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Abstract: Hyperspectral images (HSIs) data that is typically presented in 3-D format offers an
opportunity for 3-D networks to extract spectral and spatial features simultaneously. In this paper,
we propose a novel end-to-end 3-D dense convolutional network with spectral-wise attention
mechanism (MSDN-SA) for HSI classification. The proposed MSDN-SA exploits 3-D dilated
convolutions to simultaneously capture the spectral and spatial features at different scales, and densely
connects all 3-D feature maps with each other. In addition, a spectral-wise attention mechanism is
introduced to enhance the distinguishability of spectral features, which improves the classification
performance of the trained models. Experimental results on three HSI datasets demonstrate that our
MSDN-SA achieves competitive performance for HSI classification.

Keywords: hyperspectral image classification; spectral-spatial feature extraction; dense connectivity;
attention mechanism

1. Introduction

Hyperspectral images (HSIs) have hundreds of continuous observation bands throughout
the electromagnetic spectrum with high spectral resolution [1]. Based on such abundant spectral
bands, HSIs have been widely used in various applications, including agriculture development [2],
mineral resource exploitation [3], and environmental earth sciences [4]. Supervised land cover classification
is one of the most significant topics in hyperspectral remote sensing. However, the redundancy of
spectral band information combined with limited training samples [5,6] often poses a challenge to
HSI classification.

Conventional HSI supervised classification models are often based on spectral information.
Typical classifiers include those based on distance measure [7], k-nearest-neighbors [8], maximum
likelihood criterion [9], and logistic regression [10]. To improve classification performance, Random
Forests (RF) [11], and AdaBoost [12], which are ensemble learning or multiple classifier methods, have
been found to be effective for HSI classification.

However, classification algorithms based on spectral information exploiting only the spectral
information fail to capture the important spatial variability perceived for high-resolution data.
Furthermore, as HSIs are typically presented in the format of 3-D cubes, it is reasonable to combine the
abundant spectral features and spatial features in complementary form to improve the performance
of HSI classification. For example, spectral-spatial combined features can be extracted from the
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HSI, at different frequencies and scales, by a series of 3-D discrete wavelet filters [13,14], 3-D Gabor
filters [15,16], or 3-D scattering wavelet filers [17]. In this way, a large number of feature cubes can be
created, which contain important information about local signal changes in spectrum, space, and joint
spectral-spatial correlations. This information is essential for tackling challenging classification tasks.

In recent years, deep convolutional neural networks with hierarchical feature learning capability
have become the mainstream machine learning methods in the field of computer vision, and have
achieved gratifying results in different tasks [18,19]. Compared with traditional manually engineered
features, deep learning technology automatically learns hierarchical features from raw input data [20,21].
The great success of convolutional neural networks (CNNs) and their extensions have motivated
remarkable efforts in spectral-spatial HSI classification [22]. For instance, Yang et al. [23] proposed
a two-channel CNN framework, which extracts jointly the spectral features and spatial features
from HSI. Chen et al. [24] and Li et al. [25] have utilized a 3-D convolutional kernel to learn the
discriminative spectral-spatial features and classifications are performed in an end-to-end structure.
Note that the method in [25] used relatively smaller spatial sized cubes as input and has fewer
parameters to tune. Gao et al. [26] proposed a CNN based architecture, which benefits from the
multiple inputs corresponding to various image features, and exploited the both spectral and spatial
contextual information concurrently for HSI classification. Yang et al. [27] advocated a recurrent 3-D
CNN (R-3-D-CNN) model, which can often outperform other models and converge faster because
of its 3-D convolutional operators and the recurrent network structure. However, it is reported that
R-3-D-CNN requires more training samples than the traditional machine learning methods [27].

Although deep learning models have finally shown promising performance in HSI classification,
they have an insatiable hunger for larger and larger data sets, while the available labeled samples
are rather limited in the HSIs. Thus, the problem of small training samples restricts the deep
learning based HSI classification approaches to obtain better performance. To deal with this problem,
Ma et al. [28] proposed a spatially updated deep auto-encoder for spectral-spatial feature extraction,
by adding a sample similarity regularization mechanism and combining it with the collaborative
representation-based classification to deal with the problem of small training sets. In [23], when training
samples are limited, transfer learning is used, where low-level and mid-level features are transferred
from other scenes. Pan et al. [29] proposed an ensemble deep learning based method, multi-grained
network (MugNet) for limited training samples. To take full advantage of abundant unlabeled samples,
they adopted a semi-supervised manner in the process of generating convolution kernels. Again,
to deal with the problem of limited training samples, the concept of generative adversarial networks
(GAN) has been extended to be a conditional model with semi-supervised classification methods by
He et al. [30]. The authors trained a generator and a discriminator on spatial-spectral features obtained
from HSI. Then, they added a softmax layer to the discriminator network at the end and fine-tuning the
network to perform classification. In addition, Zhong et al. [31] proposed a supervised spectral-spatial
residual network (SSRN) with consecutive spectral and spatial residual blocks to extract spectral
and spatial features from HSI. It is reported that SSRN is more effective in the case of small training
samples, which is due to the fact that SSRN contains residual connections [19] between each of the
other convolutional layers so that residual blocks are constructed. The success of residual connections
has demonstrated that combining the features of the lower layers can capture finer features.

