
remote sensing  

Article

Rapid Relocation Method for Mobile Robot Based on
Improved ORB-SLAM2 Algorithm

Guanci Yang * , Zhanjie Chen * , Yang Li and Zhidong Su

Key Laboratory of Advanced Manufacturing Technology of Ministry of Education, Guizhou University,
Guiyang 550025, China; liyanggzu@163.com (Y.L.); suzhidong2016@163.com (Z.S.)
* Correspondence: gcyang@gzu.edu.cn (G.Y.); chenzhanjie0320@163.com (Z.C.); Tel.: +86-851-84737007 (G.Y.)

Received: 24 November 2018; Accepted: 10 January 2019; Published: 14 January 2019
����������
�������

Abstract: In order to realize fast real-time positioning after a mobile robot starts, this paper proposes
an improved ORB-SLAM2 algorithm. Firstly, we proposed a binary vocabulary storage method
and vocabulary training algorithm based on an improved Oriented FAST and Rotated BRIEF (ORB)
operator to reduce the vocabulary size and improve the loading speed of the vocabulary and tracking
accuracy. Secondly, we proposed an offline map construction algorithm based on the map element
and keyframe database; then, we designed a fast reposition method of the mobile robot based on the
offline map. Finally, we presented an offline visualization method for map elements and mapping
trajectories. In order to check the performance of the algorithm in this paper, we built a mobile robot
platform based on the EAI-B1 mobile chassis, and we implemented the rapid relocation method of the
mobile robot based on improved ORB SLAM2 algorithm by using C++ programming language. The
experimental results showed that the improved ORB SLAM2 system outperforms the original system
regarding start-up speed, tracking and positioning accuracy, and human–computer interaction. The
improved system was able to build and load offline maps, as well as perform rapid relocation and
global positioning tracking. In addition, our experiment also shows that the improved system is
robust against a dynamic environment.

Keywords: ORB-SLAM2; binary vocabulary; small-scale vocabulary; rapid relocation

1. Introduction

With the rapid development of robotics, the localization and navigation of mobile robots have
attracted the attention of many scholars [1,2], and it has become a hot-spot in the field of robotics
research. Currently, the localization and navigation of robots mainly rely on SLAM (Simultaneous
Localization and Mapping) [3], which can conduct real-time localization and environmental
reconstruction in the unknown environment.

The current SLAM technology mainly includes Lidar-based SLAM [4] and Vision-based SLAM [5].
Laser SLAM is a relatively mature method of SLAM, which has been successfully applied to a variety
of commercial products. However, the map information constructed by Lidar-based SLAM is too
simple to enable the robot to obtain more abundant environmental information for other intelligent
tasks. Visual SLAM has been a rapidly developing SLAM solution in the past ten years, which can
reconstruct 3D environment maps using a camera sensor. Besides, the image contains a wealth of
object information which can help the robot complete a variety of intelligent tasks based on vision.
ORB-SLAM [6], proposed in 2015, is the representative of visual SLAM. With the support of various
optimization mechanisms, its real-time and positioning accuracy is at a high level, but there are still
some problems, such as monocular scale uncertainty and tracking loss. ORB-SLAM2 [7], which was
proposed in 2016 as an improved version of ORB-SLAM, added support for the stereo camera and

Remote Sens. 2019, 11, 149; doi:10.3390/rs11020149 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-8761-5195
https://orcid.org/0000-0001-8111-7355
https://orcid.org/0000-0002-3006-7420
https://orcid.org/0000-0001-6592-0666
http://dx.doi.org/10.3390/rs11020149
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/11/2/149?type=check_update&version=2


Remote Sens. 2019, 11, 149 2 of 21

RGB-D camera, as well as improved robustness against environmental changes and violent movement;
however, when the target platform is a mobile robot, ORB-SLAM2 has the following disadvantages:

1. Slow start-up. The ORB-SLAM2 system needs to read a large-scale text format vocabulary for
loop closure detection during start-up, but after testing, the process is very time-consuming and
takes up most of the time spent in the start-up process.

2. The vocabulary has a large amount of invalid data when the robot’s working environment is
relatively fixed. ORB-SLAM2 provides a vocabulary based on a large dataset, which enables
ORB-SLAM2 to maintain high accuracy in different environments. However, when the working
environment of the robot is relatively fixed, it still takes much time to read a large amount of
invalid data in the vocabulary.

3. The map cannot be saved and reused. ORB-SLAM2 cannot save and load maps, so the robot
needs to "relearn" its work environment when it starts up every time. If the ORB-SLAM2 system
could save the map and reuse it, it would save many computing resources and improve the
efficiency of the robot.

4. Lack of offline visualization of map and trajectory. ORB-SLAM2 provides real-time visualization,
but users usually do not pay attention to the real-time status of the mapping but view the map
and track information after the system is finished. However, ORB-SLAM2 does not provide
offline visualization of maps and mapping trajectories.

Because of the above disadvantages of the ORB-SLAM2 system, this paper proposed a rapid
relocation method for the mobile robot based on an improved ORB SLAM2 algorithm.

The main contributions of this paper are summarized as follows:

• A binary-based vocabulary storage method is designed to convert the text-format vocabulary into
a binary format without data loss. This method can improve the vocabulary loading speed of
the system.

• A vocabulary training algorithm is proposed based on an improved ORB operator, which is used
to train the small-scale vocabulary to improve localization accuracy and reduce vocabulary size.

• An offline map construction algorithm is proposed based on map elements and a keyframe
database, and we also designed a fast relocation method based on the offline map.

• We designed an offline visualization method for the map and mapping trajectory of the
ORB-SLAM2 system.

The rest of the paper is organized as follows. Section 2 is a review and analysis of related research.
Section 3 introduces the main threads and core algorithms of ORB-SLAM2. Section 4 presents our
improvements to the ORB-SLAM2 algorithm. In Section 5, we test and analyze the method of this paper
based on the robot platform. Section 6 summarizes this paper and discusses future research directions.

2. Related Work

In order to make Visual SLAM better for mobile robots, Davison et al. proposed MonoSLAM [8]
as the first high frame-rate, real-time Monocular SLAM solution. The algorithm creates a sparse but
stable map of landmarks based on a probabilistic framework, and solved the problem of monocular
feature initialization, among others. However, as this work was based on the EKF (Extended Kalman
Filter) algorithm [9], it caused a problem with error drift; the landmarks map are also sparse, making it
easy for the system to lose tracking. In order to solve the linearization error caused by the EKF, UKF
(Unscented Kalman Filter) [10] and improved UKF [11] were proposed and applied to Visual SLAM
to improve the linearization uncertainty. Moreover, Sim et al. [12] proposed a particle filter-based
monocular SLAM algorithm to avoid linearization. However, although the above method improves
accuracy, it also greatly increases the computational complexity. Klein and Murray et al. [13] proposed
a keyframe-based monocular SLAM algorithm, called PTAM (parallel tracking and mapping). The
algorithm introduced a keyframe extraction method, and for the first time, divided the tracking and



Remote Sens. 2019, 11, 149 3 of 21

mapping into two parallel threads. Besides, PTAM used nonlinear optimization instead of the EKF
method to eliminate the linearization error problem, which improved the location accuracy of the
system. However, this study did not pay attention to the global optimization problem of the PTAM,
which caused the system to lose tracking easily in a large-scale environment. Engel et al. proposed
the Large-Scale Direct Monocular SLAM (LSD-SLAM) [14] algorithm, which is the monocular SLAM
algorithm based on the direct method. LSD-SLAM can construct a semi-dense global consistent map,
which is a more complete representation of the environmental structure than a point-cloud map based
on the feature method. In addition, LSD-SLAM presents a novel direct tracking method which can
accurately detect scale drift, and the algorithm can run in real time on the Central Processing Unit
(CPU). However, this work still did not solve the gray-scale invariant hypothesis of the direct method,
which made the performance of LSD-SLAM decrease rapidly when the robot was working in an
environment with frequent illumination changes.

Focusing on the localization and navigation of the robot in an indoor environment, Brand et
al. [15] proposed an on-board SLAM algorithm for mobile robots operating in an unknown indoor
environment, where the algorithm introduced local 2.5D maps which could be directly employed
for fast obstacle avoidance and local path planning, and which also constituted a suitable input for
a 2D grid map SLAM. Lee et al. [16] proposed a SLAM algorithm based on autonomous detection
and the registration of objects. This algorithm helps the robot to identify the object without relying on
any a priori information, and inserts the detected objects as landmarks into the grid map. The new
map has a certain improvement in positioning and navigation accuracy compared to the traditional
pure visual SLAM. However, both studies ignored the importance of the 3D map, and they also
cannot reconstruct a complete environmental structure, which made them lose the most important
advantage of visual SLAM. Considering how the sparse map cannot be applied to obstacle avoidance
and navigation, Qiang et al. [17] proposed a dense 3D reconstruction method based on the ORB-SLAM
algorithm. The method enables the ORB-SLAM system to construct an octomap [18] based on the
octrees and probabilistic occupancy estimation, and the improved ORB-SLAM can complete the map
reconstruction in real time using a Kinect 2.0 camera in the real world. However, this work cannot
express the working environment intuitively because of the use of octomap, so we could not directly
check the mapping effect, which reduced the interactivity of the robot.

