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Abstract: Vegetation Indices (VIs) represent a useful method for extracting vegetation information
from satellite images. Erosion models like the Revised Universal Soil Loss Equation (RUSLE), employ
VIs as an input to determine the RUSLE soil Cover factor (C). From the standpoint of soil conservation
planning, the C factor is one of the most important RUSLE parameters because it measures the
combined effect of all interrelated cover and management variables. Despite its importance, the
results are generally incomplete because most indices recognize healthy or green vegetation, but
not senescent, dry or dead vegetation, which can also be an important contributor to C. The aim
of this research is to propose a novel approach for calculating new VIs that are better correlated
with C, using field and satellite information. The approach followed by this research is to state the
generation of new VIs in terms of a computer optimization problem and then applying a machine
learning technique, named Genetic Programming (GP), which builds new indices by iteratively
recombining a set of numerical operators and spectral channels until the best composite operator is
found. Experimental results illustrate the efficiency and reliability of this approach to estimate the
C factor and the erosion rates for two watersheds in Baja California, Mexico, and Zaragoza, Spain.
The synthetic indices calculated using this methodology produce better approximation to the C factor
from field data, when compared with state-of-the-art indices, like NDVI and EVI.

Keywords: vegetation indices; RUSLE; image synthesis; C factor; evolutionary computation;
genetic programming

1. Introduction

Soil erosion is a natural process that detaches and transports soil material through the action of an
erosive agent like water, wind, gravity, or anthropogenic perturbations [1]. In most arid areas, irregular
and intense precipitation is the main cause of erosion. This phenomenon is aggravated in terrains that
have either pronounced slopes, soft or non-consolidated lithology, or sparse vegetation. An important
factor that increases erosion is inappropriate land management, mostly by overexploitation of the
soil or deficiently-planned engineering projects [2]. Soil erosion by water is the most important
land degradation problem at a global scale, since it produces a strong environment impact and high
economic cost due to its effects on agricultural production, civil infrastructure, and water quality [3].
Therefore, in order to improve soil conservation measures, it is necessary to monitor areas that are
vulnerable to the effects of erosion.
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Studies about soil conservation and its main contributing factors have produced predictive erosion
models. Some of them are empirical (based on the evaluation of statistical-based coefficients that were
derived from field observations in several areas of the world) like the Revised Universal Soil Loss
Equation (RUSLE), and some of them are physical (determine certain parameters that represent the
mechanisms that control erosion) like the Water Erosion Prediction Project (WEPP) [4–7]. These models
allow predicting soil erosion and its impact in small regions. However, it is difficult to estimate erosion
precisely at a large scale due to the significant number of parameters involved and the complexity
of determining each one of them. Therefore, there is a need to develop new methods to determine
erosion parameters and their effects on soil loss.

The USLE model [8] included the following parameters: specific soil type, rain patterns, and the
region’s topographic properties. The revision to the USLE model (RUSLE) [7] improved measurement
methods for the original parameters and eased the use of computers for faster data processing, which
has caused this model to be frequently employed to predict annual average soil loss. The equation for
the RUSLE model includes six factors that numerically express the physical characteristics of erosion:

A = R× C× S× L× K× P, (1)

R is the rainfall erosivity, which is the erosive energy produced by precipitation and drainage;
this parameter is measured as the product of the storm’s total energy, E, by the maximum intensity
in a 30-min period. Crepresents the cover factor. It measures the combined effect of all interrelated
cover and management variables. In the case of forest basins, such as those presented in this work, the
C factor is dominated by vegetative cover. According to the RUSLE model [7], C = 1 represents bare
recently-plowed soil, C = 0.45 is used for unaltered bare soil, and C = 0 is employed for soil that is
completely covered. S and L determine the topographic conditions of the area, where L is the slope’s
length factor, which is scaled to a standard length of 22.13 m; and S is the slope’s steepness, which is
normalized to a standard 5.1◦. K is the soil erodibility and is based on the soils’s texture and structure.
P is the support practice factor and is used to represent soil management and conservation activities,
where a value of P = 1 represents a zone with no soil management practices.

From the ecological point of view, vegetation cover is defined as the different coverings that
protect soil from the direct action of precipitation. The vegetation cover factor can be easily measured
at a local scale in agricultural fields because it is generally homogeneous and the dimensions of the area
are well defined. However, it is difficult to quantify this factor at a regional scale because it requires a
large amount of time to take individual samples. Nevertheless, recent works have proven that erosion
can be estimated at the global scale with an innovative methodology for the C-factor [9]. This article is
one more step in that trend by proposing a new methodology that allows one to better determine the
vegetation cover factor, C, at a regional scale.

Current technology has made it possible to obtain satellite images easily and to develop
computational tools to extract and process the information needed to calculate some biophysical
properties at the Earth’s surface; for example, the Absorbed Photosynthetically Active Radiation
(APAR), the net CO2 exchange in a local ecosystem (NEECO2 ) [10], or the primary net production [11].
In particular, many methodologies have been developed to identify vegetation coverings, for example:
spectral classification methods [12–14], fractional vegetation cover methods [15], and vegetation
indices [16–22]. However, most of these methods have been designed to focus mainly on green
vegetation, and not on dry or dead vegetation, which are required by erosion models to assess the
vegetation cover factor [4].

This paper proposes a novel methodology based on a machine learning technique named Genetic
Programming (GP) to obtain accurate estimation of one of the main factors for the RUSLE model:
the vegetation Cover (C) factor. In this methodology, the problem of calculating the cover factor is
stated as an optimization problem, where the objective is to find the vegetation index that shows a
better correlation with the C factor from field data. In this way, the GP-based algorithm synthesizes new
vegetation indices by means of an iterative combination of arithmetic operators and spectral bands from
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satellite images. This paper is organized as follows: Section 2 presents a literature review of machine
learning-based methodologies for estimation of the cover factor for soil erosion assessment. Section 3
describes the proposed methodology. Section 4 presents the results of the applied methodology in two
semi-arid climate watersheds, and Section 5 presents the conclusions.

2. Related Work

In general, machine learning techniques allow one to analyze a set of data exhaustively and
generate results that might not be evident to the eyes of an expert. Therefore, these techniques have
been employed to derive new equations and mathematical models to represent complex systems and
interactions [23–25]. The following is an analysis of previous research that has employed machine
learning techniques to extract the C factor from satellite images. This paper classifies this research into
three different approaches: The spectral classification approach consists of obtaining a thematic map
by any classification method (maximum likelihood, ISODATA, K-means, object-oriented classification,
etc.), and once this map has been obtained, a C factor value is assigned to the map’s regions that
have similar surface coverage characteristics. The fractional vegetation cover approach is based on
the assumption that the spectral signature of a pixel is the linear combination of the elements that
the sensor records on the surface [26]. This technique is able to estimate the fractional abundance of
ground vegetation and bare soil simultaneously in one pixel. Finally, the vegetation index approach
applies arithmetic formulas to the spectral bands of a satellite image in order to enhance the signal
representing the vegetation cover. Then, the obtained indices are correlated with the C factor using
regression analysis (mainly linear regression).