In this paper, we propose a method to distill the dense connectivity [32] of the network and
construct a novel learning architecture with dense connectivity for automated classification from
3-D HSI. In addition, considering the redundancy of the spectral bands in HSI, a new spectral-wise
attention mechanism is added to the proposed network. As a result, this paper contributes in four
major respects:

1. We introduce a network architecture specifically designed for the 3-D patches of HSI. The network
uses dilated convolutions to capture features at various patch scales, thereby obtaining multiple
scales within a single layer. Dense connectivity connects 3-D feature maps learned from different
layers, increasing the diversity of inputs in subsequent layers.
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2. A new spectral-wise attention mechanism is aiming to selectively emphasize informative spectral
features and suppress less useful spectral features. The spectral-wise attention mechanism
that applies soft weights on features is well suited and more efficient for the following HSI
classification tasks. To the best of our knowledge, this is the first time an attention mechanism
has been introduced for HSI classification.

3. Experimental results on three HSI datasets demonstrate that our novel end-to-end 3-D dense
convolutional network with spectral-wise attention mechanism (MSDN-SA) method outperforms
the state-of-the-art methods.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce the different
connections and the spectral-attention mechanism in CNNs. In Section 3, we describe our MSDN-SA
method in detail. In Sections 4 and 5, we present and discuss the experimental results. Finally,
in Section 6, the paper is summarized with an outline suggestion for future work.

2. Related Work

2.1. Residual Connections and Dense Connectivity in CNNs

Previous research [33–35] has shown that utilizing multi-level features in CNNs through
skip-connections is effective for various vision tasks. Residual connections and dense connectivity act
as two different connectivity patterns: both have been successfully used in challenging natural image
processing tasks. Here, we briefly introduce these two connection concepts.

In principle, a residual connection (Figure 1a) adds a skip connection that bypasses the nonlinear
transformations with an identity mapping. Reference layer inputs explicitly represent the layers as
learning residual functions [19]. A residual connection can be formally expressed as:

xl = h(xl−1) + F(xl−1), (1)

where xl−1 and xl refer to the input and output of the l-th layer, respectively. The h(xl−1) = xl−1 is
an identity mapping function and the function F(·) represents a non-linear transformation which can
be a composite function of operations such as Convolution (Conv), Batch Normalization (BN) [36],
Rectified Linear Units (ReLU) [37], or Pooling [38]. By using residual connections, the gradient can
flow directly from later to earlier layers through the identity function [19].

In order to maximize the flow of information between network layers, Gao et al. [32] proposed
a series of dense connectivity from any layer to all subsequent layers (Figure 1b). Differing from
the residual connections, which combine features through summation, dense connectivity combines
features by concatenating them. Specifically, all previous feature maps of layers x0, . . . , xl−1, can be
used to compute the output of the l-th layer:

xl = F({x0, . . . , xl−1}), (2)

where {x0, . . . , xl−1} is the concatenation of all previous feature maps.
Each layer has direct access to the gradients from the loss function and the original input signal,

leading to an implicit deep supervision. The work of [32] also allows features to be reused, while adding
only a small set of feature maps to the network [32]. In addition, dense connectivity has a regularization
parameter that reduces overfitting on tasks with small training data. Therefore, dense connectivity can
be beneficial to perform HSI classification, especially with small training data.
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Figure 1. Schema of (a) residual connections module and (b) dense connectivity module. 
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residual attention network, which is built by trunk-and-mask [48] attention mechanism to generate 
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2.2. Attention Mechanism

Evidence from human perception process [39] demonstrates the importance of an attention
mechanism, which usually uses top-level information to guide a bottom-up feedforward process.
An attention mechanism can be viewed as a tool to bias the allocation of available processing resources
towards the most informative components of an input signal.

Recently, researchers have applied attention mechanism in deep neural networks. Generally,
there are two categories of such work: spatial-based attention and channel-wise attention. Spatial-based
attention mostly focuses on specific location scenes. Such mechanisms were the focus of early systems
for image categorization [40], and were later shown to yield significant improvements for Visual
Question Answering (VQA) and captioning [41–43]. Channel-wise attention is a complementary form
of attention, which involves learning a task-specific modulation that is selectively applied to individual
feature maps across the entire scene. Among them, Squeeze-and-Excitation (SE) network (recognized
as ImageNet Large Scale Visual Recognition Competition (ILSVRC) winner), produces significant
performance improvements for state-of-the-art deep architectures at slightly greater computational
cost. SE block [44] is a novel architectural unit designed to improve the representational capacity of a
network by enabling it to perform dynamic channel-wise feature recalibration.

On the basis of attention mechanism, many deep neural network structures have been proposed
and widely used in various applications [43–47]. For example, Fu et al. [45] introduced a recurrent
attention CNN, which can locate the discriminative region recurrently for fine-grained image recognition
performance. Li et al. [46] introduced a global attention upsample module to guide the integration of
low- and high-level features in semantic segmentation. Wang et al. [47] proposed a residual attention
network, which is built by trunk-and-mask [48] attention mechanism to generate attention-aware
features for Image Classification. It is worth mentioning that SE network is a lightweight gating
mechanism [44], specialized to model channel-wise relationships in a computationally efficient manner
and designed to enhance the representational power of modules throughout the network.

In the case of HSI, hundreds of spectral bands are directly used as input data for convolution,
which inevitably carries some noise bands. Therefore, we are more concerned with the correlation
of the spectral-wise features from HSI which are based on the 3-D feature maps. Inspired by the SE
network, we propose a spectral-wise attention mechanism which will be discussed in detail in the
next section.