Researchers have made a lot of effort to try and optimize the performance of ORB-SLAM2. Wang et
al. [19] proposed a monocular SLAM algorithm based on the fusion of IMU (Inertial Measurement Unit)
information and ORB-SLAM2 pose information. The algorithm can determine the scale information
and make-up for the pose information when the pure monocular visual SLAM tracking is lost. Caldato
et al. [20] proposed a tightly sensor fusion method to improve the tracking results of visual odometry
when the robot works in featureless environments. This algorithm integrated image data and odometer
data to improve graph constraints between frames and prevent tracking loss. However, although the
above two studies improved the robustness of the ORB-SLAM2 system, they increased the occupation
of robot computing resources. The improvements of the two papers were also mainly focused on
dealing with unexpected situations of tracking, and did not improve the performance of the system
under a normal tracking state. In order to solve the problem of how ORB-SLAM2 cannot distinguish
3DOF (degrees of freedom) image frames and 6DOF image frames, Zeng et al. [21] proposed a 6DOF
keyframe selection method to avoid wrong triangulation to 3DOF keyframes. However, since the
3DOF keyframes are filtered out, the number of keyframes in the map or keyframe database is
reduced, thereby reducing the accuracy of loop detection and relocation, which ultimately leads to
degradation of the performance of the ORB-SLAM2 system. Senbo et al. [22] introduced a unified
spherical camera model to extend the ORB-SLAM2 framework. The model enables the system to
obtain a larger perceiving region by using fisheye cameras. In addition, it proposed a semi-dense
feature-matching method, which can make use of high-gradient regions as semi-dense features to
construct the semi-dense map, thereby providing richer environment information than a sparse feature
map. However, the mapping error is relatively high when the robot is working in a large-scale



Remote Sens. 2019, 11, 149 4 of 21

environment, and although this work reconstructed a complete environment, it ignored the extended
application and reuse of semi-dense map information.

3. ORB-SLAM2

ORB-SLAM2 [7], which was proposed by R Mur-Artal, added support for the stereo camera and
RGB-D camera outside of the monocular camera. As shown in Figure 1, the system framework of
ORB-SLAM2 mainly contains three parallel threads: Tracking, Local Mapping, and Loop Closing.

Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 21 

 

environment, and although this work reconstructed a complete environment, it ignored the 
extended application and reuse of semi-dense map information. 

3. ORB-SLAM2 

ORB-SLAM2 [7], which was proposed by R Mur-Artal, added support for the stereo camera and 
RGB-D camera outside of the monocular camera. As shown in Figure 1, the system framework of 
ORB-SLAM2 mainly contains three parallel threads: Tracking, Local Mapping, and Loop Closing. 

 
Figure 1. The system framework of ORB-SLAM2. 

3.1. Tracking 

The main task of the tracking thread is to estimate the camera pose for each frame of the input 
image based on the feature method. There are three tracking models in the tracking thread: the 
motion model, keyframe model, and relocation model. The tracking state of the system is affected by 
factors such as environmental changes, and the tracking thread selects the tracking model according 
to different tracking states. 

ORB-SLAM2 estimates the camera pose by building a PnP (Perspective-n-Point) [23] model. 
There are several methods for the PnP problem, such as P3P [24], DLT (Direct Linear 
Transformation) [25], EPnP (Efficient PnP) [26], etc. EPnP is the pose estimation algorithm used by 
the relocation tracking model, and it is also one of the best accurate PnP problem-solving algorithms. 

3.2. Local Mapping 

The local mapping thread is mainly responsible for receiving and processing new keyframes, 
checking new map points, maintaining the accuracy of local maps, and controlling the quality and 
scale of keyframe sets. The workflow is as follows: 

1) Process new keyframes: First, calculate the BoW (Bag-of-Words) [27] vector of the current 
keyframe, update the map point observation values of the keyframe, and put these map points on 
the new map point list; then, update the Covisibility graph and Essential graph, and add the current 
keyframe to the map. 

2) Filter map points: Rule out redundant points by checking the list of new map points. The 
culling rules are as follows: a) The map point is marked as a bad point; b) the number of keyframes 
that can observe the map point is no more than 25% or three (the threshold is two when the sensor is 
a monocular camera). 

3) Restore new map points based on the current keyframe: First, select the keyframes connected 
to the current keyframe from the Covisibility graph, and then perform feature-matching on the 
current keyframe and the selected keyframes, and calculate the pose of the current keyframe by the 
epipolar geometry; after that, the feature-point depth is restored by the triangulation method. 
Finally, the re-projection error of the new map point is calculated according to the depth of the 
feature point obtained, and whether the map point is eliminated or not is determined according to 
the relationship between the error and the given threshold value. 

Tracking

Local Mapping

Loop Closing

Frame

Full BA

Figure 1. The system framework of ORB-SLAM2.

3.1. Tracking

The main task of the tracking thread is to estimate the camera pose for each frame of the input
image based on the feature method. There are three tracking models in the tracking thread: the
motion model, keyframe model, and relocation model. The tracking state of the system is affected by
factors such as environmental changes, and the tracking thread selects the tracking model according to
different tracking states.

ORB-SLAM2 estimates the camera pose by building a PnP (Perspective-n-Point) [23] model. There
are several methods for the PnP problem, such as P3P [24], DLT (Direct Linear Transformation) [25],
EPnP (Efficient PnP) [26], etc. EPnP is the pose estimation algorithm used by the relocation tracking
model, and it is also one of the best accurate PnP problem-solving algorithms.

3.2. Local Mapping

The local mapping thread is mainly responsible for receiving and processing new keyframes,
checking new map points, maintaining the accuracy of local maps, and controlling the quality and
scale of keyframe sets. The workflow is as follows:

(1) Process new keyframes: First, calculate the BoW (Bag-of-Words) [27] vector of the current
keyframe, update the map point observation values of the keyframe, and put these map points on
the new map point list; then, update the Covisibility graph and Essential graph, and add the current
keyframe to the map.

(2) Filter map points: Rule out redundant points by checking the list of new map points. The
culling rules are as follows: (a) The map point is marked as a bad point; (b) the number of keyframes
that can observe the map point is no more than 25% or three (the threshold is two when the sensor is a
monocular camera).

(3) Restore new map points based on the current keyframe: First, select the keyframes connected
to the current keyframe from the Covisibility graph, and then perform feature-matching on the current
keyframe and the selected keyframes, and calculate the pose of the current keyframe by the epipolar
geometry; after that, the feature-point depth is restored by the triangulation method. Finally, the
re-projection error of the new map point is calculated according to the depth of the feature point
obtained, and whether the map point is eliminated or not is determined according to the relationship
between the error and the given threshold value.



Remote Sens. 2019, 11, 149 5 of 21

(4) Local BA (Bundle Adjustment): When new keyframes are added to the Covisibility graph,
iterate optimization is performed and the outer points are removed to optimize the pose of the locally
connected keyframes.

(5) Filter local keyframe: The rule for ORB-SLAM2 to remove redundant keyframes is, if 90%
of the map points observed by the keyframe can be observed by the other three or more keyframes
simultaneously, delete this keyframe.

3.3. Loop Closing

Loop Closing contains loop detection and loop correction.
The task of loop detection is to screen and confirm the loop closure. First, calculate the BoW score

of the current keyframe and the connected keyframe, and select the closed-loop candidate frame by
the lowest threshold. The independent keyframes of low quality are eliminated by calculating the
number of shared words and the cluster score, and the remaining candidate keyframes are continuously
detected. After detecting the loop closure, the similarity transformation Sim3 is solved by the RANSAC
(Random Sample Consensus) [28] framework, and then Sim3 is optimized by re-matching and g2o
(General Graphic Optimization) [29] to correct the pose of the current keyframe.

Loop correction is responsible for eliminating global cumulative errors. First, adjust the pose of
the keyframe connected to the current keyframe by the propagation method. Then, project the updated
map points to the corresponding keyframes and fuse the matching map points. Finally, update the
connection relationship of keyframes according to the adjusted map points. After the map fusion is
completed, perform the pose graph optimization by the essential graph.

4. Improved ORB-SLAM2 Algorithms

In this section, we proposed an improved ORB-SLAM2 algorithm to improve the disadvantages
of ORB-SLAM2 mentioned above. The specific improvements include the binary-based vocabulary
storage method, vocabulary training algorithm for improved ORB operator, offline map construction
and preservation method, and robot relocation method, based on the offline map.

4.1. Binary-Based Vocabulary Storage Method

ORB-SLAM2 provides a vocabulary for training through large-scale data, and the authors
implemented a function to save the vocabulary as a text format in order to enable the system to
load the vocabulary directly. However, the text file needs to process the data format and line breaks
during the loading process, and the time consumption is very large when the vocabulary data size is
large. At the same time, we noticed that the binary file is non-interpretable and can be read directly
without complicated data conversion and line-break processing, so it has high reading efficiency. Based
on the above facts, in order to improve the vocabulary loading speed of the ORB-SLAM2 system, a
binary-based vocabulary storage method (Algorithm 1) is proposed.

In Step 1 of Algorithms 1, we used the class of TemplatedVocabulary provided by DBoW2 [30] to
load the vocabulary. In Step 3, the value of K, L, Wnode, and Ssim are inherited from the text vocabulary.
In Step 4, if the Boolean value is true, that means the node is a leaf. In practical application, the
system also needs to load the binary vocabulary file. As the loading is the inverse process of the above
vocabulary saving method, we will not describe it in detail.



Remote Sens. 2019, 11, 149 6 of 21

Algorithm 1: Binary-Based Vocabulary Storage Method

Input: A text format vocabulary
Output: A binary format vocabulary

1) Load the vocabulary data in text format and create a vector Vnode that includes all the nodes, then read
the number of nodes Nnode and the size of nodes Nsize;

2) Create an empty binary file Fb;
3) Write the Nnode, Nsize, number of branches K, vocabulary tree depth L, node weight type Wnode,

similarity score calculation method Ssim into Fb;
4) For each node Vi

node ∈ Vnode (i from 1 to Nnode):

a) Write the parent node of Vi
node into Fb;

b) Write the feature descriptor of Vi
node into Fb;

c) Write the weight of Vi
node into Fb;

d) Write a Boolean value to indicate the node property to know whether it is a leaf node.

5) Save Fb as the binary format vocabulary.

4.2. Vocabulary Training Algorithm Based on Improved ORB Operator

When the working environment of the robot is relatively fixed, there are large amounts of data
that cannot be used in the large-scale vocabulary provided by ORB-SLAM2. Therefore, in order to
obtain a small-scale vocabulary for a relatively fixed environment, we proposed a vocabulary training
algorithm based on the improved ORB operator, where the specific steps are shown in Algorithm 2.

