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Abstract: The continual miniaturization of mass-market sensors built in mobile intelligent terminals
has inspired the development of accurate and continuous navigation solution for portable devices.
With the release of Global Navigation Satellite System (GNSS) observations from the Android
Nougat system, smartphones can provide pseudorange, Doppler, and carrier phase observations of
GNSS. However, it is still a challenge to achieve the seamless positioning of consumer applications,
especially in environments where GNSS signals suffer from a low signal-to-noise ratio and severe
multipath. This paper introduces a dedicated android smartphone application called Walker that
integrates the GNSS navigation solution and MEMS (micro-electromechanical systems) sensors
to enable continuous and precise pedestrian navigation. Firstly, we introduce the generation of
GNSS and MEMS observations, in addition to the architecture of Walker application. Then the
core algorithm in Walker is given, including the time-differenced carrier phase improved GNSS
single-point positioning and the integration of GNSS and Pedestrian Dead Reckoning (PDR). Finally,
the Walker application is tested and the observations of GNSS and MEMS are assessed. The static
experiment shows that, with GNSS observations, the RMS (root mean square) values of east, north,
and up positioning error are 0.49 m, 0.37 m, and 1.01 m, respectively. Furthermore, the kinematic
experiment verifies that the proposed method is capable of obtaining accuracy within 1–3 m for
smooth and continuous navigation.

Keywords: android smartphone application; GNSS observations; PDR; integrated navigation;
urban environment

1. Introduction

In recent years, mass-market sensors have become ubiquitous in mobile intelligent terminals.
GNSS chipsets, inertial measurement units (IMUs), magnetometers, and barometers are getting
smaller and cheaper. The evolvement of smartphone built-in sensors facilitates the determination
of a user’s positioning, space-based navigation, and time (PNT) information, which are widely
recognized as important elements for global information infrastructure and are considered the basics of
location-based services (LBS). Under ideal scenarios, consumer-grade GNSS receivers can reach several
meters of positioning accuracy, the improvement of which will further promote the diversification of
LBS [1]. However, the positioning capability will decrease in some harsh conditions, such as urban
canyons or short distance tunnels, where GNSS signals suffer from a low signal-to-noise ratio and
severe multipath [2,3]. Multi-GNSS receiver autonomous integrity monitoring (RAIM) can reduce
the large positioning errors and achieve satisfactory positioning performance in degraded-signal
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scenarios [4,5]. Furthermore, pedestrian navigation systems (PNSs) are expected to provide continuous
positioning and enhanced navigation performance under such cases. Based on fusing measurements of
IMUs and magnetometers, the characteristics of human gait can be exploited in pedestrian dead
reckoning (PDR) algorithms, which are the primary component of PNSs to continuous relative
position [6,7]. A PDR system performs three main tasks: step detection, step length estimation,
and heading determination [8,9]. However, the performance of a PDR system would significantly
decrease with the increase in recursion time, due to sensor noise and model errors. Therefore, the
absolute positioning accuracy of GNSS and the relative positioning accuracy of PDR complement each
other in a smartphone, enabling the smartphone to provide continuous positioning services.

With the release of GNSS observations from the Android Nougat system, smartphones, such
as Huawei P10 and Samsung S8 models, can provide pseudorange, Doppler, and carrier phase
observations of GNSS systems [10]. Moreover, a new generation of mass-market chips based on
dual frequency measurements is next to be commercialized [11]. These released data enable us
to develop advanced algorithms to increase positioning accuracy. Using a single-frequency PPP
model and an extern SBAS correction, sub-meter accuracy can be reached with android GNSS
observations [12]. The decimeter positioning accuracy can also be obtained through rapid-static
surveys of a real-time kinematic (RTK) model without ambiguity resolution [13,14]. Zhang et al. [15]
proposed a filtering algorithm with velocity estimation of the time-differenced carrier phase (TDCP),
and reached decimeter-level accuracy after convergence with static data. Some android applications
utilize GNSS raw measurements already. PPP Wizlite allows precise positioning on a Nexus 5X device,
and requires internet connection to obtain corrections [13]. RTMC Converter can convert android raw
measurements to the RTCM format. Geo++ Rinex Logger can record android raw measurements in
the Rinex file format [16]. However, this topic remains a research hotspot as researchers aim to achieve
satisfactory accuracy and high availability of positioning through android smartphones, especially
with GNSS observations and built-in micro-electromechanical systems (MEMS) sensors under complex
pedestrian scenarios.