An example of a spectral classification method was reported in [27], where a Land Transformation
model (LTM) and the USLE model were employed to derive land cover dynamics and predict soil
erosion. This study tried to identify and forecast future Land Cover (LC) using the LTM. The proposed
LTM applies artificial neural networks algorithms for predicting LC, by considering pixel variations
from the past and using spatial features. The researchers found that this approach is suitable for
forecasting LC and predicting the variability of the C map, at the expense of recording several years
of satellite images for the study area. A general limitation of spectral classification studies is that the
thematic map usually defines homogeneous regions that lack the variability needed to measure the
C factor precisely. Therefore, thematic maps are not an appropriate tool to reflect the natural spatial
variability of the C factor.

A predictive RUSLE model and the fractional vegetation cover method were used to estimate the
hillslope erosion hazard due to water erosion across New South Wales (NSW), Australia [28]. Values for
the C factor were obtained from the emerging time-series fractional cover products derived from the
Moderate Resolution Imaging Spectroradiometer (MODIS). Time-series C factor and hillslope erosion
maps were produced for NSW on monthly and annual bases for a 13-year period using automated
computer programs in a geographic information system. Although this study did not employ proper
machine learning techniques, the estimated C factor values had better consistency in spatial and
temporal contexts, compared with previous studies and field measurements in NSW.

Fractional vegetation cover methods have shown good performance in the classification at the
subpixel level because they provide more variability to the C factor maps. However, the main weakness
of these methods is the need to perform an efficient unmixing process in order to avoid misclassification;
thereby, it is necessary to know a priori the components being measured within a pixel.

In the literature reviewed for this article, it was found that the only machine learning studies that
have tried to use the synthesis of vegetation indices for the C factor are the works by Puente et al. [29]
and Trabucchi et al. [30]. In [29], a first approximation to the synthesis of vegetation indices using
Genetic Programming (GP) for the Todos Santos basin was reported with positive results; while [30]
showed how synthesized vegetation indices are able to identify areas prone to erosion in the Rio
Martin basin. Vegetation indices and specifically NDVI have been widely used in studies dealing with
landslide [31], susceptibility to soil erosion [32,33], and gully erosion [34]
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There are two main reasons for applying GP for synthesizing the C factor. The first one originates
because traditional vegetation indices are designed to measure the state of green vegetation; however,
erosion can be prevented even by dead and brown vegetation. This causes an imperfect correlation
between the traditional indices and the C factor; therefore, GP could be used as an attempt to generate
new indices that are more suitable for predicting the C factor. The second reason is that other machine
learning techniques provide positive results, but do not show how these results were derived. GP is a
technique that shows the combinations and operations that produced the resulting model [35].

This research proposes a new methodology based on GP with the objective of producing a precise
estimate for the RUSLE’s vegetation cover factor. In this methodology, the estimation is treated as
an optimization problem where the objective is to find the VIs with the strongest correlation to the
C factor obtained from field samples. The GP algorithm is applied to find new vegetation indices
based in the iterative combination of a set of numerical operations and spectral bands from satellite
images. A standardized method that would allow automating the derivation of the C factor could
be an important step towards improving the erosion estimation, as well as providing a significant
reduction in costs, thus allowing regional- and global-scale application [1,4].

3. Study Area

This study was performed using two different watersheds or basins with semi-arid climate (BSh
and BSk, according to the Köppen climate classification [36]): the Todos Santos watershed in Baja
California, Mexico, and the Rio Martin watershed in Spain. Both areas were divided into two sections:
one section provided samples for the training stage of the GP algorithm, while the other’s samples
were employed for the validation stage.

The Todos Santos watershed (Figure 1) is located in the northwest part of the Baja California
peninsula in Mexico [32]. It covers an area of 4900 km2, and its elevation varies between 0 and
1876 m a.s.l. This watershed has two large alluvial valleys at 300 m a.s.l.: Guadalupe and Ojos Negros;
and the city of Ensenada is located in a coastal plain at an average of 50 m a.s.l.

(a) (b)

Figure 1. (a) The Todos los Santos watershed in Baja California, Mexico and the areas sampled by this
study. (b) Land cover map for Todos Santos watershed [37]. The C factor value for each vegetation
cover according to [8] have been added.

The climate is Mediterranean with mild wet winters and warm dry summers. The annual mean
temperature is 16 ◦C ± 6 ◦C, and the mean annual rainfall is 315 mm; 85% of it falls in November and
April [38]. As can be observed in Figure 1b, the native vegetation is mostly shrubs, which includes
chaparral and coastal scrubs [37]. This type of vegetation covers 69% of the total area; agricultural
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land occupies 22% of the total area; while other covers, including permanent green woods and urban
zones, occupy the remaining 9%. Areas that have slopes with less than 2◦ are usually occupied by
agricultural land and shrubs, while areas with steeper slopes are mostly covered by shrubs [32].

The Rio Martin watershed (Figure 2) is part of a larger watershed, the Ebro River, in southeastern
Spain. It covers an area of 2111 km2, and its elevation varies between 143 and 1620 m above sea level.
This watershed is divided into two pluvial zones: the high zone has 764 km2, while the low zone
has 1347 km2. Each one has a dam, Escuriza and Cueva Foradada, respectively, which interrupts the
water’s natural flow and establishes an environment that has been altered by human activity [30].

The climate is Mediterranean with dry summers and winters. The annual mean temperature
varies between 13 ◦C and 16 ◦C, and the average annual rainfall is 360 mm; most of it falls in November
and April. The natural vegetation has been heavily modified by human activity, although it is still
characteristically Mediterranean. In the south, vegetation is dominated by low, dry weather-resistant
bushes, which have replaced woods degraded by farming and fires for over 5000 years. Towards the
north, bushes are substituted by oaks, thickets, and scrub. The highlands are 68% covered by native
thickets and bushes, as well as pine woods that have been recently reforested. The lower watershed is
mostly used for agricultural activities.

(a) (b)

Figure 2. (a) Map showing the Rio Martin watershed in Zaragoza, Spain (permission from Matta
Trabucchi). (b) Field sites’ location in Rio Martin watershed.

This paper describes how to calculate the vegetation cover factor C using satellite images’ data
from both watersheds. The analysis for Todos Santos will be discussed in Section 5.3, while the one
for Rio Martin has been already reported in [30], which used this information to propose restoration
activities in this watershed.

4. Methodology

Figure 3 shows a flowchart of the methodology followed in this paper. Its main objective is
to develop an automated process to define a Vegetation Index (VI) that is strongly correlated with
RUSLE’s C factor. This methodology may be divided into seven steps: (1) collecting field samples,
(2) acquisition and correction of the satellite images, (3) associating satellite images with field data,
(4) applying conventional VIs, (5) applying the GP algorithm, (6) the results’ evaluation, and (7) C
factor map and erosion map generation. The following subsections explain each of these steps.
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Figure 3. Flowchart of the methodology used to define the C factor from the VIs generated by the
Genetic Programming (GP) algorithm.