Algorithm 2: Vocabulary training algorithm based on improved ORB operator

Input: Training dataset X of images for the vocabulary
Output: A binary vocabulary, V, of the given training dataset, X

1) Establish the dataset X using RGB images.
2) Initialize a null feature vector F.
3) For each image Xi∈X:

a) Read image Xi, and then apply the improved ORB feature extractor to get the feature vector Fi of
image Xi;

b) F = F∪Fi;

4) Use the K-means++ [31] algorithm to deal with feature vector F to obtain the vocabulary tree Vtree;
5) Call the function create() provided by DBoW2 to create the vocabulary V by creating leaf nodes of the

vocabulary tree Vtree and assigning the weight of each node. The weight type is set to be TF-IDF (Term
Frequency-Inverse Document Frequency).

6) Output the vocabulary V.

In Step 1, the images are captured from a relatively fixed environment. In Step 3, the improved
ORB feature extractor is a part of ORB-SLAM2, which employs the quadtree to extract features to
improve the quality and distribution of the feature.

In Step 5, we followed the original rules of ORB-SLAM2 in terms of the vocabulary parameter
setting, where the weight type was TF-IDF (Term Frequency-Inverse Document Frequency) [32]. TF
represents the degree of differentiation of a feature in an image, and IDF indicates the degree of



Remote Sens. 2019, 11, 149 7 of 21

discrimination of a word in the vocabulary. Therefore, for the word wi in an image, its weight ηi can be
calculated as follows:

ηi = TFi × IDFi =
nwi

nw
× log

n f eatures
n f eatureswi

(1)

where nwi is the number of times the word wi appears in an image A, nw represents the sum of the
number of occurrences of all words in image A, n f eatures indicates the number of all features in the
vocabulary, and n f eatureswi is the number of features included in wi of the vocabulary. For the image
A, after calculating the word weight, the BoW vector vA containing N words can be expressed as:

vA , {(w1, η1), (w2, η2), . . . , (wN , ηN)} (2)

We set the similarity calculation method to the L1-norm. Therefore, for two images A and B, the
similarity s(vA, vB) is calculated as follows:

s(vA, vB) = 2
N

∑
i=1

∣∣vAi

∣∣+ ∣∣vBi

∣∣− ∣∣vAi − vBi

∣∣ (3)

4.3. Offline Map Construction Method

In order to enable the system to load offline data and restore to the previous running state, we
proposed a method for constructing offline maps (Algorithm 3), and the method flow is shown in
Figure 2.

Algorithm 3: Offline Map Construction Method

Input: Map and keyframe database.
Output: Binary format offline map.

1) Create an empty binary file Fmapb to save the data of the offline map;

2) Read the data from the threads: 3D Map points M, keyframes K in the map, Covisibility Graph and
Spanning tree of keyframes, the storage vector VKFDB of keyframe database;

3) For each map point Mi∈M:

a) Write the index of Mi to Fmapb;

b) Write the coordinates of Mi in the world coordinate system to Fmapb;

4) For each keyframe Ki∈K:

a) Write the pose of Ki to Fmapb;

b) Write all feature descriptors of Ki to Fmapb;

c) Write the index of all map points connected to Ki to Fmapb;

d) Write the Covisibility Graph and Spanning tree of Ki to Fmapb;

5) Write the VKFDB to Fmapb;

6) Output Fmapb as a binary file.



Remote Sens. 2019, 11, 149 8 of 21

Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 21 

 

𝑛𝑛(𝑣𝑣𝐴𝐴, 𝑣𝑣𝐵𝐵) = 2� |𝑣𝑣𝐴𝐴𝑖𝑖|
𝑁𝑁

𝑖𝑖=1

+ �𝑣𝑣𝐵𝐵𝑖𝑖� − |𝑣𝑣𝐴𝐴𝑖𝑖 − 𝑣𝑣𝐵𝐵𝑖𝑖| (3) 

4.3. Offline Map Construction Method 

In order to enable the system to load offline data and restore to the previous running state, we 
proposed a method for constructing offline maps (Algorithm 3), and the method flow is shown in 
Figure 2. 

MapPoints

KeyFrames

CoVisibility graph

Spanning tree

Keyframes Database

New Map

Offline Binary file

Serialization

MAP

 
Figure 2. Construction flow of the offline map. 

Algorithm 3: Offline Map Construction Method 
Input: Map and keyframe database. 
Output: Binary format offline map. 
1) Create an empty binary file Fmapb to save the data of the offline map; 
2) Read the data from the threads: 3D Map points M, keyframes K in the map, Covisibility 

Graph and Spanning tree of keyframes, the storage vector VKFDB of keyframe database; 
3) For each map point Mi∈M: 

a) Write the index of Mi to Fmapb; 
b) Write the coordinates of Mi in the world coordinate system to Fmapb; 

4) For each keyframe Ki∈K: 
a) Write the pose of Ki to Fmapb; 
b) Write all feature descriptors of Ki to Fmapb; 
c) Write the index of all map points connected to Ki to Fmapb; 
d) Write the Covisibility Graph and Spanning tree of Ki to Fmapb; 

5) Write the VKFDB to Fmapb; 
6) Output Fmapb as a binary file. 
 
In Step 2 , we first checked the data in the map and keyframe database, and ended the system 

when the data to be saved was empty. In Steps 3 to 5, the map contains M, K, Covisibility graph, and 
Spanning tree; VKFDB is a collection of all keyframes corresponding to each word in the ORB 
dictionary. It is used for relocation and loop detection, providing data support for global positioning 
tracking after the system restarts. In Step 4, because the BoW vector of keyframes can be obtained by 
calculating the feature descriptor, we did not save them. In Step 6, the binary file is the obtained 
offline map. Considering the need to save the association of map such as the Covisibility Graph, we 
used the binary file to store the offline map. 

In the implementation of Algorithm 3, we used a serialization method to build the offline map 
to ensure that the data could be recovered correctly by deserialization. 

Figure 2. Construction flow of the offline map.

In Step 2, we first checked the data in the map and keyframe database, and ended the system
when the data to be saved was empty. In Steps 3 to 5, the map contains M, K, Covisibility graph, and
Spanning tree; VKFDB is a collection of all keyframes corresponding to each word in the ORB dictionary.
It is used for relocation and loop detection, providing data support for global positioning tracking after
the system restarts. In Step 4, because the BoW vector of keyframes can be obtained by calculating
the feature descriptor, we did not save them. In Step 6, the binary file is the obtained offline map.
Considering the need to save the association of map such as the Covisibility Graph, we used the binary
file to store the offline map.

In the implementation of Algorithm 3, we used a serialization method to build the offline map to
ensure that the data could be recovered correctly by deserialization.

4.4. Robot Fast Relocation Method Based on Offline Map

In order to be able to use the offline map constructed by the previous method, this section presents
a robotic fast relocation algorithm based on offline maps to fit the data of two adjacent runs of the
system to avoid repeated mapping. Specific steps are shown in Algorithm 4.

Algorithm 4: Fast Relocation Method Based on Offline Map

1) Start the ORB-SLAM2 system, and load the offline map file Fmapb;

2) If Fmapb is null, then:

Call the original method of ORB-SLAM2 to perform the complete SLAM process;
Return;

3) Load the vocabulary, and construct the storage vector VKFDB using the index of words in the vocabulary
and the keyframe database in Fmapb;

4) Calculate the BoW vector of the keyframes to completely restore the data of the previous run;
5) Initialize and start up all threads;
6) Set the tracking state mState=LOST to touch off the relocation tracking model;
7) Call the relocation function Relocalization() to restore the position of the robot;
8) Return.



Remote Sens. 2019, 11, 149 9 of 21

ORB-SLAM2 designed a relocation model to restore tracking for tracking lost conditions. In Step
5, we proposed a new triggering mechanism for the relocation tracking model, where the system enters
the tracking lost state directly when the data in Fmapb is restored successfully.

4.5. Offline Visualization Method for Map and Mapping Trajectory

In order to enable users to view the mapping effect and the tracking trajectories of the robot while
being offline, this section proposes an offline visualization method for the map and mapping trajectory;
the specific steps are shown in Algorithms 5 and 6.

Algorithm 5: Offline visualization method of map elements

1) Load the parameters file Fva, which includes the camera intrinsic matrix;
2) Load map data Map of offline map file Fmapb;

3) If Map= NULL, then Return;
4) Read observation parameters ViewpointX, ViewpointY, ViewpointZ, and camera parameter ViewpointF

from Fva;
5) Create a map visualization window ViewerMap;
6) Based on the MapDrawer class of ORB-SLAM2, and using mpMap and Fva as parameters:

a) Call the member function DrawMapPoints() to draw map points and reference map points in
ViewerMap;

b) Call the member function DrawKeyFrames() to draw the poses and connection relationship of
keyframes in ViewerMap;

7) Output the visual map file.

In Step 2, data such as map points and keyframes that need to be visualized belong to the map
element, so the data of the keyframe database is not loaded; in Step 5, the visualization window is
created by the open source library Pangolin; in Step 7, users can view the 3D map in the visualization
window or export the JPG file from a fixed perspective.

Algorithm 6: Offline visualization method of mapping trajectory

1) Load keyframes file FKT;
2) Create a pose vector VP;
3) For each line data ∈FKT

a) Create rotation quaternion q and a transport vector t;
b) Construct keyframe pose P using q and t;
c) Save P to VP;

4) Create a trajectory visualization window ViewerTrajectory;
5) For each pose Pi∈VP

a) Set drawing color and line format;
b) Draw Pi to ViewerTrajectory in 3D point format;

6) Output trajectory file.



Remote Sens. 2019, 11, 149 10 of 21

In Step 1, the keyframe file FKT is automatically saved by the ORB-SLAM2 system at the end of
the run. In Step 3, each row of data in FKT is composed of a time stamp, displacement, and rotation,
where displacement and rotation can be constructed into a pose.

