any pixel of the same superpixel in set C is less

than or equal to k (pixel unit), put it in the candidate list.

This whole sampling procedure can be visualized as Figure 2.
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Figure 2. The procedure of superpixel-based random sampling. Superpixels are introduced to guide
the selection of unlabeled samples to handle the irregular spatial dependency of remote sensing
images. Under the strategy, more representative and informative samples come from pixels located
on superpixel boundaries, since they are more likely to be close to the class boundaries and easier to
be misclassified.

2.2. Autoencoder

An autoencoder (AE) is an artificial neural network used for unsupervised learning of efficient
codings [53,54]. An AE aims to learn a representation (encoding) for a set of data.

Architecturally, the simplest form of an AE is a feedforward, non-recurrent neural network very
similar to the multilayer perceptron (MLP)—having an input layer, an output layer and one or more
hidden layers connecting them—but with the output layer having the same number of nodes as the
input layer, and with the purpose of reconstructing its own inputs.

An AE always consists of two parts, the encoder and the decoder. In the simplest case, where there
is one hidden layer, the encoder stage of an AE takes the input x and maps it to r

r = θ(Wx + b) (3)

where the image r is usually referred to as code, latent variables, or latent representation. θ is an
element-wise activation function such as a sigmoid function or a rectified linear unit (ReLU). W is a
weight matrix and b is a bias vector.

After the encoder, the decoder stage of the AE maps r to the reconstruction x′ of the same
shape as x

x′ = θ′(W ′r + b′) (4)

where θ′ ,W ′ and b′ for the decoder may differ in general from the corresponding θ ,W and b for the
encoder, depending on the design of the AE.

AEs are also trained to minimize reconstruction costs (such as square error):∥∥x− x′
∥∥2

=
∥∥x− θ′(W ′(θ(Wx + b)) + b′)

∥∥2 (5)

where x is usually averaged over some input training set.
Denoising AEs take a partially noisy input while training to recover the original clean input.

This technique has been introduced with a specific approach to good representation [55]. A good
representation is one that can be obtained robustly from a noisy input and that will be useful for
recovering the corresponding clean input.

2.3. Superpixel-Guided Layer-Wise Embedding CNN

Remote sensing images have complex ground scenes and irregular objects, thus irregular spatial
dependency is one of the major characteristics of remote sensing images, which brings about challenges for
classification tasks. Though prevailing deep supervised models usually have good feature generalization
capacities with sufficient training samples, the situation will deteriorate rapidly when labeled data is
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limited [56]. This dilemma originates from the conflict between huge parameter volume and insufficient
training samples. To handle the irregular spatial dependency and relieve the training demand for
labeled samples, we design a superpixel-guided layer-wise embedding CNN framework to assist the
optimization process for remote sensing image classification introducing the use of unlabeled data.

Since the goal of using unlabeled data for unsupervised learning is actually a type of regularization
for supervised learning, we expect our supervised tasks to perform better, which demand the hidden
representations shared by both supervised and unsupervised parts to be more robust. To achieve this,
we need on one hand to feed more informative training samples to learn the best representation, and
on the other hand to design a more powerful network structure to capture the internal characteristics
of the input data. For the latter, we establish a layer-wise embedding CNN structure to efficiently
learn the best discriminate feature for final classification. For the former, we use the superpixel-based
random sampling strategy (as introduced in Section 2.1) to heuristically search useful and informative
unlabeled samples without enlarging the labeled part of the training dataset. In particular, superpixels
are usually spatially irregular subregions, but pixels inside them are homogenous, which means
an automatic determination of the neighborhood covering for a spatial dependency system in a
data-dependent manner [7]. Thus, supepixels are adaptive to real scenes of remote sensing images
considering the irregular spatial dependency in remote sensing images.

The proposed whole SLE-CNN structure is shown in Figure 3, where all the inputs are organized
as patches from pixels. Superpixel-guided patches, referring to unlabeled samples which are selected
under the superpixel-based random sampling strategy shown in the left purple block of the figure,
along with labeled patches are input to the layer-wise embedding CNN in the right part of the figure
to fine tune the network. To get a classification map for a remote sensing image, each patch from each
pixel need to be input to the fine-tuned layer-wise embedding CNN so that a class label at each pixel
can be obtained, shown in the upper part of the figure with an orange-red color arrow.

From the denoising AE’s point of view, the layer-wise embedding CNN can be constructed by two
parts in sequence, where two versions of encoder architectures, including one clean encoder (the green
block in the top of Figure 3) and one noisy encoder (the blue block at the bottom of Figure 3), are
followed by a mutual decoder architecture (the yellow block in the middle of Figure 3). Here, noise is
injected into hidden layers of the noisy encoder to obtain a better feature generalization, which is similar
to the common regularization technique dropout [57]. Specifically, we use a deep spectral-spatial
CNN structure, which can make full use of spectral and spatial information of remote sensing images,
as the architectures of the encoders to enhance the representative capacity and increase the supervised
discriminative power. The parts of the structure are associated through skip connection and layer-wise
embedding structures. The former technique strengthens the representative ability of the learned
feature in the reconstruction stage by the superposition of the noisy encoder part upon the decoder
part layer-wisely. The latter one serves as an extra supervision for the joint optimization process to
achieve a strong regularization for raw remote sensing images and promote the discriminative ability.