4.1. Collecting Field Samples

The procedure described in the RUSLE Manual [39,40] was employed to sample the field
parameters that determine the C factor; namely, canopy cover, surface cover, surface roughness,
prior land use, and soil moisture. This method was intended to be used in agricultural land with
homogeneous covering conditions; not in semi-arid natural fields, which is the case for the watersheds
in this study. However, in [41], the authors stated that for semi-arid watersheds with a low presence
of arable lands, prior land use and soil moisture contribute little weight to the final C value. Hence,
This paper decided to estimate the C factor by employing just three sub-factors that compose it [8]:
superficial cover percentage, aerial vegetation cover, and residual underground factor. The superficial
cover percentage may be obtained through the percentage and the height of aerial cover, while
the residual underground factor can be calculated through the roughness and the underground
biomass parameters.

Before the field data collection started, an analysis of both study areas was performed using
satellite images and topographical maps, to define representative sampling zones. Each of these zones
is called a sampling region, and they were selected to be areas of 100× 100 m with a high homogeneous
distribution for the vegetation cover, altitude, and slope. The field data collection process for Todos
Santos was performed between February and May 2007. In total, samples from 106 sites [41,42] were
taken; while for Rio Martin, 40 sampling regions [30] were sampled in January and February 2009.
The same procedure was employed for sampling both areas, the linear transect method [43,44]. In order
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to assign a single value to a complete transect, the average value of its 20 sampled points was used.
The following parameters were determined using this method:

• Superficial cover percentage (g). This was visually determined from 10 cm around a dropped
weight, otherwise known as the micro-plot. Each micro-plot was labeled with one of five different
classifications according to the percentage of ground covered by vegetation or rocks: 0 = 0–1%,
1 = 1–25%, 2 = 25–50%, 3 = 50–75%, and 4 = 75–100%.

• Percentage (p) and height (h) of aerial vegetation cover. The percentage, p, is obtained using a
similar method as for the superficial cover percentage: labeling a micro-plot according to the same
five classifications. However, the center of the micro-plot is not defined by a dropped weight,
but by the wire from which it hangs. The height, h, of the aerial cover for the sampling point is
defined by the plant or its ramifications that are closest to the ground (without touching it) and
touch the wire.

• Roughness (r) and underground biomass (b). Roughness, r, is evaluated according to the empirical
method proposed by [41] and Tables 5-5 and 5-6 from the RUSLE manual [7]. Underground
biomass, b, is inferred using the primary productivity method defined by [45]. For this study, b
was assumed to be uniform.

Using these parameters, the C factor for each sampling point was defined using Equation (2).
That equation was proposed by [41], which shows a good approximation to the values in Table 10 of
the USLE manual [8] for semi-arid climates:

C = 0.45(e[−0.012·b])· (1− p· e[−0.328·h])· e(−0.039·g·[ 0.24
r ]0.08). (2)

4.2. Satellite Image Acquisition and Correction

The images used to perform the field analysis came from the Landsat 5 satellite. Each image covers
a square area, where each side measures approximately 185 km, and includes the seven frequency
bands shown in Table 1. These cover the visible and infrared electromagnetic spectrums and have a
resolution of 30× 30 m per pixel. Band 6, thermal infrared, is not considered relevant for this type of
study [15,26,28–30,32]. Therefore, we decided not to use it.

Table 1. Satellite frequency bands.

Band Name Wavelength

1 Blue light (B) 0.45–0.52 µm
2 Green light (G) 0.53–0.60 µm
3 Red light (R) 0.63–0.69 µm
4 Near-Infrared (NIR) 0.76–0.90 µm
5 Shortwave Infrared Channel 1 (SWIR1) 1.55–1.75 µm
6 Thermal Infrared (TIR) 10.4–12.5 µm
7 Shortwave Infrared Channel 2 (SWIR2) 2.08–2.35 µm

The image taken when the Landsat 5 flies over the Todos Santos watershed is identified as “Path 39,
Row 037” [46]. A section of the Rio Martin watershed is included in “Path 199, Row 031” and another in
“Path 199, Row 032” [47]. It is necessary to correct these images to eliminate distortions, which modify
the information. These distortions and the process employed to correct them are described below:

• Atmospheric correction corrects image distortions caused by humidity and other gases in the
atmosphere. This research employed the Dark Pixel Correction (DPC) method [48]. Figure 4a,b
shows the atmospheric correction for the Rio Martin watershed.

• Radiometric correction diminishes the effects of sensor miscalibration. It also corrects the
distortions caused by the angle between the Sun and the satellite over the study area. In order to
correct the images produced by the satellite, researchers employ the parameters and methodology



Remote Sens. 2019, 11, 156 8 of 25

published by NASA for instrument recalibration and pixel reflectance values [49]. Figure 4a
shows two non-corrected images that were taken at different times; by applying the radiometric
correction (Figure 4c), the pixel values are normalized, and the results are comparable.

• Geometric correction adjusts the satellite images to the geographic coordinate system. To perform
this adjustment, Ground Control Points (GCP) located in the study area were obtained from the
U.S. Geological Survey (USGS) website [46].

(a) (b)

(c)

Figure 4. Atmospheric effects over the satellite image for the Rio Martin watershed. (a) Non-corrected
image, (b) image with atmospheric correction, and (c) image with radiometric correction.

4.3. Associating Satellite Images and Field Data

The next step is to associate the field data with their corresponding pixels in the satellite image for
each frequency band. A 3× 3 pixel window was employed to match each of the 100× 100 m sampling
regions defined in Section 4.1. The 9 pixel windows’ median value was used as a representative value
for each sampling site. This means that 106 + 40 median values were obtained for each band (146× 6).
These values were then divided into two sets: the training dataset includes 75 sampling regions from
Todos Santos and 27 from Rio Martin; while the test dataset includes 31 sampling regions from Todos
Santos and 13 from Rio Martin. The objective of defining these two sets is explained in Section 4.5.

4.4. Applying Conventional VIs

The 30 most-employed Vegetation Indices (VIs) in the literature were selected to perform a
correlation with data from the satellite images (Table 2). First, it was necessary to calculate the values
of the thirty indices for each sampling site in the training dataset. This generated 30 matrices of 102× 2,
where rows represent the 102 training sites and columns represent the VI value and its respective
C factor value. Then, the correlation coefficient, rx,y, between the two columns was calculated for
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the 30 matrices to obtain the correlation between the C factor and each VI. Since positive or negative
correlations are not important, only absolute correlation coefficient values |rx,y| were employed.

Table 2. The 30 most-employed VIs in the literature.

Indices Equation Ref.