5. Experiments and Results Analysis

5.1. Platform of the Used Robot

In order to test the performance of the proposed algorithm, we built a social robot platform, the
MAT social robot [33], as shown in Figure 3. The platform consists of mobile chassis, host computer,
sensors, and mechanical bracket, etc. The mobile chassis is the EAI DashGO B1 ((The manufacturer
of the equipment is the EnjoyAI company in Shenzhen, China)), which is capable of remote mobile
control and provides a 5 V–24 V independent power interface. The audio sensor is the ring microphone
array board (The manufacturer of the equipment is the iFLYTEK company in Hefei, China). The vision
sensor is a depth camera Kinect 2.0 with a maximum resolution of 1920*1080 and a transmission frame
rate of 30 fps. The host computer of the service robot is a Next Unit of Computing (NUC) produced
by Intel Corporation, and it has a Core i7-6770HQ processor that has 2.6–3.5 GHz frequency, and the
graphics processor is the Intel IRIS Pro. Besides, for the host computer, we installed 16 GB of memory
with 2133 Mhz frequency.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 21 

 

Kinect2.0 Sensor

Intel NUC Computer

EAI Mobile Chassis

 
Figure 3. The used social robot platform MAT. 

5.2. Experimental Design 

In order to evaluate the performance of the improved ORB-SLAM2 system, we designed the 
following experiments: 

1) The impact of different formats’ vocabulary on the system startup speed and scale. 
Considering that loading the vocabulary is the most time-consuming part of the system startup 
process when testing the system startup speed, we compared the time it took for the system to read 
the different formats of the vocabulary. 

2) Performance comparison between small-scale vocabulary based on the algorithm of this 
paper and original large-scale vocabulary of ORB-SLAM2. The training and test data used in the 
experiments were from the public RGB-D dataset provided by Technische Universität München 
(TUM) [34]: fr1_room, fr1_xyz, fr1_360, fr2_rpy, fr2_desk. The reason why we used this database was 
that every sequence of the TUM database contained the real trajectory file, so we could compare the 
test results with the real situation. We used the fr1_room sequence as an input to the vocabulary 
training algorithm, where the fr1_room contains 1362 RGB images taken by the Kinect 1.0 depth 
camera, the image sequence collection environment is a complete indoor office environment, and 
Figure 4 is part of the scene. Also, in order to visualize the comparison results, we used the root 
mean square error (RMSE) of the actual mapping trace and the real trace as a performance 
comparison metric. 

 

Figure 3. The used social robot platform MAT.

We implemented the proposed algorithms with C++ programming and integrated the
implemented algorithms with the ORB-SLAM2 system to obtain an improved ORB-SLAM2 system.
Finally, we installed the improved system in the Ubuntu16.04 system on the MAT social robot’s
host computer.



Remote Sens. 2019, 11, 149 11 of 21

In particular, before the experiments, we performed an intrinsic matrix calibration of the depth
camera according to the steps of the official document. Kinect2.0 and Intel NUC were powered by
mobile chassis.

5.2. Experimental Design

In order to evaluate the performance of the improved ORB-SLAM2 system, we designed the
following experiments:

(1) The impact of different formats’ vocabulary on the system startup speed and scale. Considering
that loading the vocabulary is the most time-consuming part of the system startup process when
testing the system startup speed, we compared the time it took for the system to read the different
formats of the vocabulary.

(2) Performance comparison between small-scale vocabulary based on the algorithm of this
paper and original large-scale vocabulary of ORB-SLAM2. The training and test data used in the
experiments were from the public RGB-D dataset provided by Technische Universität München
(TUM) [34]: fr1_room, fr1_xyz, fr1_360, fr2_rpy, fr2_desk. The reason why we used this database was that
every sequence of the TUM database contained the real trajectory file, so we could compare the test
results with the real situation. We used the fr1_room sequence as an input to the vocabulary training
algorithm, where the fr1_room contains 1362 RGB images taken by the Kinect 1.0 depth camera, the
image sequence collection environment is a complete indoor office environment, and Figure 4 is part
of the scene. Also, in order to visualize the comparison results, we used the root mean square error
(RMSE) of the actual mapping trace and the real trace as a performance comparison metric.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 21 

 

(a) (b) (c) 

Figure 4. Part of the scene in fr1_room. 

3) Offline map construction and fast relocation experiments. In the real world, we ran the robot 
to test whether the system could build an offline map, and whether it could load the offline map to 
quickly relocate the robot after rebooting. In addition, based on the saved offline map and keyframes 
file, we will verify that the method in this paper can visualize the map elements and mapping 
trajectory offline. 

In this experiment, the actual test environment we used is shown in Figure 5. The office is a 
typical indoor office environment of approximately 43 square meters. The interior includes desks, 
chairs, computers, printers, etc. The wall is white and contains large transparent glass windows, so 
there will be a change in the number of feature points extracted and changes in illumination in the 
tracking process of the system, which will have an impact on the accuracy of localization and 
mapping. However, in reality, the working environment of mobile robots is usually non-idealized, 
so our test environment is of practical significance. 

 

(a) (b) (c) 

Figure 5. Part of the scene in the actual test environment. (a) An office area with tables, chairs, 
computers, and bookcases; (b) the wall with large transparent glass windows; (c) the door of the 
office, which is the starting point and end point of the robot's trajectory. 

4) Restore mapping experiment. We took into consideration that in actual applications, the 
working environment of the robot will be dynamic, e.g., chairs will often move. Therefore, in order 
to test whether the proposed method could adapt to such environmental changes, we designed a 
restore mapping experiment based on the expected results of Experiment 3. The experimental 
environment is shown in Figure 6. This is an empty room with a relatively regular ground marking. 
The reason for choosing this environment was that it was easy to observe changes in the map. We 
placed several objects of different shapes and colors on the blackboard to ensure that the system 
could detect enough feature points. In addition, as seen in Figure 6b, we set the motion area of the 
robot to be the light-colored track portion on the ground and kept the robot's viewing angle 
unchanged during the motion. These settings are for visual comparison of the actual environment 
and the map. 

In the experiment, we first started the improved ORB-SLAM2 system and controlled the robot 
to move on the track to complete the construction. After completing the mapping task, we 
controlled the robot to stop moving to keep the map data stable, and closed the system to construct 

Figure 4. Part of the scene in fr1_room.

(3) Offline map construction and fast relocation experiments. In the real world, we ran the robot to
test whether the system could build an offline map, and whether it could load the offline map to quickly
relocate the robot after rebooting. In addition, based on the saved offline map and keyframes file, we
will verify that the method in this paper can visualize the map elements and mapping trajectory offline.

In this experiment, the actual test environment we used is shown in Figure 5. The office is a
typical indoor office environment of approximately 43 square meters. The interior includes desks,
chairs, computers, printers, etc. The wall is white and contains large transparent glass windows, so
there will be a change in the number of feature points extracted and changes in illumination in the
tracking process of the system, which will have an impact on the accuracy of localization and mapping.
However, in reality, the working environment of mobile robots is usually non-idealized, so our test
environment is of practical significance.



Remote Sens. 2019, 11, 149 12 of 21

Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 21 

 

(a) (b) (c) 

Figure 4. Part of the scene in fr1_room. 

3) Offline map construction and fast relocation experiments. In the real world, we ran the robot 
to test whether the system could build an offline map, and whether it could load the offline map to 
quickly relocate the robot after rebooting. In addition, based on the saved offline map and keyframes 
file, we will verify that the method in this paper can visualize the map elements and mapping 
trajectory offline. 

In this experiment, the actual test environment we used is shown in Figure 5. The office is a 
typical indoor office environment of approximately 43 square meters. The interior includes desks, 
chairs, computers, printers, etc. The wall is white and contains large transparent glass windows, so 
there will be a change in the number of feature points extracted and changes in illumination in the 
tracking process of the system, which will have an impact on the accuracy of localization and 
mapping. However, in reality, the working environment of mobile robots is usually non-idealized, 
so our test environment is of practical significance. 

 

(a) (b) (c) 

Figure 5. Part of the scene in the actual test environment. (a) An office area with tables, chairs, 
computers, and bookcases; (b) the wall with large transparent glass windows; (c) the door of the 
office, which is the starting point and end point of the robot's trajectory. 

4) Restore mapping experiment. We took into consideration that in actual applications, the 
working environment of the robot will be dynamic, e.g., chairs will often move. Therefore, in order 
to test whether the proposed method could adapt to such environmental changes, we designed a 
restore mapping experiment based on the expected results of Experiment 3. The experimental 
environment is shown in Figure 6. This is an empty room with a relatively regular ground marking. 
The reason for choosing this environment was that it was easy to observe changes in the map. We 
placed several objects of different shapes and colors on the blackboard to ensure that the system 
could detect enough feature points. In addition, as seen in Figure 6b, we set the motion area of the 
robot to be the light-colored track portion on the ground and kept the robot's viewing angle 
unchanged during the motion. These settings are for visual comparison of the actual environment 
and the map. 

In the experiment, we first started the improved ORB-SLAM2 system and controlled the robot 
to move on the track to complete the construction. After completing the mapping task, we 
controlled the robot to stop moving to keep the map data stable, and closed the system to construct 

Figure 5. Part of the scene in the actual test environment. (a) An office area with tables, chairs,
computers, and bookcases; (b) the wall with large transparent glass windows; (c) the door of the office,
which is the starting point and end point of the robot’s trajectory.

(4) Restore mapping experiment. We took into consideration that in actual applications, the
working environment of the robot will be dynamic, e.g., chairs will often move. Therefore, in order
to test whether the proposed method could adapt to such environmental changes, we designed
a restore mapping experiment based on the expected results of Experiment 3. The experimental
environment is shown in Figure 6. This is an empty room with a relatively regular ground marking.
The reason for choosing this environment was that it was easy to observe changes in the map. We
placed several objects of different shapes and colors on the blackboard to ensure that the system could
detect enough feature points. In addition, as seen in Figure 6b, we set the motion area of the robot to
be the light-colored track portion on the ground and kept the robot’s viewing angle unchanged during
the motion. These settings are for visual comparison of the actual environment and the map.

Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 21 

 

an offline map. Next, we restarted the system for rapid relocation of the robot, and added an 
“obstacle” (a person sitting in a chair) to the visible range of the robot to change the original 
environment, as shown in Figure 6c. Then, we started the mapping mode in the system’s real-time 
visual interface, and controlled the robot to continue to move on the track, while observing the 
real-time changes of the map data. 