Consider a dataset with labeled samples {x(m), y(m)|1 ≤ m ≤ N} and unlabeled samples
{x(m)|N + 1 ≤ m ≤ N + M} where M � N. The goal for the classifier is to learn a function that
models P(y|x) by using both the labeled samples and the unlabeled samples. Here, the objective
function for the training of the layer-wise embedding CNN is casted as a sum of the supervised cross
entropy (COST1 in Figure 3) related to labeled patches from the noisy encoder and the unsupervised
reconstruction cost (COST2(l) in Figure 3) from superpixel-guided unlabeled patches at each layer
of the decoder. Since all layers of the noisy encoder are corrupted by noise, another clean encoder
path with shared parameters is responsible for providing the clean reconstruction targets. The whole
structure is optimized by traditional backpropagation gradient descent.
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Figure 3. The structure of the superpixel-guided layer-wise embedding CNN. The layer-wise
embedding CNN consists of two encoders (the clean one, the green block on the top of the figure and the
noisy one, the blue block at the bottom) and one decoder (the yellow block in the middle). The objective
cost function COST for fine tuning comes from supervised cross entropy (COST1) and unsupervised
reconstruction cost (COST2(l)). The size of the input patch x is set to be 13× 13, which represents the
neighborhood centered on the objective pixel to be classified. Superpixel-guided unlabeled patches,
obtained from the superpixel-based random sampling strategy (purple block in the left), are the main
input training samples for the layer-wise embedding CNN with black arrows and responsible for
COST2(l). While, labeled patches are input to the noisy encoder in the direction of the orange arrow,
which are for the calculation of COST1. To obtain the classification maps of remote sensing images,
each patch is input to the clean encoder of the fine-tuned layer-wise embedding CNN at the test stage
to output a clean class label.

At the end of the encoder path, we can obtain the one-hot encoded classification vector through
a full connection layer combined with SoftMax operation. Please note that the ultimate class label
for each input patch of remote sensing images at the test stage comes from the clean output from the
clean encoder, while the noisy output from the noisy encoder is only for calculating the supervised
cross entropy.

Each part of the layer-wise embedding CNN is explained in detail in the following.

2.3.1. General Steps for Constructing Layer-Wise Embedding CNN

Based on the structure of a denoising AE, we combine a noisy encoder and corresponding decoder
layer via vertical skip connections, where two signals are fused by a denoising function to reconstruct
the layer in the decoder. This technique helps the higher layer to focus on extracting more abstract
and task-specific features, which can facilitate feature extraction from complex remote sensing images.
Meanwhile, a clean encoder is trained in a feedforward fashion to evaluate the reconstruction effect [58].

The layer-wise embedding CNN can be defined as (suppose we have a total of L layers in both
encoder and decoder parts):

Encodernoisy(x) : x̃ → r̃(1) → . . .→ r̃(L) → ỹ (6)

Encoderclean(x) : x → r(1) → . . .→ r(L) → y (7)

Decoder(r̃(l)) : r̂ ← r̂(1) ← . . .← r̂(L) (8)

where Encodernoisy(·), Encoderclean(·) and Decoder(·) represent the noisy encoder, the clean encoder,
and the decoder, respectively. x, x̃ and x̂ are the clean, noisy, and reconstructed input patches,
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respectively. r(l), r̃(l) , and r̂(l) are the clean hidden representation, its noisy version, and its
reconstructed version at layer l. y and ỹ, outputs after SoftMax operation, are the clean class label and
the noisy class label, respectively. The noisy ỹ is used to calculate supervised cross entropy during the
training process as described in following Equation (17), while the classification map is obtained from
the clean y at test stage.

2.3.2. CNN Based Encoder for Supervised Learning

To use both spectral and spatial information in remote sensing images and enhance the
representative capacity, a spectral-spatial CNN structure is constructed into the encoder architecture in
the forward path. Overall, the encoder consists of the convolution, max pooling, batch normalization,
noise injecting (for the noisy encoder) and activation operations for each layer. At the end of the
encoders, the output y and ỹ are obtained through SoftMax operation (see Figure 3).

Firstly, 3-D convolution conv(l)(·) and max pooling maxPooling(·) transformations from layer
(l− 1) to layer l are put on s̃(l−1), the post-activation at layer (l− 1), to obtain the pre-normalization r̃(l)pre:

r̃(l)pre = maxPooling(conv(l)(s̃(l−1))) (9)

Batch normalization is then applied to r̃(l)pre with the mini-batch mean mean(r̃(l)pre) and standard

deviation stdv(r̃(l)pre). In addition, isotropic Gaussian noise n is added to compute pre-activation r̃(l):

r̃(l) =
r̃(l)pre −mean(r̃(l)pre)

stdv(r̃(l)pre)
+ n (10)

Then, through a nonlinear activation function such as ReLU, defined as φ(x) = max(0, x), we can
obtain s̃(l), the post-activation at layer l, as the input for the next layer:

s̃(l) = φ(γ(l)(r̃(l) + β(l))) (11)

where β(l) and γ(l) are trainable parameters responsible for shifting and scaling.
Please note that the above equations describe the noisy encoder, with noisy s̃ and r̃. If we remove

noise, we will obtain the clean version of the encoder with clean s and r.