We developed a dedicated android application named Walker for continuous and precise
pedestrian navigation by integrating GNSS and MEMS sensor observations in a smartphone. The
architecture of the Walker application is introduced, including the GNSS and MEMS observations
generation and synchronization as well as the positioning results in the smartphone map. Furthermore,
the core algorithm of the application is given, including the improved GNSS single-point positioning
with precise displacement estimation of the time-differenced carrier phase and the integration of GNSS
and PDR. Finally, this application is sufficiently tested in real complex pedestrian scenarios. Both
the GNSS and MEMS observations are evaluated, and some static and kinematic positioning results
are provided.

2. Smartphone Pedestrian Navigation Application: Walker

In this section, the release and generation of smartphone GNSS observations is introduced.
Then the concerned built-in MEMS observations are illustrated. Lastly, the structure of the Walker
application is presented.

2.1. Android GNSS Observations Generation

At the Google annual I/O developer conference in May of 2016, the company reported the
availability of GNSS observations in location applications programming interface (API) level 24 on the
Android N (“Nougat” = version 7). Figure 1 shows the comparison of the location API structures. Until
the advent of android API 23, the only data that could be obtained was GNSS satellite information,
status, location, and so on, including C/N0, azimuth, elevation, PVT solutions, and satellites used
in PVT. From API 24, developers have access to more data, including GNSS clock, ephemeris, and
measurements. It opens the door to more advanced GNSS processing techniques, leading to improved
GNSS performance.
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Figure 1. The comparison of the structures of location applications programming interface (API) 23 and
location API 24.

The phase and Doppler observations are provided directly, while the pseudorange is computed
with the time of signal transmitted and received as follows:

R = (TRx − TTx)·
c

1E9
(1)

Here, R is the pseudorange, c is the speed of light, and TRx and TTx are the GNSS satellite time of the
signal received and transmitted in nanoseconds, respectively. TRx is read from the clock in the receiver,
thus the same value for measurements can be provided by different satellite systems. However,
TTx is provided in different values for each satellite system; for example, the GPS time is given for
GPS observations or the BDS time is given for BDS observations. The differences in TTx are due to
differences in the start time and leap seconds of each system. Usually, when we choose GPS as a
reference system, the TTx of other systems should be converted to the GPS time.

2.2. MEMS Built-in Smartphone

Since inertial navigation technology is capable of working in all environment where GNSS has
difficulties, MEMS inertial technology is regarded as a possible complement to GNSS. With the strong
growth of MEMS technology, multiple MEMS sensors are built into smartphones, typically including a
three-axis accelerometer, three-axis gyroscope, and three-axis magnetometer, which are basic parts in
a pedestrian navigation system. As shown in Figure 2, we determine the smartphone attitude when
the axis orientation of the smartphone body frame is specified with respect to the Earth frame. The
phone’s x-axis is horizontal and points to the right, while the z-axis is perpendicular to the x-y plane
and completes a right-handed coordinate system.
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We can obtain the sensor observations with the android.hardware.SensorEvenListener API, where
the observed values are provided in the order of x-, y-, and z-axes in the body frame. Thus, it is
important to obtain a clear axial distribution of the phone’s sensor. For pedestrian navigation, PDR is a
conventional method to make use of the sensor observations, which exploits the kinematics of human
walking. The measurements of accelerometers are utilized for step detection and step length estimation.
Heading can be obtained through nine-axis attitude determination, which is typically called the AHRS
(attitude and heading reference system). Most of the AHRS algorithms use the gyroscope to compute
the continuous relative attitude, and use the accelerometer and magnetometer for absolute updates
and sensor bias correction.