 

   
(a) (b) (c) 

Figure 6. Scene of the restore mapping experiment. (a) The experimental environment we designed; 
(b) the state of robot and experimental environment before adding changes; (c) the state of robot 
and experimental environment after adding changes. 

5.3. Experimental Results Analysis 

5.3.1. Optimization Experiment in Binary Format Vocabulary 

We converted the original text format vocabulary TVOC of ORB-SLAM2 to the binary format, 
BVOC using the method of this paper, and the size comparison of the two vocabularies is shown in 
Table 1. Then, we used two kinds of vocabulary to start the system five times each. Time cost 
statistics are shown in Table 2. 

Table 1. The size comparison between text vocabulary and binary vocabulary. 

Sizes of Different Format Vocabularies (MB) 
Percentage of Size Decrease 

TVOC BVOC 
145.3 44.4 ↓ 69.44% 

Table 2. Time overhead comparison of loading two kinds of vocabularies. 

No. 
Time Overhead of Loading Vocabulary (s) 

TVOC BVOC 
1 8.05213 0.432957 
2 8.04686 0.429398 
3 8.09128 0.428909 
4 8.05895 0.431752 
5 8.06749 0.430972 

Average 8.06334 0.430798 
 
The results in Table 1 show that when the vocabulary is converted to binary format, the volume 

of the vocabulary is reduced by 69.44%, which is a reduction from 145.3MB to 44.4MB, thus greatly 
saving the space occupied by the vocabulary and helping the system to be lightweight. 

The results in Table 2 show that reading the binary format vocabulary takes an average of 0.43 
seconds, while the text vocabulary has an average reading time of about 8.06 seconds, which is 18.7 
times the time overhead of reading the binary vocabulary. 

5.3.2. Small-Scale Vocabulary Performance Test Based on Improved Training Algorithm 

Figure 6. Scene of the restore mapping experiment. (a) The experimental environment we designed;
(b) the state of robot and experimental environment before adding changes; (c) the state of robot and
experimental environment after adding changes.

In the experiment, we first started the improved ORB-SLAM2 system and controlled the robot to
move on the track to complete the construction. After completing the mapping task, we controlled the
robot to stop moving to keep the map data stable, and closed the system to construct an offline map.
Next, we restarted the system for rapid relocation of the robot, and added an “obstacle” (a person
sitting in a chair) to the visible range of the robot to change the original environment, as shown in
Figure 6c. Then, we started the mapping mode in the system’s real-time visual interface, and controlled
the robot to continue to move on the track, while observing the real-time changes of the map data.

5.3. Experimental Results Analysis

5.3.1. Optimization Experiment in Binary Format Vocabulary

We converted the original text format vocabulary TVOC of ORB-SLAM2 to the binary format,
BVOC using the method of this paper, and the size comparison of the two vocabularies is shown in



Remote Sens. 2019, 11, 149 13 of 21

Table 1. Then, we used two kinds of vocabulary to start the system five times each. Time cost statistics
are shown in Table 2.

Table 1. The size comparison between text vocabulary and binary vocabulary.

Sizes of Different Format Vocabularies (MB) Percentage of Size Decrease
TVOC BVOC

145.3 44.4 ↓ 69.44%

Table 2. Time overhead comparison of loading two kinds of vocabularies.

No.
Time Overhead of Loading Vocabulary (s)

TVOC BVOC

1 8.05213 0.432957
2 8.04686 0.429398
3 8.09128 0.428909
4 8.05895 0.431752
5 8.06749 0.430972

Average 8.06334 0.430798

The results in Table 1 show that when the vocabulary is converted to binary format, the volume
of the vocabulary is reduced by 69.44%, which is a reduction from 145.3 MB to 44.4 MB, thus greatly
saving the space occupied by the vocabulary and helping the system to be lightweight.

The results in Table 2 show that reading the binary format vocabulary takes an average of 0.43 s,
while the text vocabulary has an average reading time of about 8.06 s, which is 18.7 times the time
overhead of reading the binary vocabulary.

5.3.2. Small-Scale Vocabulary Performance Test Based on Improved Training Algorithm

We obtained the binary format small-scale vocabulary Fr1VOC using the method of this paper,
and compared the performance between Fr1VOC and the original vocabulary BVOC of ORB-SLAM2.

Firstly, we experimented with the training dataset fr1_room as a test dataset, making the vocabulary
training environment exactly the same as the system working environment. Then, we took Fr1VOC

and BVOC as inputs, respectively, and started up the ORB-SLAM2 system to localization and mapping,
and finally calculated the RMSE value of the actual mapping trajectory and the real trajectory. The
comparison between the actual mapping trajectory and the real trajectory is shown in Figure 5, and
Table 3 compares the size of the two vocabularies and the trajectory RMSE values when using two
vocabularies, respectively.

Table 3. Comparison of trajectory error and size.

BVOC Fr1VOC Change

RMSE 0.081027m 0.049486m ↓ 38.92%
Size 44.4 MB 11.9 MB ↓ 73.20%

According to Figure 7, it can be seen that when using the large-scale vocabulary BVOC to track
the fr1_room dataset, the distance between the actual running trajectory and the real trajectory in
most of the road segments is larger than the distance when using the small-scale vocabulary Fr1VOC.
The specific data comparison in Table 3 verifies our point of view; the trajectory error when using
BVOC is 0.081, while it is 0.049 when using Fr1VOC, which is a 38.92% reduction; at the same time, the
vocabulary volume has been reduced from 44.4 MB to 11.9 MB, a decrease of 73.2%. The above data
and analysis show that in an ideal environment (training the vocabulary using the image dataset of



Remote Sens. 2019, 11, 149 14 of 21

the working environment), the small-scale vocabulary can achieve a large performance improvement
for the ORB-SLAM2 system.

Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 21 

 

We obtained the binary format small-scale vocabulary Fr1VOC using the method of this paper, 
and compared the performance between Fr1VOC and the original vocabulary BVOC of ORB-SLAM2.  

Firstly, we experimented with the training dataset fr1_room as a test dataset, making the 
vocabulary training environment exactly the same as the system working environment. Then, we 
took Fr1VOC and BVOC as inputs, respectively, and started up the ORB-SLAM2 system to localization 
and mapping, and finally calculated the RMSE value of the actual mapping trajectory and the real 
trajectory. The comparison between the actual mapping trajectory and the real trajectory is shown in 
Figure 5, and Table 3 compares the size of the two vocabularies and the trajectory RMSE values 
when using two vocabularies, respectively. 

 
(a) 

 
(b) 

Figure 6. The comparison of the actual mapping trajectory and the real trajectory. (a) Trajectory 
deviation when using BVOC; (b) trajectory deviation when using Fr1VOC. 

Table 3. Comparison of trajectory error and size. 

 BVOC Fr1VOC Change 
RMSE  0.081027m 0.049486m ↓38.92% 
Size  44.4MB 11.9MB ↓73.20% 

 
According to Figure 6, it can be seen that when using the large-scale vocabulary BVOC to track 

the fr1_room dataset, the distance between the actual running trajectory and the real trajectory in 
most of the road segments is larger than the distance when using the small-scale vocabulary Fr1VOC. 
The specific data comparison in Table 3 verifies our point of view; the trajectory error when using 
BVOC is 0.081, while it is 0.049 when using Fr1VOC, which is a 38.92% reduction; at the same time, the 

Figure 7. The comparison of the actual mapping trajectory and the real trajectory. (a) Trajectory
deviation when using BVOC; (b) trajectory deviation when using Fr1VOC.

Considering the difference in practical applications, we could not collect working environment
data for each robot and train the corresponding vocabulary, but different environments can be classified,
and each type of environment has the same characteristics. In order to test the performance of the
small-scale vocabulary in similar environments (not the same), image sequences fr1_xyz, fr1_360,
fr2_rpy, and fr2_desk were used as test datasets, and then we started up the ORB-SLAM2 system to
track and construct a map using Fr1VOC and BVOC, respectively, after which we could finally calculate
the RMSE values of trajectory errors, where the results are shown in Table 4.

Table 4. The performance tests of small-scale vocabulary in similar environments.

Datasets RMSE(BVOC) RMSE(Fr1VOC) Change of RMSE

fr1_xyz 0.009544m 0.009916m ↑ 3.90%
fr1_360 0.275813m 0.259340m ↓ 5.97%
fr2_rpy 0.013706m 0.012929m ↓ 5.67%

fr2_desk 0.085194m 0.084459m ↓ 0.86%



Remote Sens. 2019, 11, 149 15 of 21

The data in Table 4 show that when using the small-scale vocabulary Fr1VOC, the trajectory errors
value for the fr1_360, fr2_rpy, and fr2_desk datasets is slightly reduced by 0.86% to 5.97%, compared
to using the BVOC vocabulary. Only when the test dataset is fr1_xyz, the trajectory error is slightly
increased by 3.9%. The above results show that small-scale vocabulary, based on specific environment
training, can improve the running accuracy in most cases when applied to similar environments.

The above experiments and results analysis show that the small-scale vocabulary obtained by
training the image of the specific environment based on the algorithm of this paper can improve the
running accuracy of the system when working in a specific environment. Moreover, it also eliminates
the problem of how the original large-scale vocabulary of ORB-SLAM2 includes a large amount of
ineffective data.

5.3.3. The Experiments of Offline Map Construction and Robot Rapid Relocation

Firstly, we started the ORB-SLAM2 system which implemented the algorithm of this paper, and
controlled the Mat Social robot to walk around the test environment to form a trajectory closed loop;
then we shut down the system, and used this method to visualize the map and the keyframes trajectory.
The results are shown in Figure 8.

Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 21 

 

vocabulary volume has been reduced from 44.4MB to 11.9MB, a decrease of 73.2%. The above data 
and analysis show that in an ideal environment (training the vocabulary using the image dataset of 
the working environment), the small-scale vocabulary can achieve a large performance 
improvement for the ORB-SLAM2 system. 