2.3.3. Vertical Connection and Vanilla Combinator-Based Denoising Function for
Unsupervised Learning

In the backward path, deconvolution, unpooling and batch normalization are performed at
layers in the decoder. Besides, vanilla combinator-based denoising function is used for combining the
signal from the noisy encoder and the signal in the decoder, which achieves the vertical connection.
This technique strengthens the representative ability of the learned feature in the reconstruction stage.

For each layer of the decoder, deconvolution deconv(l)(·) and unpooling upSampling(·)
operations from layer l + 1 to layer l are employed to layer r̂(l+1):

u(l+1)
pre = upSampling(deconv(l)(r̂(l+1))) (12)

Batch normalization is then implemented on u(l+1)
pre to get u(l+1):

u(l+1) =
u(l+1)

pre −mean(u(l+1)
pre )

stdv(u(l+1)
pre )

(13)
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After normalization correction, the signal from the layer r̂(l+1) and the noisy r̃(l) via vertical
connection are combined into the reconstruction r̂(l) through a denoising process:

r̂(l) = g(r̃(l), u(l+1)) (14)

where g(·, ·) is the vanilla combinator-based denoising function. It can combine the lateral u(l+1) and
the vertical r̃(l) connections in an element-wise fashion.

Here, function g(, ·, ) is to achieve the lowest reconstruction cost. Considering the conditional
distribution P(r(l)|r(l+1)) that we intend to model, the optimal functional form of g will be linear
with respect to r̃(l) when P(r(l)|r(l+1)) is Gaussian. The parametrization of the denoising function
is therefore:

g(r̃(l), u(l+1)) = (r̃(l) −ω(u(l+1)))v(u(l+1)) + ω(u(l+1)) (15)

where we modeled both ω(u) and v(u) with a multilayer architecture form nonlinear function: ω(u) =
t1sigmoid(t2u+ t3)+ t4u+ t5 and v(u) = t6sigmoid(t7u+ t8)+ t9u+ t10. t1 to t10 are linear coefficients.
For a given u, r̃ is linear related to the parametrization, and both v and ω depend nonlinearly on u.

2.3.4. Overall Objective Function Formulation

Finally, the objective function for the layer-wise embedding is a balance of the supervised cross
entropy from the noisy encoder and the unsupervised reconstruction cost at each layer of the decoder.
Since all layers of the noisy encoder are corrupted by noise for the purpose of obtaining a better
feature generalization, the clean encoder is providing the clean reconstruction targets as the reference
of the decoder.

The objective function, COST, is defined as the following shows:

COST = COST1 + COST2 (16)

where COST1 is supervised cross entropy from the noisy encoder and COST2 is unsupervised
reconstruction costs from the decoder.

COST1 (with N labeled patches) is calculated as the sum negative log probability of the noisy
output ỹ(m) matching the target output y∗(m) given the input x(m):

COST1 = −∑N
m=1 log P(ỹ(m) = y∗(m)|x(m)) (17)

And COST2 (with M superpixel-guided unlabeled patches) represent the sum of reconstruction
costs from all L layers:

COST2 = ∑N+M
m=N+1 ∑L

l=1 λlCOST2(l)(r(l)(m), r̂(l)(m)) (18)

where COST2(·) represents the layer-wise embedding unsupervised reconstruction cost which consists
of cost from each decoder layer. λl is a layer-wise coefficient. The denoising intensity of each layer can
be tuned by changing each λl .

COST2(l)(·) in the above Equation (18) is formalized as:

COST2(l)(r(l), r̂(l)) =

∥∥∥∥∥∥ r̂(l) −mean(r̃(l)pre)

stdv(r̃(l)pre)
− r(l)

∥∥∥∥∥∥
2

(19)

where r̂(l) is performed batch normalization with mean and standard deviation of r̃(l)pre in the noisy
encoder part.

The feedforward pass of the layer-wise embedding CNN is listed in Algorithm 1, where batchnorm(·)
means batch normalization, and activation(·) is the nonlinear activation function, such as ReLU.
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Algorithm 1 Calculation of output class labels and objective function of the layer-wise embedding CNN

Require: x(m)
/∗ Noisy encoder ∗/
s̃(0) ← r̃(0) ← x(m) + noise
for l = 1 to L do

r̃(l) ← batchnorm(maxPooling(conv(l)(s̃(l−1)))) + noise
s̃(l) ← activation(γ(l)(r̃(l) + β(l)))

end for
s̃(l) ← activation(γ(l)(r̃(l) + β(l)))
/∗ Clean encoder ∗/
s(0) ← r(0) ← x(m)
for l = 1 to L do

r(l)pre ← maxPooling(conv(l)(s(l−1)))
r(l) ← batchnorm(r(l)pre)
s(l) ← activation(γ(l)(r(l) + β(l)))

end for
/∗ Classification ∗/
P(y|x)← s(L)

/∗ Decoder ∗/
for l = L to 0 do

if l = L then

u(L) ← batchnorm(s̃(L))
else

u(l) ← batchnorm(upSampling(deconv(l)(r̂(l+1))))
end if
r̂(l) ← g(r̃(l), u(l))

end for
/∗ Supervised cross entropy ∗/
if y∗(m) then

COST1← −∑N
m=1 log P(ỹ(m) = y∗(m)|x(m))

end if
/∗ Unsupervised reconstruction costs ∗/
COST2← ∑N+M

m=N+1 ∑L
l=1 λl(batchnorm(r(l)(m)), r̂(l)(m))

/∗ Cost function for training ∗/
COST ← COST1 + COST2

3. Experimental Setup

In this section, we use three different types of remote sensing images to evaluate our designed
SLE-CNN framework. All of them are common benchmarks concerning their types. A series of
experiments have been conducted to make a comprehensive comparison among various methods.
All experiments are carried out with the same image pre-processing operations to guarantee fairness.