RVI1 NIR
R [50]

RVI2 NIR
G

based on
[50]

RVI3 NIR
SWIR1

based on
[50]

RVI4 SWIR1
SWIR2

based on
[50]

RVI5 SWIR1
R

based on
[50]

RVI6 NIR
SWIR2

based on
[50]

NDVI NIR−R
NIR+R [51]

IPVI NIR
NIR+R [52]

DVI NIR− R [53]

SAVI (1 + L) NIR−R
NIR+R+L [54]

where L is a correction factor between 0 and 1

SAVI2

NIR
R+b/m

[55]where m and bare the slope and intercept of the soil line.
These parameters are used in the next six indices as well

MSAVI same that SAVI, but L = 1− 2m · NDVI ·WDVI [56]

MSAVI2 0.5[(2NIR + 1)−
√
(2NIR + 1)2 − 8(NIR− R)] [56]

TSAVI m(NIR−m·R−b)
R−m·NIR−m·b+X(1+m2)

[57]

OSAVI NIR−R
NIR+R+γ [58]

WDVI NIR−m · R [59]

PVI NIR−m·R−b√
m2+1

[60]

GEMI η(1− 0.25η)− (R− 0.125)/(1− R) [61]
where η = [2(NIR2 − R2) + 1.5NIR + 0.5R]/(NIR + R + 0.5)

ARVI (NIR− rb)/(NIR + rb); where rb = R− (B− R) [62]

EVI G[(NIR− R)/(NIR + C1 · R− C2 · B + L)] [63]where G = 2.5; C1 = 6; C2 = 7.5; L = 1.

GVI1 −0.2848B− 0.2435G− 0.5436R + 0.7243NIR + 0.0840SWIR1− 0.1800SWIR2 [64]

GVI2 −0.2778B− 0.2174G− 0.5508R + 0.7220NIR + 0.0733SWIR1− 0.1648SWIR2− 0.7310 [64]

GVI3 −0.3344B− 0.3544G− 0.4556R + 0.6966NIR + 0.0242SWIR1− 0.2630SWIR2 [64]

NDWI NIR−SWIR1
NIR+SWIR1 [65]

NDII SWIR1−SWIR2
SWIR1+SWIR2 [66]

SIWSI NIR−SWIR2
NIR+SWIR2 [67]

ANIR βNIR = cos−1( a2+b2−c2

2ab ) [68]
where a, b, and c are Euclidean distances between R, NIR and SWIR

SASI
βSWIR1 · (SWIR2− NIR)

[68]where βSWIR1 is defined like βNIR,
but a, b, and c are Euclidean distances between NIR, SWIR1 and SWIR2

SANI βSWIR1 · SWIR2−NIR
SWIR2+NIR [68]

βSWIR1 is defined like in SASI
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4.5. Applying the Genetic Programming Algorithm

This section describes how the information required by the GP algorithm is defined and organized.
First, the terminal and function sets are defined. Then, the fitness function is generated. Finally, the
algorithm’s control parameters and stop criteria are determined. An advantage of the GP is their
white box property. This means that solutions generated by GP can be analyzed, simplified, and
interpreted by an expert in the application area [69]. When a black box approach is employed, as
in neural networks or fuzzy logic, it becomes very difficult to identify the input primitives that are
relevant to the solution and how to employ them to estimate other indices. These three steps are
further described below:

4.5.1. Definition of the Terminal and Function Sets

The possible solutions for the GP process are codified as syntactic trees, which represent the
mathematical formula that defines a VI. For example, a syntactic tree for the NDVI is shown in Figure 5.
Reflectance values for the NIR and red bands are the tree leaves or terminals; while the arithmetic
operators (+,− and÷), which are internal tree nodes, are called functions. The set of allowed terminals
and functions is the primitives’ set of a GP system, which in turn represents the problem’s search space.

Figure 5. Syntactic tree for the NDVI.

The primitives’ set for this research is shown in Table 3. The components for this set were
established using the following criteria:

• Spectral bands represent the median value of the 3× 3 pixel window defined in Section 4.3, which
was extracted from each satellite image band: Blue (B), Green (G), Red (R), Near-Infrared (NIR),
Shortwave Infrared 1 (SWIR1), and Shortwave Infrared 2 (SWIR2).

• Spectral angles are the angles formed by each vertex in the electromagnetic spectrum for the
satellite image [68]. For example, βG corresponds to the combination of pixels from the B, G, and
R bands. The formula for this angle is:

βG = cos−1(
a2 + b2 − c2

2ab
) radians, (3)

where a, b, and c are the Euclidean distances between the vertices of the angle formed by B, G,
and R, respectively. Formula (3) is applied for each angle.

• Soil line parameters: This is the relationship between the R and NIR bands [70]. When these
bands are graphed in a dispersion graph, they tend to group pixels above a numeric threshold,
which is called the soil line. For this study, the slope and the intersect of the soil line are included
in the primitives’ set as a and b in Table 3.

• Best-performing conventional VIs: The five better performing conventional VIs in Section 4.4 were
selected. This performance is based in statistical significance [71], which is the probability that an
index has a random correlation value |rx,y|. For scientific research, the most common statistical
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significance value is 5%, which means that |rx,y| is significant if there is a 5% or less probability that
the index has happened by chance. The statistical significance, SS, for the correlation coefficient,
r, of a sample with N data is [71]:

SS =
r√
1−r2

N−2

(4)

The field samples from both watersheds were used in this research, so the sample size for
the training dataset was N = 102. Therefore, correlation coefficients greater than 0.39 will be
statistically significant for this experiment.
Besides the five indices, it was decided to include the NDVI and EVIindices since these are the
most used for scientific applications.

• Arithmetic operators: The function set is formed by the basic arithmetic operators (+, −, and ×)
since these are the operators usually employed for VIs. For this work, division (/) is substituted
by the compound operator Ratio Spectral Index (RSI) (see below).

• Compound operators: These represent complete arithmetic structures that have been previously
defined. This research includes two of the most-employed indices, NDVI and RVI. The first
structure is the Normalized Difference Spectral Index (NDSI) [72], which corresponds to
NDVI; while the second structure is the Ratio Spectral Index (RSI), which corresponds to RVI.
The definitions for these structures are:

NDSI[i,j] =
Ri − Rj

Ri + Rj
, (5)

RSI[i,j] =
Ri
Rj

, (6)

where Rk is the pixel reflectance value in band k.

Table 3. Primitives’ set elements for the Experiments Section. NDSI, Normalized Difference Spectral
Index; RSI, Ratio Spectral Index.