Considering the difference in practical applications, we could not collect working environment 
data for each robot and train the corresponding vocabulary, but different environments can be 
classified, and each type of environment has the same characteristics. In order to test the 
performance of the small-scale vocabulary in similar environments (not the same), image sequences 
fr1_xyz, fr1_360, fr2_rpy, and fr2_desk were used as test datasets, and then we started up the 
ORB-SLAM2 system to track and construct a map using Fr1VOC and BVOC, respectively, after which 
we could finally calculate the RMSE values of trajectory errors, where the results are shown in Table 
4. 

Table 4. The performance tests of small-scale vocabulary in similar environments. 

Datasets RMSE(BVOC) RMSE(Fr1VOC) Change of RMSE 
fr1_xyz 0.009544m 0.009916m ↑3.90% 
fr1_360 0.275813m 0.259340m ↓5.97% 
fr2_rpy 0.013706m 0.012929m ↓5.67% 

fr2_desk 0.085194m 0.084459m ↓0.86% 
 
The data in Table 4 show that when using the small-scale vocabulary Fr1VOC, the trajectory 

errors value for the fr1_360, fr2_rpy, and fr2_desk datasets is slightly reduced by 0.86% to 5.97%, 
compared to using the BVOC vocabulary. Only when the test dataset is fr1_xyz, the trajectory error is 
slightly increased by 3.9%. The above results show that small-scale vocabulary, based on specific 
environment training, can improve the running accuracy in most cases when applied to similar 
environments. 

The above experiments and results analysis show that the small-scale vocabulary obtained by 
training the image of the specific environment based on the algorithm of this paper can improve the 
running accuracy of the system when working in a specific environment. Moreover, it also 
eliminates the problem of how the original large-scale vocabulary of ORB-SLAM2 includes a large 
amount of ineffective data. 

5.3.3. The Experiments of Offline Map Construction and Robot Rapid Relocation 

Firstly, we started the ORB-SLAM2 system which implemented the algorithm of this paper, and 
controlled the Mat Social robot to walk around the test environment to form a trajectory closed loop; 
then we shut down the system, and used this method to visualize the map and the keyframes 
trajectory. The results are shown in Figure 7. 

 

 
(a) 

 
(b) 

Figure 8. Visualization of the offline map and mapping trajectory. (a) Point-cloud map;
(b) mapping trajectory.

As shown in Figure 8a, the visualization method of this paper enabled the ORB-SLAM2 system to
successfully load the offline map and restore 3D map points and keyframes. The visual map completely
expresses the structure of the test environment, and the relative positions of the obstacles are correct.
The robot trajectory consisting of keyframes in Figure 8a is consistent with the trajectory shown in
Figure 8b. The above results show that the ORB-SLAM2 system, based on this method, can construct
the offline map and visualize the map and mapping trajectory offline.

We experimented with the rapid relocation of the robot based on the saved offline map.
Considering that large independent obstacles are easily distinguishable in the point-cloud map,
in order to distinguish the relocation result of the robot, we first controlled the robot to leave the
mapping trajectory and stay near a separate desk. Then we started the ORB-SLAM2 system through
the data of a real-time visualization window, checked whether the system had loaded the offline map
data, and confirmed the robot relocation effect. The result is shown in Figure 9.

According to the keyframe, map point, and feature-matching data in the red box below Figure 9a
and the complete point-cloud map shown in Figure 9b, it can be explained that the offline map data has
been fully loaded and restored correctly. Firstly, we infer the position of the robot in the point-cloud
map based on the RGB in Figure 9a. The robot is facing the office area, and the area marked 1 on the
right front is the stand-alone desk mentioned above, which we recorded as desk 1. Since the robot is



Remote Sens. 2019, 11, 149 16 of 21

close to desk 1, it needs to be bypassed when building the map, meaning the location of the robot should
be close to the corner of the mapping trajectory. Figure 9b shows the map’s real-time visualization
interface of the ORB-SLAM2 system, where the green image block in the red elliptical circle represents
the robot, and the location of the robot is near the corner of the construction trajectory. At the right
front of the robot is the position of desk 1 in the map. This verified our judgment of the location of the
robot based on the information in Figure 9a. The above test results and analysis show that the method
of this paper can make the robot achieve rapid relocation.

Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 21 

 

Figure 7. Visualization of the offline map and mapping trajectory. (a) Point-cloud map; (b) 
mapping trajectory. 

As shown in Figure 7a, the visualization method of this paper enabled the ORB-SLAM2 system 
to successfully load the offline map and restore 3D map points and keyframes. The visual map 
completely expresses the structure of the test environment, and the relative positions of the obstacles 
are correct. The robot trajectory consisting of keyframes in Figure 7a is consistent with the trajectory 
shown in Figure 7b. The above results show that the ORB-SLAM2 system, based on this method, can 
construct the offline map and visualize the map and mapping trajectory offline. 

We experimented with the rapid relocation of the robot based on the saved offline map. 
Considering that large independent obstacles are easily distinguishable in the point-cloud map, in 
order to distinguish the relocation result of the robot, we first controlled the robot to leave the 
mapping trajectory and stay near a separate desk. Then we started the ORB-SLAM2 system through 
the data of a real-time visualization window, checked whether the system had loaded the offline 
map data, and confirmed the robot relocation effect. The result is shown in Figure 8. 

 

1

(a) (b) 

Figure 8. Real-time running status after a system restart. (a) Current RGB frame and data of system; 
(b) real-time status of map and tracking. 

According to the keyframe, map point, and feature-matching data in the red box below Figure 
8a and the complete point-cloud map shown in Figure 8b, it can be explained that the offline map 
data has been fully loaded and restored correctly. Firstly, we infer the position of the robot in the 
point-cloud map based on the RGB in Figure 8a. The robot is facing the office area, and the area 
marked 1 on the right front is the stand-alone desk mentioned above, which we recorded as desk 1. 
Since the robot is close to desk 1, it needs to be bypassed when building the map, meaning the 
location of the robot should be close to the corner of the mapping trajectory. Figure 8b shows the 
map’s real-time visualization interface of the ORB-SLAM2 system, where the green image block in 
the red elliptical circle represents the robot, and the location of the robot is near the corner of the 
construction trajectory. At the right front of the robot is the position of desk 1 in the map. This 
verified our judgment of the location of the robot based on the information in Figure 8a. The above 
test results and analysis show that the method of this paper can make the robot achieve rapid 
relocation. 

We tested whether the system could restore global tracking after the robot relocated correctly. 
Firstly, we controlled the robot to retreat a distance without changing the direction, and then 
observed the tracking state of the robot in the map. The results are shown in Figure 9. 

Figure 9. Real-time running status after a system restart. (a) Current RGB frame and data of system;
(b) real-time status of map and tracking.

We tested whether the system could restore global tracking after the robot relocated correctly.
Firstly, we controlled the robot to retreat a distance without changing the direction, and then observed
the tracking state of the robot in the map. The results are shown in Figure 10.Remote Sens. 2018, 10, x FOR PEER REVIEW  16 of 21 

 

1

 
(a) 

 
(b) 

Figure 9. System global tracking status after relocation. (a) Current frame image after the complete 
robot moving; (b) real-time status of map and tracking. 

Figure 9 shows the real-time visual interface of the ORB-SLAM2 system after the robot has 
moved a distance. Comparing Figure 9a with Figure 8a, the movement of the robot follows the 
experimental design: moving backward without changing the direction. Although we cannot 
accurately judge the moving distance of the robot based on the image, it can be determined that the 
robot location should be close to the mapping trajectory behind it. As shown by the red arrow in 
Figure 9b, the position of the robot has changed, moving from the original position to the rear and 
nearing the mapping trajectory below the map, and this is consistent with the actual movement of 
the robot. 

The above experimental results and analysis show that the proposed method can make the 
robot relocate quickly and restore global location and tracking. This avoids repeated mapping, 
saving computational resources for the robot and improving work efficiency. 

5.3.4. Restore-Mapping Experiment 

Firstly, we controlled the robot to move onto the orbit and built the map according to the 
experimental design, and then reproduced the map scene with the offline visualization method 
proposed in this paper. The results are shown in Figure 2. 

 

 
 

(a) (b) 

Figure 10. System global tracking status after relocation. (a) Current frame image after the complete
robot moving; (b) real-time status of map and tracking.

Figure 10 shows the real-time visual interface of the ORB-SLAM2 system after the robot has moved
a distance. Comparing Figure 10a with Figure 9a, the movement of the robot follows the experimental
design: moving backward without changing the direction. Although we cannot accurately judge the
moving distance of the robot based on the image, it can be determined that the robot location should be
close to the mapping trajectory behind it. As shown by the red arrow in Figure 10b, the position of the



Remote Sens. 2019, 11, 149 17 of 21

robot has changed, moving from the original position to the rear and nearing the mapping trajectory
below the map, and this is consistent with the actual movement of the robot.

The above experimental results and analysis show that the proposed method can make the robot
relocate quickly and restore global location and tracking. This avoids repeated mapping, saving
computational resources for the robot and improving work efficiency.

5.3.4. Restore-Mapping Experiment

Firstly, we controlled the robot to move onto the orbit and built the map according to the
experimental design, and then reproduced the map scene with the offline visualization method
proposed in this paper. The results are shown in Figure 2.

Figure 11 shows the map status after the mapping is completed. Among them, Figure 11a shows
the real-time RGB image of the system, and the figure shows that the number of feature points is
sufficient. At the bottom of Figure 11a, we marked the map element data with a red box, in which the
number of keyframes was 116 and the number of map points was 1092. Figure 11b is the sparse map
with the same angle-of-view as Figure 11a. Compared with the actual environment, the environmental
structure of the map is correct and clear. Figure 11c is a map with an overlooking angle, and we can
find that the map points are mainly concentrated in the part close to the wall. There is some blank
space between the point-cloud concentration region and the position of the robot. This result is what
we expected because it helps us to use this blank area for subsequent experiments, and we can directly
observe changes in the map without interference from other point-cloud distributions.

Remote Sens. 2018, 10, x FOR PEER REVIEW  16 of 21 

 

1

 
(a) 

 
(b) 

Figure 9. System global tracking status after relocation. (a) Current frame image after the complete 
robot moving; (b) real-time status of map and tracking. 