3. Proposed Methods

In this section, we describe a novel 3-D network for HSI classification. There are two key
components in our proposed method: dense convolutional network with dilated convolution and
spectral-wise attention mechanism. The first part is dilated convolution [49] based on 3-D patches
of an HSI using dense connectivity to simultaneously extract spectral-spatial features. The dense
connectivity is used to derive multi-level features in networks. In the second part, inspired by the
successful application of attention mechanism in deep neural networks, a spectral-wise attention
mechanism is added to the proposed network.
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The proposed framework is illustrated schematically in Figure 2. Firstly, we extract the S × S × D
neighborhoods of the center pixel within each spectral band together with its corresponding category
label as samples, where S × S denotes the neighborhood space size, and D is the spectral depth.
Once 3-D samples are extracted from an HSI, they are fed into the MSDN-SA model to obtain the
classification results. There are seven convolutional layers in the MSDN-SA. In Figure 2, the colored
lines in the convolutional layers represent 3 × 3 × 7 dilated convolutions, with each color representing
a different channel through layers of different dilation. Note that a “channel” in this paper refers to a
filter such that the total number of the “channels” stands for the dimensionality of the output space,
i.e., the number of output filters in the convolution. Features are refined at each layer by a spectral-wise
attention mechanism. Then, an average pooling layer and a fully connected (FC) layer follow. Finally,
a soft-max activation function is used in the final output layer.
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3.1. Dense Convolutional Network with Dilated Convolution

To take advantage of the capability of 3-D spatial filtering, we propose a novel learning architecture
with dense connectivity for automated classification from 3-D HSI. In the inspiring work of [32]
the dense connectivity was used within layers at a single scale, with transition layers to acquire
information at different scales. Differing from the dense convolutional network (DenseNet) as per [32],
we combine dense connectivity between the multi-scale feature maps, enabling dense connectivity
between the feature maps of the entire network. This facilitates more efficient use of all feature maps
and an even larger reduction of the number of required parameters. The presented module uses 3-D
dilated convolutions to systematically aggregate multi-scale contextual information without losing
spatial resolution.

Instead of using transitional layers to capture features at different scales, the proposed MSDN-SA
uses dilated convolutions. A dilated convolution [49] Wh,d with dilation d ∈ Z+ uses a dilated kernel
h that is nonzero only at distances that are a multiple of d pixels from the center. In the multi-scale
approach, each individual channel of a feature map within a single layer operates at a different scale.
Specifically, we associate the convolution operations for each channel of the output image of a certain
layer with a different dilation. The setting of dilations is shown in Section 4.2. Formally, the output of
xl is a dilated convolution of the j-th feature cube with the k-th kernel of the l-th layer, given by:

gl j(xl) =
cl−1

∑
k=0

Whl jk,dl j
xk

l , (3)

where g(·) is a dilated convolution operation, xk
l denote as the feature maps of the l-th layer are

convolved with the k-th kernel and cl is the number of kernels in the l-th layer.
When using the dilated convolution, the multi-scale approach has an additional advantage

compared with traditional scaling. All feature maps have the same number of rows and columns as the
input and output image, for all layers, and hence, when computing a feature map for a specific layer, it
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is not restricted to use only the output of the previous layer. Instead, we use all previously computed
feature maps by densely connecting a network, as described by Equation (2). Thus, we change the
dilated convolutional with dense connectivity operation Equation (3) to:

gl j({x0, . . . , xl−1}) =
l−1

∑
i=0

ci−1

∑
k=0

Whl jki,dl j
xk

i , (4)

where i = 0 . . . l − 1 index the previous layers.

3.2. Spectral-Wise Attention Mechanism

For an HSI classification based on 3-D convolution based network, hundreds of spectral bands
are directly used as input data for convolution, which inevitably carries some noise bands. To mitigate
this problem, we use the SE block [44] to recalibrate spectral-wise feature responses by modelling
interdependencies between spectral features. We model the interdependencies between spectral-wise
features based on all the bands of each 3-D feature map, which we call spectral-wise attention
mechanism. This mechanism aims to selectively emphasize informative spectral features and suppress
less useful spectral features. The basic structure of the spectral-wise attention mechanism is illustrated
in Figure 3. Here, the neighborhood space size and spectral depth are denoted with S× S and D,
respectively, such that the input layer d ∈ Z+. Our starting point is the spectral-wise attention, which is
denoted as Fspectral in our model and yields the spectral feature attention vector v ∈ R1×1×D.
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It is worth mentioning that the attention mechanism is independently applied to eight channels
which are the outputs of the convolutional layers in our algorithm. Following the definition of
the channel-wise attention model, the spectral-wise attention model on each 3-D feature map
can be informally described as follows. “Summary statistics” are calculated per-band, and then
transformations are applied to first shrink and then expand the dimensionality of these statistics.

Formally, summary statistics are computed with a global average pooling applied to individual
spectral-wise feature channels U = [u k]k=1...D, yielding the vector P = (pk)k=1...D. This is followed

by first applying a shrinking operation to the vector P with the operator Sshrink ∈ RD
r ×D compressing

it into a lower dimensional space, and then followed by an expansion operation Sexpand ∈ RD× D
r

mapping it back to the original, higher dimensional space:

v = σ(Sexpand(δ(Sshrink(P)))), (5)

where δ refers to the ReLU function and σ refers to a sigmoid activation, with “reduction ratio”r of
the shrinking operation empirically set to be 4. The final output of the spectral-wise attention U′ is
obtained by rescaling the transformation output U with the activations:

U′ = Fscale(uk, vk) = vk · uk. (6)

To illustrate the application of the spectral-wise attention mechanism to our dense network,
Figure 4 depicts the schema of the proposed approach. The spectral-wise attention is the weight added
after the 3-D dilated convolution operation, but before the connection operation. For each feature map,
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a global average pooling layer transforms the S× S×D-sized feature map to a 1× 1×D -sized feature
vector, which corresponds to P = (pk)k=1...D in Equation (5). Next, a fully connected layer generates
an output vector 1× 1× D

r . This process is a shrinking operation, which corresponds to Sshrink in
Equation (5). After applying ReLU function which corresponds to δ in Equation (5), an expansion
operation is performed. The second fully connected layer generates an output vector 1 × 1 × D,
this operation corresponds to Sexpand in Equation (5). Lastly, a sigmoid activation is employed, which
corresponds to σ in Equation (5).

Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 18 

 

scaleU F u v v u( , )k k k k′ = = ⋅ . (6) 

To illustrate the application of the spectral-wise attention mechanism to our dense network, 
Figure 4 depicts the schema of the proposed approach. The spectral-wise attention is the weight 
added after the 3-D dilated convolution operation, but before the connection operation. For each 
feature map, a global average pooling layer transforms the S S D× × -sized feature map to a 1 1 D× ×  
-sized feature vector, which corresponds to P=( ) 1k k Dp =   in Equation (5). Next, a fully connected layer 

generates an output vector 1 1 D
r

× × . This process is a shrinking operation, which corresponds to 

shrinkS  in Equation (5). After applying ReLU function which corresponds to δ  in Equation (5), an 
expansion operation is performed. The second fully connected layer generates an output vector 
1 1 D× × , this operation corresponds to expandS  in Equation (5). Lastly, a sigmoid activation is 

employed, which corresponds to σ  in Equation (5).  

0x

1lx −

Scale

Global pooling

FC

ReLU

FC

Sigmoid

lx

S S D× ×

1 1 D× ×

1 1 D
r

× ×

1 1 D
r

× ×

1 1 D× ×

1 1 D× ×

S S D× ×

Connection

 
Figure 4. Dense network with spectral-wise attention mechanism. 

3.3. Network Implementation Details 

By combining dense convolutional network and spectral-wise attention mechanism, a new 
network is formed. Details of the layers of the proposed MSDN-SA are described in Table 1. The 
implementation of MSDN-SA is given as follows.  

Table 1. Network architecture details of proposed novel end-to-end 3-D dense convolutional 
network with spectral-wise attention mechanism (MSDN-SA) for Indian Pines Dataset. 

Layer Kernel size Network Output Size 
Inputs - - 13 × 13 × 200 

3-D-DConv1 3 × 3 × 7 DConv-BN 13 × 13 × 200, 8 
Attention mechanism - - 1 × 1 × 200, 8 

3-D-DConv2 3 × 3 × 7 DConv-BN 13 × 13 × 200, 8 
Attention mechanism - - 1 × 1 × 200, 8 

Dense concatenate - - 13 × 13 × 200, 16 
3-D-DConv3 3 × 3 × 7 DConv-BN 13 × 13 × 200, 8 

Attention mechanism - - 1 × 1 × 200, 8 
Dense concatenate - - 13 × 13 × 200, 24 

3-D-DConv4 3 × 3 × 7 DConv-BN 13 × 13 × 200, 8 
Attention mechanism - - 1 × 1 × 200, 8 

Dense concatenate - - 13 × 13 × 200, 32 
3-D-DConv5 3 × 3 × 7 DConv-BN 13 × 13 × 200, 8 

Attention mechanism - - 1 × 1 × 200, 8 
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3.3. Network Implementation Details

By combining dense convolutional network and spectral-wise attention mechanism, a new
network is formed. Details of the layers of the proposed MSDN-SA are described in Table 1.
The implementation of MSDN-SA is given as follows.

Table 1. Network architecture details of proposed novel end-to-end 3-D dense convolutional network
with spectral-wise attention mechanism (MSDN-SA) for Indian Pines Dataset.

Layer Kernel size Network Output Size

Inputs - - 13 × 13 × 200
3-D-DConv1 3 × 3 × 7 DConv-BN 13 × 13 × 200, 8

Attention mechanism - - 1 × 1 × 200, 8
3-D-DConv2 3 × 3 × 7 DConv-BN 13 × 13 × 200, 8

Attention mechanism - - 1 × 1 × 200, 8
Dense concatenate - - 13 × 13 × 200, 16

3-D-DConv3 3 × 3 × 7 DConv-BN 13 × 13 × 200, 8
Attention mechanism - - 1 × 1 × 200, 8

Dense concatenate - - 13 × 13 × 200, 24
3-D-DConv4 3 × 3 × 7 DConv-BN 13 × 13 × 200, 8

Attention mechanism - - 1 × 1 × 200, 8
Dense concatenate - - 13 × 13 × 200, 32

3-D-DConv5 3 × 3 × 7 DConv-BN 13 × 13 × 200, 8
Attention mechanism - - 1 × 1 × 200, 8

Dense concatenate - - 13 × 13 × 200, 40
3-D-DConv6 3 × 3 × 7 DConv-BN 13 × 13 × 200, 8

Attention mechanism - - 1 × 1 × 200, 8
Dense concatenate - - 13 × 13 × 200, 48

3-D-Average Pooling 3 × 3 × 8 stride 2 5 × 5 × 48, 8
FC, Soft-max 360
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Taking the Indian Pines dataset as an example, the 3-D samples with size 13 × 13 × 200 are
used as the input data. The MSDN-SA has seven layers. Each feature map is the result of applying
the dense connection operations given by Equation (4) to all previous feature maps: 3-D dilated
convolutions (3-D-DConv) with 3 × 3 × 7 pixel filters and a channel-specific dilation followed
with batch normalization. We represent this step operation as DConv-BN. Following each dense
connection layer, the spectral-wise attention mechanism is applied to each 3-D feature map and added
in accordance to Figure 4. It is worth mentioning that “1×1× 200, 8” denotes as eight attention weights
obtained by eight independent channels. Finally, an average pooling layer and a fully connected (FC)
layer transforms a 5× 5× 48 spectral-spatial feature into a 1× 1× L output feature vector, L represents
the number of neurons. In the Indian Pines dataset, we select L = 360. Note that all layers in our
MSDN-SA, including convolutional and average pooling, are implemented in a 3-D manner. Therefore,
when extracting features and making predictions, the MSDN-SA can completely retain and utilize the
3-D spectral-spatial information.