3.1. Dataset Description

Hyperspectral image (HSI), acquired by hyperspectral imaging sensors, consists of hundreds
or even thousands of continuous spectral bands, carrying abundant information. In the
experiments, publicly available University of Pavia data (http://www.ehu.eus/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes) is employed as a benchmark HSI dataset. It was captured by

http://www.ehu.eus/ccwintco /index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco /index.php/Hyperspectral_Remote_Sensing_Scenes
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the Reflective Optics System Imaging Spectrometer (ROSIS) sensor over an urban area at the University
of Pavia, Italy, in 2002. The image is composed of 610 × 340 pixels with a spatial resolution of 1.3 m.
It contains 115 bands. After removing 12 noise bands, 103 bands are remaining. The ground truth map
contains 9 classes. Figure 4 shows the false color image as well as the ground truth data. There are
9 classes of interest and the detailed information of each class is listed in Table 1.

 

(a)
 

(b)

Figure 4. The ROSIS Pavia University hyperspectral image. (a) false color image, (b) ground truth map.

Table 1. Number of samples (NoS) and colors of each class in the ground truth of the ROSIS Pavia
University hyperspectral image.

Class Name NoS Class Name NoS
1 asphalt 6631 6 bare soil 5029
2 meadows 18,649 7 bitumen 1330
3 gravel 2099 8 bricks 3682
4 trees 3064 9 shadows 947
5 metal sheets 1345 Total 42,776

Multispectral image (MSI), acquired by multispectral sensors, contains several useful
discontinuous spectral bands. One image (http://www.recogna.tech), covering the area of Itatinga,
SP-Brazil, obtained by Landsat 5 TM, one of the most popular multispectral sensors, is used in the
experiments. The image consists of 492 × 526 pixels and 3 bands. The ground truth map contains
6 classes, Figure 5 shows the ground truth data as well as the image. The 6 classes of interest and the
detailed information of each class are listed in Table 2.

 

(a)
 

(b)

Figure 5. The Landsat 5 TM multispectral image. (a) false color image, (b) ground truth map.

SAR imagery, acquired by synthetic aperture radar, carries a lot of speckle noise. Here, one image
collected by Electromagnetics Institute Synthetic Aperture Radar (EMISAR) (http://www.space.dtu.
dk/english/Research/Research_divisions/Microwaves_and_Remote_Sensing/Sensors/emisar) is
used. It was captured over a vegetated region, in Foulum, Denmark. The image is composed of
421 × 300 pixels and 41 bands. Its ground truth map contains 5 classes, Figure 6 shows the ground

http://www.recogna.tech
http://www.space.dtu.dk/english/Research/Research_divisions/Microwa ves_and_Remote_Sensing/Sensors/emisar
http://www.space.dtu.dk/english/Research/Research_divisions/Microwa ves_and_Remote_Sensing/Sensors/emisar
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truth data as well as the image. The 5 classes of interest and the detailed information of each class are
listed in Table 3.

Table 2. Number of samples (NoS) and colors of each class in the ground truth of the Landsat 5 TM
multispectral image.

Class Name NoS
1 cultures 62,322
2 dams 464
3 bushes 47,985
4 grass lands 59,883
5 reforesting 85,189
6 roads 2937

Total 258,780

 

(a)
 

(b)

Figure 6. The EMISAR image. (a) false color image, (b) ground truth map.

Table 3. Number of samples (NoS) and colors of each class in the ground truth of the EMISAR image.

Class Name NoS
1 winter wheat 1088
2 coniferous 12,851
3 water 6695
4 oat 1172
5 rye 1767

Total 23,573

3.2. Experiments

To evaluate the designed SLE-CNN framework for remote sensing image classification, we
compare it with the supervised version of our model and some other classification algorithms, i.e.,
SVM, Laplacian SVM (LapSVM), Self-learning (based on Breaking Ties or BT strategy) SVM (SL SVM),
convolutional neural network - autoencoder (CNN-AE). Therein, supervised version of our framework
with only cross entropy to learn, has the same structure with the encoder part of the semi-supervised
version to ensure the comparability. Specifically, SVM is also in supervised fashion, while LapSVM and
SL SVM are semi-supervised classifiers. The LapSVM [59], which is a graph-based semi-supervised
learning method, introduces an additional manifold regularization term on the geometry of both the
labeled and the unlabeled data using the graph Laplacian and has been demonstrated as an effective
approach [60,61]. Self-learning is one of the traditional wrapper methods of semi-supervised learning.
Here, SVM is chosen as the probabilistic classifier. In addition, the BT active learning algorithm [62],
which focuses on searching the samples with the smallest difference between the two most probable
classes, is combined with self-learning strategy to serve as an adaptive machine-machine approach.
To compare with a contextual method, SL SVM is performed on both the original spectral data and the
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Gabor textures (with SL-Gabor SVM) [63]. CNN-AE is an approach based on convolutional features
and sparse AE for remote sensing images, proposed by [64], whose architecture is a sequential version
of our proposed method. This approach starts by generating an initial feature representation from
a pre-trained CNN model. Then these convolutional features are fed into an AE for learning a new
suitable representation in an unsupervised manner. After this, several class-specific AEs are trained,
and the images are then classified based on the reconstruction error. To ensure the fairness, the CNN
architecture implemented in CNN-AE is consistent with our proposed method (same number of layers,
same size of filters and so on) as described behind. In addition, we have also used the superpixel-based
sampling strategy in CNN-AE.