Figure 9 shows the real-time visual interface of the ORB-SLAM2 system after the robot has 
moved a distance. Comparing Figure 9a with Figure 8a, the movement of the robot follows the 
experimental design: moving backward without changing the direction. Although we cannot 
accurately judge the moving distance of the robot based on the image, it can be determined that the 
robot location should be close to the mapping trajectory behind it. As shown by the red arrow in 
Figure 9b, the position of the robot has changed, moving from the original position to the rear and 
nearing the mapping trajectory below the map, and this is consistent with the actual movement of 
the robot. 

The above experimental results and analysis show that the proposed method can make the 
robot relocate quickly and restore global location and tracking. This avoids repeated mapping, 
saving computational resources for the robot and improving work efficiency. 

5.3.4. Restore-Mapping Experiment 

Firstly, we controlled the robot to move onto the orbit and built the map according to the 
experimental design, and then reproduced the map scene with the offline visualization method 
proposed in this paper. The results are shown in Figure 2. 

 

 
 

(a) (b) 
Remote Sens. 2018, 10, x FOR PEER REVIEW  17 of 21 

 

 
(c) 

Figure 10. The original mapping effect. (a) Current RGB image frame after map data has been 
stabilized; (b) sparse point-cloud map with the same angle-of-view as the camera; (c) vertical-view 
angle of the map. 

Figure 10 shows the map status after the mapping is completed. Among them, Figure 10a 
shows the real-time RGB image of the system, and the figure shows that the number of feature 
points is sufficient. At the bottom of Figure 10a, we marked the map element data with a red box, in 
which the number of keyframes was 116 and the number of map points was 1092. Figure 10b is the 
sparse map with the same angle-of-view as Figure 10a. Compared with the actual environment, the 
environmental structure of the map is correct and clear. Figure 10c is a map with an overlooking 
angle, and we can find that the map points are mainly concentrated in the part close to the wall. 
There is some blank space between the point-cloud concentration region and the position of the 
robot. This result is what we expected because it helps us to use this blank area for subsequent 
experiments, and we can directly observe changes in the map without interference from other 
point-cloud distributions. 

After the completion of the above experiment, we changed the environment and then 
performed the test of restore mapping according to the experimental design. The results are shown 
in Figure 11. 

 

 
 

(a) (b) 

Figure 11. The original mapping effect. (a) Current RGB image frame after map data has been
stabilized; (b) sparse point-cloud map with the same angle-of-view as the camera; (c) vertical-view
angle of the map.



Remote Sens. 2019, 11, 149 18 of 21

After the completion of the above experiment, we changed the environment and then performed
the test of restore mapping according to the experimental design. The results are shown in Figure 12.

Remote Sens. 2018, 10, x FOR PEER REVIEW  17 of 21 

 

 
(c) 

Figure 10. The original mapping effect. (a) Current RGB image frame after map data has been 
stabilized; (b) sparse point-cloud map with the same angle-of-view as the camera; (c) vertical-view 
angle of the map. 

Figure 10 shows the map status after the mapping is completed. Among them, Figure 10a 
shows the real-time RGB image of the system, and the figure shows that the number of feature 
points is sufficient. At the bottom of Figure 10a, we marked the map element data with a red box, in 
which the number of keyframes was 116 and the number of map points was 1092. Figure 10b is the 
sparse map with the same angle-of-view as Figure 10a. Compared with the actual environment, the 
environmental structure of the map is correct and clear. Figure 10c is a map with an overlooking 
angle, and we can find that the map points are mainly concentrated in the part close to the wall. 
There is some blank space between the point-cloud concentration region and the position of the 
robot. This result is what we expected because it helps us to use this blank area for subsequent 
experiments, and we can directly observe changes in the map without interference from other 
point-cloud distributions. 

After the completion of the above experiment, we changed the environment and then 
performed the test of restore mapping according to the experimental design. The results are shown 
in Figure 11. 

 

 
 

(a) (b) 
Remote Sens. 2018, 10, x FOR PEER REVIEW  18 of 21 

 

 
(c) 

Figure 11. The map status after restore mapping. (a) Current RGB frame after restore mapping; (b) 
vertical-view angle of the map; (c) side-view angle of the map. 

Figure 11 shows the restore mapping status after the environment change. Figure 11a is an RGB 
frame during mapping, and the image shows that the system has detected the newly added features 
of the person and the chair. The element data of the map marked by the red box at the bottom of the 
image has changed significantly. The number of map points continues to increase, but the number of 
key frames dropped sharply, which is because the environment has changed and the system is 
continuously updating keyframes. Figure 10b and Figure 10c are the top view and side view of the 
map after completion of the construction, respectively. The image shows that some new map points 
were added in the blank area in Figure 10c that are consistent with the environmental changes, and 
the outline of the person sitting on the chair (near the side of the camera) can be found in the side 
view. In addition, in contrast to Figure 10c, the new mapping trajectory also changed according to 
the movement of the robot.  

The analysis of the above experimental results shows that the method proposed in this paper 
can continue to construct the changing part of the environment after a change in the environment, so 
as to be applicable to the new environmental structure. In other words, the method proposed in this 
paper has strong robustness against changes to the environment. 

6. Discussion and Conclusion 

This paper proposed an improved ORB-SLAM2 system for improving the problems of the 
original system in terms of startup speed, tracking accuracy, and map reuse. Firstly, we proposed a 
binary-based vocabulary storage method to improve the startup speed of the ORB-SLAM2 system. 
Then, we proposed an improved vocabulary training algorithm to train small-scale vocabularies for 
specific environments for improving system location accuracy. Finally, we proposed the offline map 
construction method and the rapid relocation method of a robot, which enables the system to 
quickly restore the location tracking state based on an offline map, avoiding repeated mapping and 
changing the working mode of the original ORB-SLAM2 system. In addition, when the environment 
changes, the improved system is able to restore mapping to reconstruct the changing part of the 
environment. Through experiments and results analysis, we proved that the method proposed in 
this paper could achieve the expected goal, and the improved ORB-SLAM2 system can be better 
applied to mobile robots. However, the proposed methods in this paper also have limitations. Firstly, 
since we do not have much related research, the improved system cannot provide a dense 
point-cloud map. In addition, our Binary-based Vocabulary Storage method can provide a binary 
vocabulary for the system, but from the perspective of readability, this is not very user-friendly; 
thus, if researchers need to read vocabulary information directly, our method may not be 
applicable. 

Figure 12. The map status after restore mapping. (a) Current RGB frame after restore mapping;
(b) vertical-view angle of the map; (c) side-view angle of the map.

Figure 12 shows the restore mapping status after the environment change. Figure 12a is an RGB
frame during mapping, and the image shows that the system has detected the newly added features
of the person and the chair. The element data of the map marked by the red box at the bottom of the
image has changed significantly. The number of map points continues to increase, but the number
of key frames dropped sharply, which is because the environment has changed and the system is
continuously updating keyframes. Figure 11b,c are the top view and side view of the map after
completion of the construction, respectively. The image shows that some new map points were added
in the blank area in Figure 11c that are consistent with the environmental changes, and the outline of
the person sitting on the chair (near the side of the camera) can be found in the side view. In addition,
in contrast to Figure 11c, the new mapping trajectory also changed according to the movement of
the robot.

The analysis of the above experimental results shows that the method proposed in this paper can
continue to construct the changing part of the environment after a change in the environment, so as to
be applicable to the new environmental structure. In other words, the method proposed in this paper
has strong robustness against changes to the environment.



Remote Sens. 2019, 11, 149 19 of 21

6. Discussion and Conclusions

This paper proposed an improved ORB-SLAM2 system for improving the problems of the
original system in terms of startup speed, tracking accuracy, and map reuse. Firstly, we proposed a
binary-based vocabulary storage method to improve the startup speed of the ORB-SLAM2 system.
Then, we proposed an improved vocabulary training algorithm to train small-scale vocabularies for
specific environments for improving system location accuracy. Finally, we proposed the offline map
construction method and the rapid relocation method of a robot, which enables the system to quickly
restore the location tracking state based on an offline map, avoiding repeated mapping and changing
the working mode of the original ORB-SLAM2 system. In addition, when the environment changes,
the improved system is able to restore mapping to reconstruct the changing part of the environment.
Through experiments and results analysis, we proved that the method proposed in this paper could
achieve the expected goal, and the improved ORB-SLAM2 system can be better applied to mobile
robots. However, the proposed methods in this paper also have limitations. Firstly, since we do
not have much related research, the improved system cannot provide a dense point-cloud map. In
addition, our Binary-based Vocabulary Storage method can provide a binary vocabulary for the system,
but from the perspective of readability, this is not very user-friendly; thus, if researchers need to read
vocabulary information directly, our method may not be applicable.

In future studies, we will focus on the rapid dense map construction of the visual SLAM and the
semantic SLAM. We hope to promote the diversification of the functionality of the visual SLAM to
match the complex task requirements of the intelligent mobile robot.

Author Contributions: Conceptualization, G.Y. and Z.C.; methodology, G.Y. and Z.C.; software, Z.C., Y.L.;
validation, Z.C., Y.L. and Z.S.; formal analysis, Z.C.; investigation, Y.L., Z.S.; resources, G.Y.; data curation, Z.C.,
Y.L.; writing—original draft preparation, Z.C.; writing—review and editing, G.Y.; supervision, G.Y.