Network implementation details for other datasets are carried out in a similar manner and hence,
are omitted.

4. Experiments Results

In order to evaluate the effectiveness of the proposed method, we tested it on three hyperspectral
datasets. Class accuracy, overall accuracy (OA), average accuracy (AA), and kappa coefficient (κ) were
adopted to assess the classification results. We implemented 10 trials of hold-out cross validation for
each dataset: the mean values and standard deviations are reported for each dataset. For each trial,
a limited number of training samples were randomly selected from each class, and the remaining
samples were used as a blind test. The training sample sizes are set to a minimal level to make the
classification task more challenging than otherwise [50].

4.1. Datasets

To evaluate the performance of the proposed method for HSI classification, we use the following
three datasets:

(1) Indian Pines Dataset

The Indian Pines image was gathered by the AVIRIS sensor during a flight over the Indian
Pines site in Northwestern Indiana, including 16 vegetation classes. It contains 145 × 145 pixels and
220 spectral bands in the range of 0.4–2.5 µm. Due to water absorption, 20 spectral bands were
removed, and the remaining 200 spectral bands were used for classification.

(2) University of Pavia Dataset

The University of Pavia image was recorded by the ROSIS sensor over Pavia, northern Italy,
including 16 urban land-cover classes and having 610 × 340 pixels. It contains 115 spectral reflectance
bands, at the wavelength range 0.43–0.86 µm. Twelve spectral bands were removed due to noise,
and the remaining 103 spectral bands were used for the experiments.

(3) University of Houston Dataset

The University of Houston dataset was acquired by the NSF-funded National Center for Airborne
Laser Mapping (NCALM) over the University of Houston campus and the neighboring urban areas
using the ITRES-CASI (Compact Airborne Spectrographic Imager) 1500 hyperspectral imager in 2012.
It contains 15 land cover classes with 349 × 1905 pixels and 144 bands are used for assessment with
wavelength ranging from 0.36 to 1.05 µm.
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4.2. Experimental Setting

We followed a previous study [51] and adopted the same weight initialization method. In all
experiments, dilations were evenly distributed sij ∈ [1, 10] by setting the dilation of channel j of layer
i equal to sij = ((iw + j)mod 10) + 1, where w is the number of kernels in the convolutional layers.
The soft-max activation function was used in the final output layer and the Nesterov Stochastic Gradient
Descent (SGD) optimization method was employed during training to minimize the cross-entropy
between labels of samples and network outputs. We set the batch size to 16, with the network trained
over 100 epochs on three HSI datasets (60 epochs with learning rate 0.01 and 40 epochs with learning
rate 0.001). Then, we analyzed two factors that control the training and classification performance of
MSDN-SA: (1) number of kernels in the convolutional layers, and (2) size of input spatial cubes.

First, we experimentally verified the number of kernels in the convolutional layers. We tested
different kernel numbers from 4 to 20 with fixed intervals of four in each convolutional layer.
Classifications were performed on three datasets with only 20 training samples per class using a
different number of kernels. The results are shown in Figure 5a. The network with eight kernels in
each convolutional layer obtained the best performance in the Indian Pines dataset and University
of Pavia dataset, and the network with 20 kernels achieved the highest classification accuracy in the
University of Houston dataset, though only marginally higher than the results with eight kernels.
For the sake of consistency, we used eight kernels for all datasets. Note that this verifies that dense
connectivity allows features to be reused, and a small number of kernels are sufficient.

Second, to obtain an optimal size of the spatial neighborhood in the MSDN-SA, we assessed 5 × 5,
9 × 9, 13 × 13, 17 × 17, and 21 × 21 neighborhoods. Figure 5b shows the classification performance of
three HSI datasets using different spatial neighborhood sizes with only 20 samples per class as training
samples. We can see from Figure 5b that initially, as the spatial size increases, the accuracy increases
rapidly, however when the spatial size reaches 13 × 13, the accuracy stabilizes. Therefore, to balance
between the accuracy of classification and the amount of data involved in computation, we chose
empirically 13 × 13 as the spatial neighborhood size.
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In our experiments, the performance of MSDN and MSDN-SA are compared with four
recently proposed supervised HSI classification methods. The algorithms compared in this paper are
summarized as follows:

(1) CCF [52]: Canonical Correlation Forests based on spectral feature with 100 trees.
(2) SVM-3DG [14]: An SVM-based classification method by applying the 3-D discrete wavelet

transform and Markov random field (MRF).
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(3) CNN-transfer [23]: A CNN with two-branch architecture based on spectral-spatial feature,
where a transfer learning strategy is used. Specifically, the source datasets of Indian Pines for
pretraining are Salinas Valley, which were collected by the same sensor AVIRIS, and the source
datasets of Pavia University for pretraining are Pavia Center which were collected by the same
sensor ROSIS.

(4) 3D-CNN [25]: The 3D-CNN network framework has two 3-D convolutional layers and a fully
connected layer. The network structure is set as given in [25].