The experiments are implemented on the aforementioned three kinds of datasets. Following the
procedure shown in Figure 1, 40% of the ground truth data is randomly selected for testing. Among the
remaining part, a small number of labeled samples, 5 samples per class for HSI, SAR and MSI datasets,
are selected from the training samples as labeled samples with a stratified random sampling strategy.
Then the SLIC is implemented upon the whole remote sensing image with an average superpixel size of
400 pixel unit. Those pixels within 3 pixel unit distance to the boundary of its superpixel are selected as
the candidate unlabeled samples, where those belong to test samples and labeled samples are removed.
Then from the candidate unlabeled samples, 5000, 7000 and 3500 samples are randomly selected as the
unlabeled samples for HSI, SAR and MSI datasets, respectively. Finally, both the unlabeled and labeled
samples constitute the training set and used for network fine-tuning. Please note that we did not
consider the spatial autocorrelation [65] of the input images during the process of separating training
and testing samples. In addition, we organize samples in the form of 13× 13 patches. We train the
LWE-CNN in random batches with a batch size of 16. All the evaluation experiments are repeated for
10 Monte Carlo runs, and the reported accuracy are the average results. To evaluate the experimental
results, we compare three indexes, including overall accuracy (OA, the number of correct classifications
by the total number of test samples) [66], average accuracy (AA, an average of the producer’s accuracy
of individual classes) [67] and kappa coefficient (Kappa, a measure of the actual agreement minus
chance agreement) [68]. Moreover, the F-Measure (2 ∗ P ∗ R/(P + R), where P represents the user’s
accuracy and R is the producer’s accuracy) [69] of various methods is also compared.

For parameter settings of the layer-wise embedding CNN, we adopt a simple structure of
4 convolution layers and 1 full connection layer as the encoder part while a structure of the same
amount of convolution as the decoder counterpart. The hyper-parameters in each layer of layer-wise
embedding CNN are set empirically and can be found in Table 4. The learning rate is set to be 0.001
with mini-batch size of 45 for HSI, 25 for SAR and 100 for MSI. Though hyper-parameters (such as
the number of filters and layers, etc.) of both encoder and decoder has not been fully optimized,
with the adopted empirical settings, the results obtained are already very competitive. Moreover, for
different types of remote sensing images, there is still huge improvement space if we fine tune the
hyper-parameters separately for HSI, MSI and SAR data.

Table 4. Parameter settings in each layer of the layer-wise embedding CNN.

Setting
Encoder/Decoder Layer

1st 2nd 3rd 4th

Filter size 3× 3 3× 3 3× 3 2× 2
Number of filters 3 6 6 9
Pooling stride [2 2] [2 2] [2 2] [2 2]
Padding type SAME SAME SAME SAME
Activation function ReLU ReLU ReLU ReLU
Denoising cost 100 10 1 0.1
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3.3. Experimental Results and Discussions

For illustrative purposes, Figure 7 show the OA as a function of the number of iterations in the
fine-tuning process of SLE-CNN for the three different types of datasets, respectively. In the figures,
the curves in the yellow color show the original results with fluctuation, while curves in the blue
color are results through a certain percentage of smoothing. It can be observed that the designed
SLE-CNN framework converges very fast, requiring merely 11, 8 and 11 times of iterations with a
proper mini-batch size for HSI, MSI and SAR data respectively, which indicates its strong ability.
The quantitative evaluations of the classification accuracy are shown in Tables 5–7. The classification
maps are also visually as Figures 8–10 show.

(a)

(b)

(c)

Figure 7. OA as a function of the number of iterations in the fine-tuning process of SLE-CNN for
(a) HSI data, (b) MSI data, (c) SAR data.
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Table 5. OA [%] , AA [%] , Kappa [%] and F-Measure [%] results for the HSI data with 5 labeled
samples per class.

Class SVM LapSVM SL SVM SL-Gabor SVM CNN-AE Supervised SLE-CNN

asphalt a 74.64 ± 0.15 78.24 ± 0.21 78.37 ± 0.12 80.23 ± 0.21 77.95 ± 0.13 71.36 ± 0.15 80.20 ± 0.12
meadows 61.69 ± 0.24 65.18 ± 0.14 63.14 ± 0.15 62.54 ± 0.30 77.84 ± 0.15 66.55 ± 0.27 79.16 ± 0.14

gravel 42.12 ± 0.32 40.16 ± 0.32 48.96 ± 0.37 50.91 ± 0.45 58.21 ± 0.32 37.59 ± 0.42 60.33 ± 0.22
trees 51.33 ± 0.33 64.15 ± 0.10 56.82 ± 0.23 64.25 ± 0.24 68.43 ± 0.18 62.71 ± 0.33 84.56 ± 0.11