Funding: This work is supported by the National Natural Science Foundation of China under Grant Nos.
61863005 and 91746116, the Science and Technology Foundation of Guizhou Province under grant PTRC[2018]5702,
[2017]5788, [2018]5781, ZDZX[2013]6020, and LH[2016]7433. Science and Technology Foundation of Guizhou
Province in 2019.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ball, D.; Upcroft, B.; Wyeth, G.; Corke, P.; English, A.; Ross, P.; Patten, T.; Fitch, R.; Sukkarieh, S.; Bate, A.
Vision-based Obstacle Detection and Navigation for an Agricultural Robot. J. Field Robot. 2016, 33, 1107–1130.
[CrossRef]

2. Ran, L.; Zhang, Y.; Zhang, Q.; Yang, T. Convolutional Neural Network-Based Robot Navigation Using
Uncalibrated Spherical Images. Sensors 2017, 17, 1341. [CrossRef] [PubMed]

3. Dissanayake, G.; Durrant-Whyte, H.; Bailey, T. A computationally efficient solution to the simultaneous
localisation and map building (SLAM) problem. IEEE Trans. Robert 2013, 17, 229–241. [CrossRef]

4. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings
of the IEEE International Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016;
pp. 1271–1278. [CrossRef]

5. Kerl, C.; Sturm, J.; Cremers, D. Dense visual SLAM for RGB-D cameras. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2014; pp. 2100–2106.
[CrossRef]

6. Mur-Artal, R.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System.
IEEE Trans. Robot. 2015, 31, 1147–1163. [CrossRef]

7. Mur-Artal, R.; Tardos, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D
Cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [CrossRef]

8. Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-time single camera SLAM. IEEE Trans.
Pattern Anal. Mach. Intell. 2007, 29, 1052. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/rob.21644
http://dx.doi.org/10.3390/s17061341
http://www.ncbi.nlm.nih.gov/pubmed/28604624
http://dx.doi.org/10.1109/70.938381
http://dx.doi.org/10.1109/ICRA.2016.7487258
http://dx.doi.org/10.1109/IROS.2013.6696650
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.1109/TPAMI.2007.1049
http://www.ncbi.nlm.nih.gov/pubmed/17431302


Remote Sens. 2019, 11, 149 20 of 21

9. Bailey, T.; Nieto, J.; Guivant, J.; Stevens, M.; Nebot, E. Consistency of the EKF-SLAM Algorithm. In
Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing,
China, 9–15 October 2006; pp. 3562–3568. [CrossRef]

10. Martinezcantin, R.; Castellanos, J.A. Unscented SLAM for large-scale outdoor environments. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6
October 2005; pp. 3427–3432. [CrossRef]

11. Holmes, S.; Klein, G.; Murray, D.W. A Square Root Unscented Kalman Filter for visual monoSLAM. In
Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23
May 2008; pp. 3710–3716. [CrossRef]

12. Sim, R.; Elinas, P.; Griffin, M.; Shyr, A.; Little, J.J. Design and analysis of a framework for real-time
vision-based SLAM using Rao-Blackwellised particle filters. In Proceedings of the The Canadian Conference
on Computer and Robot Vision, Quebec, QC, Canada, 7–9 June 2006; p. 21. [CrossRef]

13. Klein, G.; Murray, D. Parallel Tracking and Mapping for Small AR Workspaces. In Proceedings of the IEEE
and ACM International Symposium on Mixed and Augmented Reality, Nara, Japan, 13–16 November 2007;
pp. 1–10. [CrossRef]

14. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-Scale Direct Monocular SLAM. In Computer
Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Lecture Notes in Computer Science;
Springer: Cham, Switzerland, 2014; Volume 8690, pp. 834–849.

15. Brand, C.; Schuster, M.J.; Hirschmuller, H.; Suppa, M. Stereo-vision based obstacle mapping for
indoor/outdoor SLAM. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, Chicago, IL, USA, 14–18 September 2014; pp. 1846–1853. [CrossRef]

16. Lee, Y.J.; Song, J.B. Visual SLAM in indoor environments using autonomous detection and registration of
objects. In Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for
Intelligent Systems, Seoul, Korea, 20–22 August 2008; pp. 671–676. [CrossRef]

17. Lv, Q.; Lin, H.; Wang, G.; Wei, H.; Wang, Y. ORB-SLAM-based tracing and 3D reconstruction for robot using
Kinect 2.0. In Proceedings of the Control and Decision Conference, Chongqing, China, 28–30 May 2017;
pp. 3319–3324. [CrossRef]

18. Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D
mapping framework based on octrees. Auton. Robot. 2013, 34, 189–206. [CrossRef]

19. Huajie, W.Z.L.D. A SLAM Method Based on Inertial/Magnetic Sensors and Monocular Vision Fusion. Robot
2018, 1–9. [CrossRef]

20. Caldato, B.A.C.; Achilles Filho, R.; Castanho, J.E.C. ORB-ODOM: Stereo and odometer sensor fusion for
simultaneous localization and mapping. In Proceedings of the 2017 Latin American Robotics Symposium
(LARS) and 2017 Brazilian Symposium on Robotics (SBR), Curitiba, Brazil, 8–11 November 2017; pp. 1–5.
[CrossRef]

21. Zeng, F.; Zeng, W.; Gan, Y. ORB-SLAM2 with 6DOF Motion. In Proceedings of the IEEE International
Conference on Image, Vision and Computing (ICIVC), Chongqing, China, 27–29 June 2018; pp. 556–559.
[CrossRef]

22. Wang, S.; Yue, J.; Dong, Y.; Shen, R.; Zhang, X. Real-time Omnidirectional Visual SLAM with Semi-Dense
Mapping. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June
2018; pp. 695–700. [CrossRef]

23. Wu, Y.; Hu, Z. PnP Problem Revisited. J. Math. Imaging Vis. 2006, 24, 131–141. [CrossRef]
24. Kneip, L.; Scaramuzza, D.; Siegwart, R. A novel parametrization of the perspective-three-point problem for

a direct computation of absolute camera position and orientation. In Proceedings of the CVPR, Providence,
RI, USA, 20–25 June 2011; Volume 42, pp. 2969–2976. [CrossRef]

25. Abdel-Aziz, Y.I.; Karara, H.M.; Hauck, M. Direct Linear Transformation from Comparator Coordinates into
Object Space Coordinates in Close-Range Photogrammetry. Photogramm. Eng. Remote Sens. 2015, 81, 103–107.
[CrossRef]

26. Lepetit, V.; Moreno-Noguer, F.; Fua, P. EPnP: An Accurate O (n) Solution to the P n P Problem. Int. J. Comput.
Vis. 2009, 81, 155–166. [CrossRef]

27. Yang, J.; Jiang, Y.G.; Hauptmann, A.G.; Ngo, C.W. Evaluating bag-of-visual-words representations in scene
classification. In Proceedings of the International Workshop on Multimedia Information Retrieval, Augsburg,
Bavaria, Germany, 24–29 September 2007; pp. 197–206. [CrossRef]

http://dx.doi.org/10.1109/IROS.2006.281644
http://dx.doi.org/10.1109/IROS.2005.1545002
http://dx.doi.org/10.1109/ROBOT.2008.4543780
http://dx.doi.org/10.1109/CRV.2006.25
http://dx.doi.org/10.1109/ISMAR.2007.4538852
http://dx.doi.org/10.1109/IROS.2014.6942805
http://dx.doi.org/10.1109/MFI.2008.4648022
http://dx.doi.org/10.1109/CCDC.2017.7979079
http://dx.doi.org/10.1007/s10514-012-9321-0
http://dx.doi.org/10.13973/j.cnki.robot.170683
http://dx.doi.org/10.1109/SBR-LARS-R.2017.8215301
http://dx.doi.org/10.1109/ICIVC.2018.8492909
http://dx.doi.org/10.1109/IVS.2018.8500460
http://dx.doi.org/10.1007/s10851-005-3617-z
http://dx.doi.org/10.1109/CVPR.2011.5995464
http://dx.doi.org/10.14358/PERS.81.2.103
http://dx.doi.org/10.1007/s11263-008-0152-6
http://dx.doi.org/10.1145/1290082.1290111


Remote Sens. 2019, 11, 149 21 of 21

28. Schnabel, R.; Wahl, R.; Klein, R. Efficient RANSAC for Point-Cloud Shape Detection. Comput. Graph. Forum
2010, 26, 214–226. [CrossRef]

29. Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G2O: A general framework for graph
optimization. In Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai,
China, 9–13 May 2011; pp. 3607–3613. [CrossRef]

30. Galvez-Lopez, D.; Tardos, J.D. Bags of Binary Words for Fast Place Recognition in Image Sequences. IEEE
Trans. Robot. 2012, 28, 1188–1197. [CrossRef]

31. Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding. In Proceedings of the Eighteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007;
pp. 1027–1035. [CrossRef]

32. Wu, H.C.; Luk, R.W.P.; Wong, K.F.; Kwok, K.L. Interpreting TF-IDF term weights as making relevance
decisions. ACM Trans. Inf. Syst. 2008, 26, 55–59. [CrossRef]

33. Yang, G.; Yang, J.; Sheng, W.; Fef, J.; Li, S. Convolutional Neural Network-Based Embarrassing Situation
Detection under Camera for Social Robot in Smart Homes. Sensors 2018, 18, 1530. [CrossRef] [PubMed]

34. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W. A benchmark for the evaluation of RGB-D SLAM systems.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura,
Portugal, 7–12 October 2012; pp. 573–580. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1467-8659.2007.01016.x
http://dx.doi.org/10.1109/ICRA.2011.5979949
http://dx.doi.org/10.1109/TRO.2012.2197158
http://dx.doi.org/10.1145/1283383.1283494
http://dx.doi.org/10.1145/1361684.1361686
http://dx.doi.org/10.3390/s18051530
http://www.ncbi.nlm.nih.gov/pubmed/29757211
http://dx.doi.org/10.1109/IROS.2012.6385773
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	ORB-SLAM2 
	Tracking 
	Local Mapping 
	Loop Closing 

	Improved ORB-SLAM2 Algorithms 
	Binary-Based Vocabulary Storage Method 
	Vocabulary Training Algorithm Based on Improved ORB Operator 
	Offline Map Construction Method 
	Robot Fast Relocation Method Based on Offline Map 
	Offline Visualization Method for Map and Mapping Trajectory 

	Experiments and Results Analysis 
	Platform of the Used Robot 
	Experimental Design 
	Experimental Results Analysis 
	Optimization Experiment in Binary Format Vocabulary 
	Small-Scale Vocabulary Performance Test Based on Improved Training Algorithm 
	The Experiments of Offline Map Construction and Robot Rapid Relocation 
	Restore-Mapping Experiment 


	Discussion and Conclusions 
	References