Elements Description

Terminals

B, G, R NIR, SWIR1, SWIR2 Satellite image’s spectral bands

βG, βR, βNIR, βSWIR1 Calculated spectral angles from the available bands

RVI1, RVI2, RVI4, RVI5 Best-performing conventional indicesGEMI, NDVI, EVI

a, b Slope and the intersect of the soil line

Functions

+, −, × Arithmetic operators

NDSI, RSI Compound operators

4.5.2. Fitness Function

The GP algorithm defines a fitness function to determine how close a solution is to achieving the
overall specification. For this study, it is based on the correlation coefficient rx,y between the C factor
and each index. The absolute value of the correlation coefficient is employed because this application
is looking for stronger correlations and not the direction. Therefore, the fitness function is defined as
the maximum of the correlation coefficients:

Q = max(|rx,y|) , such that rx,y =
cov(x, y)

var(x)var(y)
=

E((x− µx)(y− µy))

σxσy
, (7)
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where E is the mathematical expectancy, cov is the covariance, and var is the variance. x represents the
RUSLE’s C factor, while y is the VI generated by the GP algorithm.

4.5.3. Control Parameters and Stop Criteria

The control parameters for the GP algorithm will be described in Section 5.1.
Figure 3 shows the flow diagram of the methodology developed to generate the VIs that determine

the RUSLE’s C factor. After processing the images, an initial population is randomly generated by
combining the elements in the terminal and function sets. Then, each population individual is
evaluated using the fitness function. The indices are then ordered according to the results of this
function, where the best results are expected to survive and the worst will get discarded. At this point,
the genetic recombination takes place, where the best syntactic trees, which represent an index, are
combined using crossover and mutation operators. Finally, the next generation is formed by the best
indices between the parents and children. These steps are successively executed until the maximum
number of iterations is reached. The index with the greatest correlation value is considered the best
one and is the new synthetic index. This new index is called the Genetic Programming for Vegetation
Index, GPVIj, where j is the iteration number that generated the index.

4.6. Results’ Evaluation

The results’ evaluation was performed according to the two stages used in machine learning
theory: training and testing. Therefore, to evaluate the performance of each GPVI, the absolute
difference between the correlation coefficients from the training stage and from the test stage
was employed.

D = |rtrain − rtest| (8)

Besides evaluating each GPVI, each element that forms the primitive set was evaluated.
This evaluation was done by using the Frequency Of Use (FOU) unit, which measures the capacity
of a GP function to recognize patterns [25]. Counting the frequency of use of each element in the
primitives’ set can be considered as an impact index to reflect the relative importance of the element.
Thus, it was possible to determine the important components to measure the RUSLE’s C factor from
satellite images.

4.7. Generating the C Factor Map and the Erosion Map

Finally, a linear transformation was performed to convert each GPVI’s numerical scale to the
C factor’s numerical scale. Thus, it is possible to produce a C factor map. Once the C factor map
is generated, it can be used to feed the RUSLE’s model formula to obtain the erosion estimation
(Equation (1)). Since the principal contribution of this research was the C factor methodology, the other
RUSLE factors (R, K, L, S, and P) were determined by using the methodology proposed by [32] and
the ArcGIS c©geographical information system (R, K, LS, and P calculations were performed based on
Appendix A of [32], which is publicly available at http://www.esapubs.org/archive/appl/A017/052/
appendix-A.htm). All the factors of the RUSLE model, except for C, remained unchanged throughout
the experiments carried out in the next section. The numerical values used for each factor are reported
in Section 5.3.

5. Experiments and Results

This section describes the experiments and results that measure the efficiency of the GP method
developed for synthesizing VIs. In order to prove this efficiency, the GP algorithm needs to perform
the following tasks correctly: (1) identify the satellite images’ spectral bands that predict the C factor;
(2) generate C factor maps that match the field data; (3) generate erosion maps that approximate the
erosion calculated from the C factor field data.

http://www.esapubs.org/archive/appl/A017/052/appendix-A.htm
http://www.esapubs.org/archive/appl/A017/052/appendix-A.htm
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5.1. Implementing the GP Algorithm

The methodology described in Section 4.5 was implemented using MATLAB’s GPLab genetic
programming toolbox [73]. GPLab has three main sections: initial population, new generation criteria,
and population management. For each section, the toolbox requires the user to provide parameters to
define the behavior of the algorithm. These parameters are described below.

• Initial population: This section generates the initial population and evaluates it according to the
fitness function (correlation coefficient) defined in Section 4.5. Population individuals may be
generated according to one of three methods: full, grow, and ramped half-and-half. For the full
method, the syntactic tree will include all possible nodes at each level (Figure 6a). The grow
method generates a random number of nodes at each level, which may generate unbalanced trees
(Figure 6b). The ramped Half-and-half method generates half of the tree using the full method
and the other half using the grow method. This research employs this last method because it
generates trees with a wide variety of sizes and shapes.

(a) (b)

Figure 6. Methods to grow a population using GPLab. (a) Full: all possible nodes at each level.
(b) Grow: random number of nodes at each level. The ramped half-and-half method means that half
the population follows the full method and the other half the grow method.

• New generation criteria: This section creates a new generation of individuals (children) by either
applying genetic mutation operators or crossover (genetic reproduction) to the individuals of the
previous population (parents). The following methods may be used to select the next generation’s
parents: roulette, stochastic universal sampling, tournament, and lexicographic parsimony
pressure tournament [35]. This last method is a special case of the tournament method where
competing individuals with the same performance, following the fitness function, are selected
according to the one that has the least complexity or the fewer number of nodes. This gives
the advantage to simpler VIs that compete against conventional indices and is the reason why
lexicographic parsimony pressure tournament was selected as the new generation method.
Once the parents have been selected, either mutation or crossover is applied depending on
a user-defined probability parameter. Usually, the mutation’s probability is lower than the
crossover’s. For this experiment, the crossover probability was 0.7, while the mutation probability
was 0.3. The new individuals were evaluated according to the fitness function, and then, these
individuals and the best parents became the parents for the next generation. For this research,
only the best individual in each generation was preserved for the next generation; this is called
the elitist parameter. This procedure was repeated until a stop criteria was met, which for this
research was when 50 generations had been produced. This number was employed because the
algorithm stopped producing better individuals after 35 iterations.

• Population management: Also called a code bloat in GP parlance, it limits the complexity of
individuals. Three parameters are used to define this section: tree depth, maximum dynamic
depth, and real maximum depth. If a new individual has a depth greater than the one defined at
the beginning, the individual is automatically discarded regardless of the performance provided
by the fitness function. This avoids an uncontrolled growth of the syntactic trees that generate the
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population. The tree depth has two possible values: strict means that the previous rule always
applies, while dynamic allows one to preserve individuals that have a better performance than
any other previous individual. The dynamic approach verifies that the new individual’s depth is
greater than the maximum dynamic depth, but smaller than the real maximum depth. In such a
case, the algorithm allows the new individual to survive and sets the maximum dynamic depth
to the new individual’s depth value. If later on, there is a better individual with a smaller depth,
the previous individual is discarded, and the maximum dynamic depth moves down to the new
individual’s depth. In this research, individuals represent a VI in a syntactic tree. Figure 5 shows
that the depth of the NDVI syntactic tree was three. The greater the depth of the tree, the greater
the complexity; therefore, it is desirable that the GP-synthesized indices have a similar complexity
to the conventional indices. Thus, the maximum dynamic depth was set to three, and the real
maximum depth to four.