metal sheets 56.31 ± 0.16 92.76 ± 0.08 77.57 ± 0.12 85.18 ± 0.13 95.15 ± 0.04 95.67 ± 0.02 97.11 ± 0.08
bare soil 34.85 ± 0.29 40.39 ± 0.27 39.10 ± 0.38 41.36 ± 0.37 55.63 ± 0.27 57.83 ± 0.27 60.57 ± 0.25
bitumen 66.92 ± 0.37 54.28 ± 0.16 60.29 ± 0.24 62.57 ± 0.23 56.44 ± 0.33 50.22 ± 0.26 55.89 ± 0.32

bricks 61.77 ± 0.12 66.92 ± 0.15 64.04 ± 0.22 63.60 ± 0.21 67.29 ± 0.16 63.64 ± 0.21 70.58 ± 0.17
shadows 98.48 ± 0.04 98.33 ± 0.05 99.63 ± 0.06 98.53 ± 0.05 96.45 ± 0.02 99.45 ± 0.04 97.31 ± 0.03

OA 60.62 ± 0.29 65.33 ± 0.27 63.29 ± 0.29 66.55 ± 0.31 72.36 ± 0.14 66.56 ± 0.29 75.49 ± 0.20
AA 65.08 ± 0.20 69.97 ± 0.22 69.39 ± 0.27 70.93 ± 0.18 74.44 ± 0.15 70.09 ± 0.28 76.99 ± 0.19

Kappa 49.83 ± 0.18 57.08 ± 0.19 54.66 ± 0.28 59.44 ± 0.30 66.30 ± 0.20 65.80 ± 0.23 68.83 ± 0.26
F-Measure 60.90 ± 0.24 66.71 ± 0.27 65.32 ± 0.19 67.69 ± 0.23 72.60 ± 0.17 67.22 ± 0.15 76.19 ± 0.16

a Lines 2 to 10 are the F-Measure per class.

Table 6. OA [%], AA [%], Kappa [%] and F-Measure [%] results for the MSI data with 5 labeled samples
per class.

Class SVM LapSVM SL SVM SL-Gabor SVM CNN-AE Supervised SLE-CNN

cultures a 48.86 ± 0.32 46.89 ± 0.26 45.37 ± 0.28 42.44 ± 0.34 69.31 ± 0.25 53.65 ± 0.32 71.98 ± 0.15
dams 30.56 ± 0.45 33.90 ± 0.41 34.52 ± 0.42 36.66 ± 0.42 41.02 ± 0.37 38.27 ± 0.55 46.51 ± 0.40

bushes 67.23 ± 0.26 70.31 ± 0.19 68.51 ± 0.17 70.53 ± 0.27 52.36 ± 0.34 48.55 ± 0.30 50.17 ± 0.37
grass lands 42.18 ± 0.39 46.11 ± 0.45 44.72 ± 0.34 51.29 ± 0.32 45.34 ± 0.41 43.16 ± 0.44 45.95 ± 0.45
reforesting 80.35 ± 0.13 84.09 ± 0.08 82.94 ± 0.16 86.10 ± 0.15 84.89 ± 0.16 85.48 ± 0.18 86.39 ± 0.18

roads 58.25 ± 0.32 63.47 ± 0.32 59.45 ± 0.35 65.28 ± 0.25 66.53 ± 0.28 63.99 ± 0.26 67.42 ± 0.28
OA 53.20 ± 0.28 58.58 ± 0.34 56.26 ± 0.29 58.76 ± 0.26 59.08 ± 0.30 55.42 ± 0.32 60.96 ± 0.20
AA 50.92 ± 0.42 57.92 ± 0.23 56.27 ± 0.23 57.94 ± 0.34 60.33 ± 0.29 61.29 ± 0.22 62.67 ± 0.29

Kappa 45.30 ± 0.30 46.37 ± 0.33 46.56 ± 0.31 47.60 ± 0.35 48.84 ± 0.31 46.26 ± 0.44 50.47 ± 0.36
F-Measure 54.57 ± 0.31 57.46 ± 0.29 55.92 ± 0.31 58.72 ± 0.29 59.91 ± 0.27 55.52 ± 0.34 61.40 ± 0.26

a Lines 2 to 7 are the F-Measure per class.

Table 7. OA [%] , AA [%] , Kappa [%] and F-Measure [%] results for the SAR data with 5 labeled
samples per class.

Class SVM LapSVM SL SVM SL-Gabor SVM CNN-AE Supervised SLE-CNN

winter wheat a 48.52 ± 0.43 57.11 ± 0.31 54.17 ± 0.40 61.26 ± 0.34 94.47 ± 0.09 84.73 ± 0.15 93.16 ± 0.05
coniferous 96.31 ± 0.02 97.48 ± 0.05 98.30 ± 0.02 98.41 ± 0.06 98.24 ± 0.05 98.95 ± 0.03 98.97 ± 0.04

water 80.47 ± 0.11 88.14 ± 0.16 87.26 ± 0.16 89.18 ± 0.11 90.43 ± 0.02 92.15 ± 0.08 91.49 ± 0.08
oat 69.50 ± 0.25 83.37 ± 0.13 80.19 ± 0.18 79.67 ± 0.16 91.15 ± 0.11 80.49 ± 0.16 94.38 ± 0.05
rye 72.93 ± 0.16 86.32 ± 0.18 84.58 ± 0.13 87.52 ± 0.19 92.68 ± 0.08 89.17 ± 0.13 96.33 ± 0.08
OA 74.19 ± 0.18 84.36 ± 0.14 82.37 ± 0.07 85.20 ± 0.15 93.41 ± 0.09 91.08 ± 0.11 95.74 ± 0.08
AA 66.38 ± 0.19 75.66 ± 0.22 73.49 ± 0.24 76.97 ± 0.17 90.50 ± 0.06 84.29 ± 0.18 92.90 ± 0.07