(5) SSRN [31]: The architecture of the SSRN is set out in [31]. The spectral feature learning part
includes two convolutional layers and two spectral residual blocks, the spatial feature learning
part comprises of one 3-D convolutional layer and two spatial residual blocks. Finally, there is an
average pooling layer and a fully connected layer to output the results.

Below we compare the above algorithms with our proposed method. For the three HSI datasets,
for a fair comparison, the network structures were set to the same width and depth. Additionally,
we set the same input volume size of 13 × 13 × D for our proposed method on all datasets.

4.3. Results of Indian Pines Dataset

The 10-time average classification accuracies and the corresponding standard deviations of the
Indian Pines dataset are reported in Table 2 and the classification maps of different methods are shown
in Figure 6c–g. For this dataset, SSRN and MSDN-SA outperform other methods, with MSDN-SA
achieving an advantage of approximately 1% to 12%. Note that the numbers of class samples in
this dataset are quite unbalanced. In particular, those of the classes Alfalfa, Grass-pasture-mowed
and Oats are very few. Except for the SSRN, all compared methods perform well in these classes.
Although in terms of classification accuracy, SSRN is the best competitor and its performance is close
to the proposed method, it does not do well with classes with a small number of samples. On the
contrary, the stability and performance of our algorithm are obvious.

Table 2. Network architecture details of proposed MSDN-SA for Indian Pines Dataset.

Class
Samples Methods

Train/Test CCF SVM-3DG CNN-Transfer 3D-CNN SSRN MSDN MSDN-SA

1 20/26 95.77 ± 2.84 97.44 ± 2.22 97.95 ± 2.44 98.08 ± 2.72 86.59 ± 7.31 95.65 ± 2.94 95.62 ± 1.60
2 20/1408 67.12 ± 6.67 70.12 ± 7.54 65.21 ± 6.56 64.42 ± 6.43 93.80 ± 3.83 71.77 ± 1.96 78.31 ± 2.83
3 20/810 67.14 ± 5.29 71.73 ± 17.88 67.10 ± 4.17 65.72 ± 2.15 93.75 ± 4.48 78.46 ± 5.18 89.20 ± 3.02
4 20/217 89.54 ± 4.05 91.71 ± 5.77 88.51 ± 3.19 88.02 ± 1.95 80.82 ± 6.23 94.65 ± 2.01 92.68 ± 4.75
5 20/463 87.58 ± 3.41 88.26 ± 8.04 88.06 ± 2.61 88.39 ± 0.95 98.64 ± 1.75 93.76 ± 3.27 87.79 ± 0.58
6 20/710 93.21 ± 2.56 97.46 ± 1.94 94.28 ± 1.39 94.65 ± 0.59 99.49 ± 0.52 97.57 ± 1.69 94.27 ± 0.38
7 14/14 95.00 ± 6.78 100 ± 0.00 95.54 ± 5.80 96.43 ± 5.05 66.46 ± 10.58 92.86 ± 5.83 96.47 ± 4.74
8 20/458 98.19 ± 0.50 99.41 ± 0.83 91.13 ± 0.82 86.79 ± 3.24 99.96 ± 0.10 97.43 ± 1.10 98.18 ± 0.09
9 10/10 100 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00 61.67 ± 7.39 100 ± 0.00 100 ± 0.00

10 20/952 81.16 ± 6.41 74.37 ± 6.15 78.69 ± 4.14 76.24 ± 2.69 68.86 ± 17.70 80.48 ± 4.63 81.28 ± 2.00
11 20/2435 58.73 ± 4.41 74.74 ± 4.60 59.55 ± 2.16 60.14 ± 1.89 83.28 ± 1.82 74.43 ± 3.85 79.99 ± 1.09
12 20/573 80.38 ± 4.89 91.04 ± 6.92 78.59 ± 3.64 61.43 ± 14.07 83.58 ± 7.01 89.69 ± 1.79 84.82 ± 3.20
13 20/185 99.03 ± 0.34 99.10 ± 0.31 98.27 ± 0.60 98.92 ± 0.21 96.90 ± 2.18 98.21 ± 0.41 97.23 ± 0.61
14 20/1245 90.25 ± 4.83 86.43 ± 7.87 90.24 ± 0.53 91.41 ± 0.14 99.98 ± 0.04 88.43 ± 2.49 95.80 ± 0.21
15 20/366 62.90 ± 4.40 94.72 ± 9.15 77.93 ± 3.83 85.22 ± 10.22 60.16 ± 1.93 79.46 ± 4.95 64.97 ± 1.62
16 20/73 95.75 ± 2.77 96.35 ± 2.85 95.97 ± 1.75 100 ± 0.00 79.96 ± 2.99 95.34 ± 1.24 96.71 ± 1.97

OA(%) 75.60 ± 1.04 81.43 ± 1.05 75.18 ± 1.02 74.51 ± 1.10 84.35 ± 4.19 83.62 ± 3.95 86.62 ± 2.36 1

AA(%) 85.11 ± 0.58 89.56 ± 0.60 85.59 ± 1.01 84.74 ± 1.76 83.24 ± 3.26 89.26 ± 2.66 89.58 ± 1.82
κ × 100 72.50 ± 1.14 78.93 ± 1.10 72.80 ± 1.10 71.21 ± 1.30 82.20 ± 4.68 80.96 ± 2.07 85.16 ± 2.02

1 Results that surpass all competing methods are bold.
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4.4. Results of University of Pavia Dataset

The results of University of Pavia dataset are reported in Table 3 and the classification maps of
different methods are shown in Figure 7. With nine classes and 20 samples per class in this dataset,
a total of 180 pixels were used for training. This number is smaller than that used for the other two
datasets (320 in Indian Pines dataset and 300 in University of Houston dataset). Among all five
methods only SSRN and MSDN-SA achieve more than 90% OA, AA and κ. With limited training
samples, only well-suited deep features are able to exploit the spectral space of 115 dimensionality.
From this table we can see that MSDN-SA reports at least 87% accuracy for all classes, with the AA
significantly higher than that achievable by the compared methods. Note that SSRN also performs
well in this dataset with more adequate training samples available for each class. Compared with
SSRN, the proposed MSDN-SA still performs marginally better in both OA and κ.