Multiple experiments were performed to determine some of the parameters employed in this
study, while others used values that have been reported to provide good performance for different
applications [35,74].

5.2. Methodology Performance Analysis

The current study proposes a methodology for synthesizing VIs that could be used in both
watersheds. Two different hypothesis have been proposed to achieve this objective:

1. The synthesized indices from one watershed produce a good approximation when applied to the
other watershed.

2. The combined synthesized indices from both watersheds produce a good approximation when
they are later applied to each watershed.

5.2.1. First Hypothesis

The first hypothesis was tested using the procedure described in Section 4 to obtain 30 synthesized
indices for each watershed, which have been reported in [29,30]. Figure 7a–c shows the correlation
coefficient for the five best conventional indices for each watershed and their combined data, against
their best-performing synthetic index in the training and test phases.

The 30 indices generated for Todos Santos were correlated with the field data from Rio Martin.
Conversely, 30 indices generated for Rio Martin were correlated with data from Todos Santos. Table 4
shows the confusion matrix generated by the data from both watersheds. The matrix’s main diagonal
contains the performance of the indices generated using the original field data from each dataset.
The other elements show the performance of the Todos Santos’ index in Rio Martin (Row 1, Column 2)
or the performance of the Rio Martin’s index in Todos Santos (Row 2, Column 1). These correlation
values are low and suggest that the first hypothesis is false. Therefore, it is possible to conclude that
indices generated from one of these watersheds may produce low performance (correlation) when
applied to the other watershed.

Table 4. Confusion matrix showing the measured (correlation) performance |rx,y| when applying the
Todos Santos synthesized indices to the Rio Martin watershed, and vice versa.

Todos Santos Rio Martin

Todos Santos
0.633 ± 0.01 0.323 ± 0.010

Max. 0.65 Max. 0.363
Min. 0.614 Min. 0.290

Rio Martin
0.329 ± 0.11 0.731 ± 0.044
Max. 0.401 Max. 0.829
Min. 0.137 Min. 0.613
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(a) (b)

(c)

Figure 7. Performance comparison between the conventional and synthetic VIs for the different
experiments performed. (a) Todos Santos, (b) Rio Martin, and (c) combined data from both watersheds.

5.2.2. Second Hypothesis

This hypothesis was tested using the methodology introduced in Section 4. The training phase
employed 102 sample points: 75 from Todos Santos and 27 from Rio Martin. While the testing phase
used 44 sample points: 31 from Todos Santos and 13 from Rio Martin.

The satellite image corrections described in Section 4.2 were performed, and these images were
associated with the corresponding sample points (Section 4.3). Then, the 30 conventional indices from
Table 2 were correlated to the field data from each watershed, as described in Section 4.4. The 10
best-performing indices are included in Table 5. GVI3had the best performance, followed by NDVI,
GEMI, and the two indices derived from RVI: RVI5 and RVI4. Two indices from the SAVIfamily
were also included: TSAVIand OSAVI. Importantly, the performance of the conventional indices was
low, when correlated to the C factor: the average |rx,y| for the top 10 indices was 0.417 ± 0.101.

Table 5 shows that no strong correlation values were found between the most-employed VIs and
the field data. This is expected in arid areas since VIs have good correlation with abundant and green
vegetation, but as the green vegetation decreases, so do the correlation values [4]. However, the state
of vegetation is not that important for erosion models, since dry vegetation provides almost the same
protection as green vegetation [75]. Even with these obstacles, VIs have been widely employed to
extrapolate C factor values for different regions [32,75–78].

Table 5. Conventional vegetation indices (Table 2) with the best performance for the combined data
from both watersheds. Performance was measured by using the correlation factor (|rx,y|).

Index GVI3 NDVI GEMI RVI5 RVI4 SASI NDII OSAVI RVI1 TSAVI

|rx,y| 0.541 0.538 0.525 0.503 0.437 0.349 0.341 0.328 0.309 0.302
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The seven best VIs from Table 5 were included in the primitive set. The EVI index was also
included in this set because it is widely employed in scientific applications. Then, the algorithm was
executed 30 times, and in each execution, the best individual was allowed to continue and was named
the Combined data Genetic Programming for Vegetation Index in execution j, CGPVIj.

Table 6 shows the performance of each CGPVIj produced by the GP algorithm. This performance
was the difference between the rtrain and rtest correlation coefficients. From Tables 5 and 6, it is
possible to determine that indices synthesized by the GP algorithm had a better performance than the
conventional ones. This result was supported by the average rtrain value for the CGPVIs (0.88 ± 0.007)
and the average rx,y for the top ten conventional VIs (0.417± 0.101). Moreover, all the CGPVIs in Table 6
were statistically significant [71] and produced a better correlation coefficient than the conventional
index with the best coefficient, as can be seen in Figure 7c.

Table 6. Synthesized VIs for the GP method using the combined data from both watersheds.
Performance was measured through the correlation factor (|rx,y|).

Index Formula |rtrain| |rtest| Dif.

CGPVI1 RSI(RSI(b + R, RSI(NDVI, R)), G + 2 · NDII) 0.887 0.849 0.037

CGPVI2 (NDII + Bl)× RSI(βR, NDII)× R× βR × βR 0.884 0.787 0.097

CGPVI3 (R− NDII)× (GEMI − NDII)× RSI(B, EVI) 0.890 0.828 0.061

CGPVI4 RSI(RVI4× R, NDII)× βR × βR × R× RVI4 0.878 0.811 0.067

CGPVI5 βSWIR1 × βSWIR1 × R× G× (R− G) 0.861 0.899 0.038

CGPVI6 RSI(RSI(RSI(R, NDII), GEMI −m), NDVI) 0.869 0.768 0.102

CGPVI7 RVI4× RVI4× βR × R× R× RSI(βR, NDII) 0.881 0.813 0.068

CGPVI8 R× R× RSI(βR, NDII)× RVI4× RVI4 0.875 0.809 0.066

CGPVI9 RSI(βR, NDII)× R× R× βR × βR × RVI4 0.881 0.805 0.075

CGPVI10 RVI4× RVI4× R× RSI(βR, NDII)× βR × βR 0.880 0.807 0.073

CGPVI11 RSI(RSI(R, NDVI), RVI4)× RSI(RSI(R, RVI4), RVI4) 0.882 0.840 0.042

CGPVI12 NDSI(NDII, SWIR1)× R× SWIR1× NDSI(NDII, SWIR1)× 0.898 0.851 0.048NDSI(βSWIR1, RVI5)