Kappa 60.30 ± 0.22 75.03 ± 0.13 72.18 ± 0.25 76.89 ± 0.23 89.10 ± 0.14 89.20 ± 0.13 90.07 ± 0.11
F-Measure 73.55 ± 0.14 82.48 ± 0.17 80.90 ± 0.19 83.21 ± 0.13 93.39 ± 0.07 89.10 ± 0.17 94.87 ± 0.12

a Lines 2 to 6 are the F-Measure per class.

Based on the above-mentioned experimental results, a few discussions can be highlighted. Firstly,
among the four SVM-based classifiers (SVM, LapSVM, SL SVM and SL-Gabor SVM), SVM using only
the limited labeled data performs worst. For instance, it is observed from Table 7 that the OA of SVM is
10.17%, 8.18% and 11.01% lower than those of the LapSVM, SL SVM and SL-Gabor SVM, respectively.
Similar properties can also be found in Tables 6 and 7. This phenomenon demonstrates the importance
of taking advantage of unlabeled data.
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Figure 8. Ground truth map and classification maps of the ROSIS Pavia University hyperspectral
image. (a) ground truth, (b) SVM, (c) Laplacian SVM, (d) SL SVM, (e) SL-Gabor SVM, (f) CNN-AE,
(g) Supervised, (h) SLE-CNN

 

(a)
 

(b)
 

(c)
 

(d)

(e)
 

(f) (g) (h)

Figure 9. Ground truth map and classification maps of the Landsat 5 TM multispectral image
with (a) ground truth, (b) SVM, (c) Laplacian SVM, (d) SL SVM, (e) SL-Gabor SVM, (f) CNN-AE,
(g) Supervised, (h) SLE-CNN.
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Figure 10. Ground truth map and classification maps of the EMISAR image with (a) ground truth,
(b) SVM, (c) Laplacian SVM, (d) SL SVM, (e) SL-Gabor SVM, (f) CNN-AE, (g) Supervised, (h) SLE-CNN.

Secondly, compared with the designed SLE-CNN framework, the network structure of the
supervised version of the proposed framework is simple, with only one encoder. In addition, it uses
only supervised cross entropy for training while the SLE-CNN framework uses a combined loss
function which consists of the supervised cross entropy from the noisy encoder and the unsupervised
reconstruction cost from the interaction of the clean encoder and the decoder. From the experiments,
we can see that the classification accuracy under supervised scenario is relatively worse than that
obtained under SLE-CNN situation. As shown in Table 7, the OA, AA, Kappa and F-Measure of
the supervised CNN are lower than those of the SLE-CNN, which again proves the efficiency and
effectiveness of the unsupervised co-training fashion. It also implies that optimization with unlabeled
data can reduce the error rate. To obtain a similar level classification accuracy, the need for labeled
samples in our designed SLE-CNN framework is relatively lower than that of the supervised version.

Thirdly, even without unlabeled samples for training, deep structures such as CNN still have
good-enough results reflected in high classification accuracy and smooth output classification map
with little-shattered fragments, which outperforms traditional shallow models (e.g., SVM) with same
training dataset. As shown in Table 5, the OA of purely supervised CNN is 5.94%, 1.23%, 3.27%
and 0.01% higher than those of the SVM, LapSVM, SL SVM and SL-Gabor SVM, respectively. It is
also clearly visible that little-shattered fragments are generated in purely supervised and SLE-CNN
classification map in Figure 8 than in SVM, Laplacian SVM, SL SVM and SL-Gabor SVM classification
map in Figure 8. The SAR data also yield similar properties. As for MSI data (see Table 7), the OA of
the purely supervised CNN is lower than those of the LapSVM, SL SVM and SL-Gabor SVM but still
higher than that of the SVM. To some extent, the classification maps of contextual methods (CNN and
SL-Gabor SVM), though much smoother, lack a certain number of details, such as sharp corners and
fine elements. However, some of the lost details may be noises caused by sensors.
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Fourthly, when compared with SL-Gabor SVM, the designed SLE-CNN framework shows a
higher accuracy, though both using unlabeled samples and contextual features, as shown in Tables 5–7,
which further illustrates the capability of deep CNN.

Besides, the designed SLE-CNN framework performs better than CNN-AE with a different CNN
architecture, which proves the superiority of the structure of our proposed model. As shown in
Tables 5–7, the OA of the designed SLE-CNN framework is 3.13%, 1.88% and 2.33% higher than those
of CNN-AE, respectively. Besides, the computation time of CNN-AE is longer than the designed
SLE-CNN framework. The reasons may include: (1) In our proposed framework, end-to-end learning
is used in the training process, where supervised and unsupervised parts are trained together through
the cost function (Equation (16)) by backpropagation. (2) All classes are trained at the same time in
our proposed framework. However, in CNN-AE, each class needs to be trained in a separate AE,
respectively. (3) During the inference part, CNN-AE needs to run the pre-trained model to obtain CNN
features and then runs AE t times (if we have t classes). While, in our proposed framework, the result
can be acquired by running the encoder part of AE only one time. Finally, the designed SLE-CNN
provides better or comparable classification results as compared with any other method included in
comparison and obtain a state-of-art classification accuracy. Regarding all three different scenarios
involving HSI, MSI and SAR data, which also demonstrates its strong adaptation capacity to adapt to
different types of image classification tasks in the field of remote sensing.