Table 3. Network architecture details of proposed MSDN-SA for University of Pavia Dataset.

Class
Samples Methods

Train/Test CCF SVM-3DG CNN-Transfer 3D-CNN SSRN MSDN MSDN-SA

1 20/6611 73.21 ± 6.47 91.99 ± 4.87 70.62 ± 3.59 68.05 ± 3.98 98.95 ± 0.62 96.76 ± 2.77 93.31 ± 2.02
2 20/18629 79.88 ± 6.79 90.74 ± 5.48 75.41 ± 5.50 66.58 ± 4.80 99.85 ± 0.09 91.81 ± 2.08 98.88 ± 1.36
3 20/2079 80.15 ± 6.25 81.84 ± 9.84 78.08 ± 4.12 75.47 ± 3.94 87.58 ± 2.74 85.33 ± 3.21 87.93 ± 1.97
4 20/3044 92.81 ± 5.15 89.99 ± 3.82 91.44 ± 1.26 92.62 ± 0.94 82.48 ± 7.56 92.74 ± 1.73 91.33 ± 3.32
5 20/1325 99.53 ± 0.43 96.54 ± 1.84 98.87 ± 1.87 98.15 ± 2.62 99.98 ± 0.05 98.26 ± 0.22 99.97 ± 0.11
6 20/5009 82.65 ± 2.86 84.12 ± 10.63 78.19 ± 2.88 71.49 ± 5.16 71.46 ± 3.23 81.81 ± 2.13 87.29 ± 1.78
7 20/1310 93.96 ± 2.34 90.06 ± 3.86 91.30 ± 2.30 88.09 ± 2.16 89.74 ± 4.46 90.46 ± 2.47 91.68 ± 2.41
8 20/3662 77.96 ± 7.23 90.83 ± 5.75 81.65 ± 5.09 87.56 ± 2.53 84.18 ± 5.69 88.35 ± 3.17 89.14 ± 3.32
9 20/927 99.81 ± 0.10 99.98 ± 0.05 99.10 ± 0.87 99.63 ± 0.08 98.48 ± 0.42 99.01 ± 0.89 99.08 ± 0.39

OA(%) 81.42 ± 2.88 90.04 ± 1.36 75.48 ± 1.54 73.97 ± 0.35 92.30 ± 1.97 91.01 ± 2.53 92.99 ± 2.02
AA(%) 86.66 ± 1.06 90.68 ± 1.65 84.99 ± 1.30 83.07 ± 1.25 91.88 ± 1.90 91.39 ± 1.56 92.98 ± 1.04
κ × 100 76.22 ± 3.36 86.95 ± 1.61 73.14 ± 3.17 67.52 ± 0.09 90.01 ± 2.49 88.29 ± 2.21 90.98 ± 2.94
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4.5. Results of University of Houston Dataset

The results of the experiments of University of Houston dataset are listed in Table 4. As this data
set is too large, given the space limitations, we show only the two algorithms with the best classification
results and the classification maps are shown in Figure 8c,d. MSDN-SA works well again with few
training samples. The advantage of MSDN-SA for this dataset is more significant as compared to the
other two algorithms, especially regarding OA and κ. In terms of class accuracy, MSDN-SA performs
well in all classes and it achieves the highest accuracy in nine classes.

Overall, for three HSI datasets, the proposed MSDN-SA has achieved better performance than
those methods compared. We observe that the skip-connections networks used in both SSRN and
MSDN-SA show good results, indicating that this connection mechanism strategy has a positive effect
on feature propagation while training with a very small number of samples.

Table 4. Network architecture details of proposed MSDN-SA for University of Houston Dataset.

Class
Samples Methods

Train/Test CCF SVM-3DG 3D-CNN SSRN MSDN MSDN-SA

1 20/1231 74.76 ± 4.58 77.01 ± 6.68 89.65 ± 4.98 71.04 ± 4.11 83.50 ± 3.79 85.04 ± 3.72
2 20/1234 69.30 ± 5.07 78.53 ± 1.76 65.24 ± 0.79 87.09 ± 2.05 86.76 ± 4.75 88.11 ± 0.80
3 20/677 79.07 ± 6.31 87.99 ± 12.26 89.96 ± 4.59 98.81 ± 0.95 93.69 ± 4.29 95.80 ± 4.17
4 20/1224 62.01 ± 3.35 69.91 ± 4.29 62.14 ± 2.26 78.88 ± 5.74 87.61 ± 3.19 88.50 ± 0.03
5 20/1222 90.39 ± 1.87 93.64 ± 2.72 92.76 ± 2.49 94.36 ± 1.67 90.65 ± 0.96 92.93 ± 1.72
6 20/305 66.02 ± 5.96 78.69 ± 6.63 59.51 ± 8.58 87.52 ± 9.09 76.85 ± 4.29 69.87 ± 1.59
7 20/1248 38.69 ± 5.96 84.43 ± 3.09 48.48 ± 7.14 79.42 ± 3.97 80.41 ± 4.73 89.30 ± 4.52
8 20/1224 56.95 ± 5.78 61.41 ± 4.89 51.96 ± 5.96 96.35 ± 4.70 90.08 ± 5.57 94.16 ± 3.10
9 20/1232 47.95 ± 5.13 68.78 ± 3.79 74.51 ± 1.03 72.26 ± 3.35 70.73 ± 4.28 81.96 ± 4.52