CGPVI13 NDSI(R, NDII)× B× SWIR2 0.879 0.829 0.050

CGPVI14 NDSI(RSI(NDII + R, RSI(NDII, R)), βG) 0.878 0.840 0.038

CGPVI15 (RVI4− 2 · NDVI)× R× RSI(βR, NDII) 0.877 0.795 0.083

CGPVI16 βR × βR × βR × RSI(G, NDII)× R 0.879 0.783 0.096

CGPVI17 RSI(R× R× RVI4× βR, NDII) 0.873 0.801 0.072

CGPVI18 RSI(RSI(R, NDVI), NDII)− RVI5− βR − NDII 0.872 0.766 0.105

CGPVI19 RSI(RSI(SWIR2, NDVI), NDVI) + RSI(RSI(R, NDII), NDVI) 0.876 0.740 0.136

CGPVI20 RSI(RSI(βR, NDII) + RSI(βSWIR1, NDVI) + RSI(RSI(NIR, R), R) 0.878 0.788 0.090

CGPVI21 NDSI(R, NDII)× B× NDSI(NIR, NDII × R 0.890 0.809 0.081

CGPVI22 β2
R ×m× R× (RSI(R, NDII) + βR) 0.881 0.832 0.049

CGPVI23 RSI(RSI(βR, RSI(NDII, R)), RSI(RSI(NDVI, RVI4), βR)) 0.877 0.769 0.108

CGPVI24 RSI(βR × RVI4, NDII)× β2
R × R× R 0.878 0.804 0.074

CGPVI25 RSI(R, NDVI)× (SASI + βR)× (βR + RSI(NIR, NDII)) 0.881 0.785 0.096

CGPVI26 NDSI(NDSI(GVI3× R, NDII), NDSI(R, RSI(NDII, R))) 0.898 0.865 0.033

CGPVI27 RSI(RSI(βR, RSI(NIR, R)), RSI(NDII, R)) 0.872 0.782 0.090

CGPVI28 RSI(RSI(RSI(RVI4, NDVI), RSI(b, R)), RSI(NDTI, 0.873 0.751 0.122RSI(RVI4, βNIR)))

CGPVI29 RVI4× RVI4× RSI(βR, NDII)× R× R× βR × βR 0.881 0.813 0.068

CGPVI30 (RVI4− NDVI)× (RVI4× R× βR × βR × RSI(βR, NDII) 0.882 0.807 0.075
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The importance of each element in the primitive set was evaluated by means of the FOU
unit. Figure 8 shows that the most-employed spectral band was R, since it is present in all the
indices. The second most-employed bands were SWIR1 and SWIR2, which are implicitly used in
the conventional NDTI (93.33%). Moreover, considering that RVI4’s percentage was 43.33% and the
ones for SWIR1 and SWIR2, when used explicitly, were 3.33% and 6.67%, respectively, it is possible to
conclude that SWIR1 and SWIR2 were also employed by the 30 GP-synthesized indices. NIR was
the fourth most-employed spectral band, as it was employed in 29 synthetic indices (90%) when
both explicit and implicit occurrences were counted. These percentages allow hypothesizing that R,
NIR, SWIR1, and SWIR2 are the best spectral bands to approximate the C factor from the satellite
images; especially when considering that the two remaining spectral bands, B and G, do not have
high FOU percentages, 20% and 60%, respectively. These results suggest that the GP algorithm is
able to define a function using the four most-cited bands to approximate the C factor [16,50,64,68,79].
This experiment confirms an observation previously published in [29]: NDVI, the most-employed
index in other applications, had a low FOU value: 36.330.

Figure 8. Frequency Of Use (FOU) for the elements that form the primitive set for the combined field
data for both watersheds using the LandSat-TM sensor. The maximum possible value is 100%.

For the elements in the function set, the most-used operator was RSI with 90%. The fact that
the GP algorithm favored the RSI structure in this experiment supports previous arguments by other
researchers [72,80], which concluded that this ratio diminishes the effects of the noise produced by
the terrain’s topography, the position of the Sun with respect to the position of the satellite, and
other atmospheric conditions. However, the NDSIoperator FOU percentage was 16.66%, which is low
compared with the results obtained when data from both watersheds were employed separately [29,30].
Nevertheless, it must be considered that the conventional NDII(93.33%) employed the NDSI structure.

In order to obtain the erosion rate in Todos Santos, it was necessary to build C factor maps using
the best-evaluated synthetic indices. However, the numeric scale for these indices had a different
range from the C factor’s. For example, NVDI’s range is −1–1, while the C factor scale’s range is 0–1.
MATLAB’s cftool was employed to perform linear transformations between the different VIs and the
C factor. This tool recursively fits data points to a line, thus allowing one to transform values between
different numeric ranges. The transformation provided by this tool was employed to generate C factor
maps for the best CGPVI indices.
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The two best-performing indices were selected to analyze their effectiveness by means of the C
factor and erosion maps. The best solution should be the one that produces the smallest difference
for Equation (8). Then, following the data from the last column of Table 6, the best indices were
CGPVI26 and CGPVI1. The equation for these indices was applied to the satellite image (Figure 9).
The adjustment criteria proposed by [32] were employed to include non-vegetation coverings in
these maps: negative C values were set to zero; values greater than or equal to 0.45 in agricultural
areas were set to C = 1.0 (recently-plowed soil); all bodies of water had a value of C = 0; finally,
heavily-paved urban areas were set to C = 0.02. To complete this analysis, the comparison included
the C factor maps from the best-performing conventional indices: GVI3 and NDVI (Figure 10).
Moreover, the adjustment criteria proposed by [32] were also employed in these maps, in order
to include non-vegetation coverings. The range for these maps was [0.0, 1.0], and their averages
were 0.0575 ± 0.1029 for CGPVI26 and 0.0535 ± 0.0993 for CGPVI1. Conversely, the average for
the conventional indices’ maps was 0.0986± 0.1257 and 0.1088± 0.1298, respectively. To ease the
comparison of these results, the C values have been divided into ten different intervals.
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Figure 9. C factor maps produced by the best performing CGPVIs: (a) CGPVI26 and (b) CGPVI1.
The pixel histogram for each map is included.

Figures 9 and 10 show that C factor maps produced by the CGPVI26, CGPVI1, GVI3, and NDVI
indices. At first sight, these maps look similar and reflect the conditions of the main vegetation
coverings. However, analysis of the histogram for each map reveals differences in the number of pixels
in each classification. The histograms from Figure 9 have two maximum values in the first and fifth
interval. This suggests that a large portion of the area had C values in the [0, 0.001] and [0.02, 0.05]
ranges, which corresponds to abundant vegetation coverings: between 80% and 90% of the superficial
area, according to Table 10 in the USLE’s protocol [8]. These results match the field observations in the
Todos Santos watershed, which is predominantly covered by shrubs (Figure 1b).
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In contrast, the maps for the GVI3 and NDVI indices (Figure 10) had maximum values in the
first and seventh classification, which means that a large portion of the watershed had C values
in the [0, 0.001] and [0.1, 0.2] ranges. This latter value corresponds to a semi-sparse cover, which
occupies between 30% and 40% of the surface and could be explained by NDVI’s low performance
for detecting dry vegetation, which causes an over-estimation of the C values. The same effect
can be seen in Figure 10b, where NDVI was not able to detect dry grassland at the center of the
watershed, contradicting the information from Figure 1b. In contrast, the maps in Figure 9 were able
to record a more diverse set of C values for this area because these indices employ the shortwave
infra-red bands (SWIR1 and SWIR2), which distinguish between dry vegetation and bare soil [68].
Following these observations, it is possible to assert that the two CGPVI indices analyzed were able to
distinguish between areas of dry vegetation and areas of bare soil because they employed the combined
information of the best spectral bands for calculating the C factor: NIR, R, SWIR1, and SWIR2.
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Figure 10. C factor maps produced by the best-performing conventional VIs using combined field data:
(a) GVI3and (b) NDVI. The pixel histogram for each map is included.