Briefly, the aforementioned analysis validates the effectiveness of the SLE-CNN framework for
remote sensing image classification.

4. Discussion

We further make experiments to verify the effectiveness of the designed superpixel-based random
sampling strategy compared with totally random sampling strategy based on the layer-wise embedding
CNN. Accuracy results based on 5 labeled samples per class are shown in Figure 11, which confirm the
efficiency of the idea of superpixel-based random sampling. Overall, the above experimental results
prove the superiority of our designed SLE-CNN framework for remote sensing image classification,
considering both the sampling strategy and the deep network.

(a) (b) (c)

Figure 11. Classification accuracies of the designed layer-wise embedding CNN with totally random
sampling strategy and superpixel-based random sampling strategy in (a) HSI data, (b) MSI data,
(c) SAR data.

Also, we evaluate the performance of our designed SLE-CNN framework with the increase in
the number of labeled samples and estimate its stability. We randomly choose 5, 10, 15, 20, 25 and
30 samples from each class as the labeled samples and the OA of above various methods is plotted in
Figure 12, which shows that the classification accuracy increases as the number of labeled samples
goes up and our designed SLE-CNN framework is superior to other methods when the same number
of labeled training samples is chosen. Although the performance of different methods changes as the
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number of training samples changes, the designed SLE-CNN framework provides higher classification
accuracies than other methods.

(a)

(b)

(c)

Figure 12. The impact of the number of labeled training samples per class on the OA in (a) HSI data,
(b) MSI data, (c) SAR data.

It should be noted that under the condition of extremely limited training samples, our framework
has the risk of becoming unstable and influenced by noises, which need to be improved in the
algorithm. However, the superpixel-based random sampling strategy, used for the guide of the
selection of unlabeled samples, has reduced such risks to some degree. It should also be mentioned
that classification results produced by the designed framework may be over-smooth and some details
may be lost. Therefore, it should be treated carefully.

From the above Tables 5–7, we can observe the phenomenon that the accuracies of some classes of
other methods are higher than those of our proposed SLE-CNN. The accuracies shown in the tables
are under the condition of only 5 labeled samples per class, where the phenomena can in some degree
reflect that our proposed SLE-CNN has the risk of becoming unstable and influenced by noises with
extremely limited training samples as stated above. However, with the increase in the number of
samples, the situation turns good. In Table 5, “bitumen” class of HSI data shows a relatively lower
accuracy. However, the number of this class is small, so that the test results may be more likely to
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be interfered by randomness. As for “shadows” of HSI data in Table 5 and “winter wheat” , “water”
classes of SAR data in Table 7, the accuracies of these classes, though not the highest among different
methods, have already reached a high level. The relatively low accuracies of classes in MSI data in
Table 6 reflect that our proposed SLE-CNN performed not so well on MSI data compared to HSI and
SAR data under the condition of 5 labeled samples per class. Though the OA and other global indexes
are still better than other methods, the improvement on accuracy is relatively small. Considering this,
we will make some adaptive adjustments to the MSI data in later research.

In the future, we plan to combine variational inference with the unsupervised autoencoder
model to obtain a better regularization for supervised learning and improve the decision boundaries.
It is also promising to directly fuse the superpixel-based hard mining criterion into the final
optimization objective.

5. Conclusions

Remote sensing images, with complex ground scenes and irregular objects, are naturally
characteristic of irregular spatial dependency, which cause challenges for classification tasks. Moreover,
effective labeled samples are usually scared in remote sensing datasets, which conflict with the
general requirement of a huge labeled training set for the fine tuning of a deep neural network.
To deal with these challenges, we design a superpixel-guided layer-wise embedding CNN framework,
where unlabeled samples can be automatically exploited with the guide of a superpixel-based random
sampling strategy. Therefore, a more robust training dataset can be obtained with many informative
and representative unlabeled samples. Furthermore, since superpixels can handle the challenge of
irregular spatial dependency, our classification framework is much more adaptive to real scenes of
remote sensing images. Different from prevailing deep supervised learning models such as DNNs and
CNNs that have already shown an impressive capacity for feature generalization with enough training
samples, the designed SLE-CNN aims at relieving relevant problem under limited ground truth
situations. By using AE-based generative model for learning unsupervised embedding of unlabeled
samples, we can strongly regularize the supervised training, thus reducing the searching space to
obtain a better convergency performance. In addition, since the supervised and unsupervised parts
are combined in a joint optimization fashion with a new objective function, we can simultaneously
learn the best feature representation with both supervised and unsupervised information. Experiments
on benchmark remote sensing images of different types have shown satisfactory performances
compared with both our framework in purely supervised manner and other state-of-art supervised
and semi-supervised classification models, which implies a promising classification capacity for remote
sensing images in different application fields.
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