10 20/1207 71.48 ± 6.99 72.74 ± 7.21 50.04 ± 6.21 83.70 ± 4.33 80.31 ± 5.33 88.10 ± 7.87
11 20/1215 54.93 ± 6.69 65.27 ± 6.33 39.88 ± 6.58 92.94 ± 5.22 82.22 ± 5.43 89.54 ± 3.45
12 20/1213 71.27 ± 7.69 77.96 ± 6.68 67.07 ± 6.00 77.40 ± 3.53 80.77 ± 6.14 88.43 ± 0.44
13 20/449 60.51 ± 4.45 87.97 ± 6.39 45.77 ± 8.66 79.84 ± 12.49 78.43 ± 3.90 88.69 ± 3.53
14 20/408 84.39 ± 2.35 94.28 ± 6.03 84.19 ± 0.17 90.23 ± 1.80 90.92 ± 3.08 91.92 ± 0.95
15 20/640 67.34 ± 7.59 88.33 ± 4.42 84.93 ± 2.76 89.47 ± 4.83 92.39 ± 4.99 92.83 ± 3.45

OA(%) 65.09 ± 1.60 77.17 ± 0.76 66.17 ± 0.99 83.21 ± 0.98 84.69 ± 0.80 88.32 ± 0.34
AA(%) 66.34 ± 1.42 79.13 ± 1.09 67.07 ± 1.62 85.29 ± 1.33 84.35 ± 0.79 88.34 ± 0.28
κ × 100 62.31 ± 1.71 75.32 ± 0.84 63.44 ± 1.05 81.85 ± 1.05 83.13 ± 0.86 87.37 ± 0.37
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5. Analysis and Discussion

5.1. Effect of Training Samples

The above experimental results have shown that the proposed MSDN-SA method performs well
in HSI classifications, especially in the case of having smaller training samples. In this part, we would
like to further investigate the scenarios of extremely scarce training samples. The curves of AA with
respect to a different number of training samples are shown in Figure 9.

As expected, as the number of training samples increases, the accuracy increases. We can see
from Figure 9 that MSDN-SA outperforms other methods in most cases. Regarding Indian Pines and
University of Pavia datasets, using only five training samples per class, MSDN-SA has achieved an
average accuracy of more than 80% and 83% respectively. Although classification of University of
Houston dataset is more challenging, on 10–50 training samples per class MSDN-SA scores significantly
higher than other compared methods.
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5.2. Effect of Spectral-Wise Attention Mechanism

To validate the effectiveness of the spectral-wise attention mechanism, we tested and compared
the proposed network with and without the spectral-wise attention mechanism. The effectiveness
of spectral-wise attention can be demonstrated in Figure 10. It shows the OA of three datasets with
20 training samples per class. It is obvious that spectral-wise attention improves the classification
results for all three datasets, with performance boosted by a larger margin on Indian Pines dataset
and University of Houston dataset, than on the University of Pavia dataset. The effect of spectral-wise
attention is thought to be related to the redundancy of the input bands. Then, we also investigated the
weights generated by the spectral-wise attention mechanism in different layers. Take Indian Pines as
an example: the average weights generated by the spectral-wise attention mechanism in the first layer
and the penultimate layer are shown in Figure 11, respectively. From Figure 11, we can see that the
attention mechanism has less influence on the shallow features, and the weights are concentrated near
0.5. As the number of layers increases, the weights generated in the attention mechanism have more
guidance on the deep features, thereby emphasizing informative spectral features and suppressing
less useful spectral features, as illustrated in Figure 11.
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uses multiple scales in each layer, and computes the feature map of each layer using all the feature 
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penultimate layer on Indian Pines dataset.

5.3. Effect of Dilated Convolution

In this part, we will validate the effectiveness of the dilated convolution. First, we replace each
dilated convolution of the proposed method to a traditional three-dimensional convolution, and we
represent this model as DN-SA. Then, we compare DN-SA with SVM-3DG, SSRN, and MSDA-SA,
which are the top three performing methods in Section 4. The effectiveness of dilated convolution
can be demonstrated in Figure 12. It shows the OA of three datasets with 20 training samples per
class. It is obvious that dilated convolutions improve the classification results for all three datasets,
with performance boosted by a larger margin on University of Pavia and the University of Houston
datasets, than on the Indian Pines dataset. Our work shows that the dilated convolution operator
is particularly suited to dense prediction due to its ability to expand the receptive field without
losing resolution.
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6. Conclusions

In this paper, we have proposed a network architecture specifically designed for 3-D patches of
hyperspectral datasets. Specifically, we have proposed a novel dense convolutional network that uses
dilated convolutions instead of traditional scaling operations to learn features at different scales. It uses
multiple scales in each layer, and computes the feature map of each layer using all the feature maps
of earlier layers, resulting in a densely connected network. Furthermore, a spectral-wise attention
mechanism, adding soft weights on features, was proposed to enhance the distinguishability of spectral
features. By combing the dense convolutional network with dilated convolution and spectral-wise
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attention, the resulting MSDN-SA network architecture enables accurate training with relatively
small training sets. Experimental results on three popular HSI benchmark datasets demonstrate that
MSDN-SA performs consistently, offering the highest classification accuracy.

In terms of future research, we plan to research how to select effective samples as the training
samples, which are potentially more effective for training the network, which remains active research.
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