5.3. Erosion Rate Analysis for the Todos Santos Watershed

This section analyzes the erosion maps generated by the indices synthesized in the previous
section for the Todos Santos watershed. A similar analysis, but for the Rio Martin watershed, was
previously reported in [30], where the synthetic indices were employed to evaluate erosion caused by
coal mining.

After synthesizing the new indices and selecting the best ones for generating the C factor’s map,
an erosion map can be finally produced. The RUSLE’s R factor was obtained by using the method
by [81], which estimates this factor using a regression analysis from the annual precipitation record in
the watershed. These records were obtained for Mexico’s Comisión Nacional del Agua (CNA) [38].
Thus, the R value recorded for the whole watershed was 51,000 MJ·mm·km−2·h−1·year−1. The L and
S factors were simultaneously obtained from a digital elevation model, following the procedure by [82]
and [83]. The digital model employed for this research was produced by Mexico’s Instituto Nacional
de Estadística y Geografía (INEGI) [84]. The K factor was set using the soil texture method described in
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the RUSLE protocol [7]. For Todos Santos, the soil texture data were obtained from INEGI’s soil profile
reports [85]. The P factor was set to a value of one for the whole watershed, since soil conservation
practices for this region are limited.

For each of the erosion maps, the RUSLE’s factors R, L, S, K, and P were defined as described
before. However, the C factor varies according to the factor maps generated previously. This is
shown in Figure 11, which includes the erosion maps obtained from the CGPVI1 and GVI3 indices.
CGPVI1 was the synthetic index with the best performance, while GVI3 was the best-evaluated
conventional index.

(a) (b)

Figure 11. Erosion maps generated by the best-performing synthetic indices. (a) Map based on CGPVI1.
(b) Map based in the conventional GVI3. For a better visualization, scale has been transformed for a
better comparison.

Table 7 shows the erosion rates obtained from the sampling points in Todos Santos using the
different C factor maps. The first row shows the average erosion rate from the field data. The best
approximations to these data were produced by the synthetic vegetation indices: the average erosion
rate from the CGPVI26 was 99± 217; while for CGPVI1, it was 111± 279. These erosion rates were
not as high as the one from the best-performing conventional index, GVI3, which was more than
five-times the average rate from real data (377± 780). The last row of Table 7 shows the erosion rate
obtained by applying a spectral classification method to get the C factor. A land cover map of the
study area was obtained from the Comisión Nacional Forestal (CONAFOR) [37], and it is shown in
Figure 1b. C values’ labels were assigned according to vegetative covers in Table 10 from the USLE
protocol [8]. It can be seen that the classification cover method yielded an erosion rate that was twice
the value obtained from the field data.

Table 7. Average and standard deviation for the erosion rate from the sampling points for the training
set. Each row shows a different method to calculate C.

Method employed to calculate C Erosion (Mg·km−2·year−1)

Field data 76.6± 153.6

Indices generated from field data from the Todos Santos and Rio Martin watersheds

CGPVI26 99.5± 216.8
CGPVI1 111.1± 278.7
GVI3 376.5± 780.3

Spectral classification method

Spectral classification method 170.6± 358.8
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The classification method for the land cover, which produced an average erosion rate equal to
170± 358, was not as good as the synthetic indices. Among them, CGPVI26 had the best fit, since it
produced an average rate closer to the one obtained from the field data. This difference can be seen in
Figures 9 and 10, where the map produced by CGPVI26 had greater spatial variability than the one for
GVI3. For example, GVI3 was not able to detect the dry grassland area in the south portion of the Ojos
Negros valley and treated it as bare soil, which produced a high C value; while CGPVI26 was able to
assign different C values for this same area and produced a more precise erosion map.

6. Conclusions

The field data from the Todos Santos and Rio Martin watersheds were combined into a single
dataset, which was then correlated with satellite images. The best-performing indices were CGPVI26,
CGPVI1, and CGPVI14, which were able to obtain rx,y values of 0.898, 0.887, and 0.878, respectively.
These indices produced better results than the best-performing conventional indices, which were
GVI3 with rx,y = 0.541 and NDVI with rx,y = 0.538. The results indicate that these indices produced
erosion rates with greater values than the real ones. For example, the erosion maps based on CGPVI26
produced an average rate of 99.5 ± 216.8 Mg·km−2·year−1, while the rate measured by the field
experiment was 76.6± 153.6 Mg·km−2·year−1.

These results suggest that genetic programming is a useful tool to discover the spectral band
combinations that identify the main elements to estimate the RUSLE’s C factor. The methodology
employed in this research was able to determine that bands R, NIR, SWIR1, and SWIR2 were
the most appropriate to calculate the C factor. The GP algorithm was also able to identify RSI
and NDSI arithmetic structures, which have been used before to diminish the effects of the noise
caused by topography, variations of the angle between the Sun and a satellite, and the atmospheric
conditions [72,80].

Another conclusion from this research is about the generality of the methodology developed
to identify a C factor approximation. A first experiment employed field data with the objective of
finding if the synthesized indices for one watershed could be effective when applied to the other
one. The results of this experiment suggest that this is not possible. This suggests that, although both
watersheds in this research have similar topography and climate, their particular characteristics are
too complex to allow grouping them using a single vegetation index.

Nevertheless, this work shows that combining the field data from two watersheds in a single
dataset yields the design of VIs that obtain better correlation with the C factor than VIs synthesized from
just one watershed. Hence, it is concluded that it is necessary to continue exploring the applicability of
the proposed methodology in other watersheds that have different conditions. As this methodology
is applied to different areas, it might be possible to identify a pattern of the elements and arithmetic
structures that produce the best indices. This information would give certainty about those indices,
preventing the need to synthesize new indices. A validated index could be executed as often as
required. This fact opens the possibility, as future work, of applying this methodology to novel soil
erosion models, such as G2 [86] and others.

This paper’s contribution improves on previous methods to calculate RUSLE’s C factor and allows
generating more precise erosion maps, which should motivate others to continue exploring the use of
genetic programming for remote sensing applications.
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