2.3. Design of Walker Application

The advantage of a smartphone could be fully exploited if the observation acquisition and
computation as well as the result presentation can be integrated into on one single application. Based
on this consideration, we designed this application, called Walker, for pedestrian navigation using
mass-market devices in an urban environment. The key components of Walker and the data flow
are given in Figure 3. First, the GNSS observations and ephemeris are obtained from the location
API. The MEMS observations are obtained from the hardware API. Then these data are processed
by a GNSS/PDR algorithm, whose specific method will be discussed in the next section. Finally,
the computed navigation solution is displayed on the smartphone map, which is supported by
Baidu.mapapi.
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There are two essential parts in the application design that should be emphasized—one is the
GNSS observation capture and the other is the GNSS and MEMS data synchronization. Since the
GNSS raw measurements and ephemeris are supported in the new location API, these observations
should be generated accurately. As mentioned in Section 2.1, the pseudorange generation of different
navigation satellite systems should take into account the difference in system times. For GNSS data, a
GNSS task is created in the application to obtain observations at 1 Hz, while a MEMS task is used to
obtain sensors data at 100 Hz. Supported by Location API of Android, GNSS has a maximum data
output rate of 1 Hz, which is enough to meet the navigation needs of normal users. Then, a positioning
task is run at 1 Hz to read and process these two types of data simultaneously. All tasks are registered
in the scheduled thread pool so that the source sensor data can be managed in an orderly manner.
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3. Fusion Method of GNSS and MEMS in Smartphones

Capitalizing on the complementary characteristics of GNSS and PDR systems, a more accurate
and robust navigation solution is provided through their combination than either could achieve alone.
The fusion strategy of these two systems is shown in Figure 4.
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Firstly, the observations of GNSS and the MEMS are obtained and synchronized from the android
API. Then, for the GNSS process module, the gross errors are detected according to the SNR and
pseudorange rate, and the position and velocity are estimated by single-point positioning (SPP) and a
single-point velocity (SPV) determination algorithm. Furthermore, the precise velocity estimation is
realized by the time-differenced carrier phase (TDCP) technique. Meanwhile, the three-dimensional
(3-D) relative position changes are computed through the PDR system with the IMU, magnetometer,
and barometer observations. Thereafter, the bias of step length and heading of the modeled PDR
system is corrected through a sliding window. Finally, a robust Kalman filter is applied to fuse the
position change and GNSS positioning. If the pure GNSS processing model is chosen, the position
change is fed by the TDCP instead of 3-D PDR. Some key techniques to implement the fusion of GNSS
and PDR are discussed in this section.

3.1. GNSS Position and Velocity Estimation

Multi GNSS constellations can improve positioning accuracy, especially in harsh conditions,
even when the number of satellites available in one constellation is less than four. Since there exists
inter-system bias (ISB) between different constellations, the range measurement will contain an
additional error that degrades the GNSS positioning accuracy [17,18]. The ISB estimated using mass
market receivers are noisier than obtained using geodetic receivers [19]. Generally, the ISBs are
parameterized and estimated in the positioning equation. Choosing GPS as a reference system, the ISB
of BDS (BeiDou System) to GPS should be extended into the GNSS positioning equation [20]:
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where the subscripts G and B represent GPS and BDS, while the superscript k is the k-th GNSS satellite.

(x0, y0, z0) is the approximate receiver position and
(

xk, yk, zk
)

is the satellite coordinate computed by

ephemeris. R is the pseudorange measurement computed from Equation (1). ρk
0 is the distance between

the approximate receiver position and satellite, plus corrected atmospheric errors, plus corrected
relativistic effects. (dx, dy, dz) is the correction to the approximate receiver position, and dtG is receiver
clock error of the GPS satellite. Meanwhile, the ISB of BDS to GPS is also estimated in Equation (2).
Similarly, the ISBs of GLONASS and GALILEO can also be parameterized and added in this equation,
at which point the design matrix H should also be extended. If the number of available satellites is not
less than the number of unknows, the receiver position can be obtained after a few iterations.

It is crucial for many dynamic applications to measure the velocity precisely. A greater
accuracy of velocity estimation can be obtained by processing differences of consecutive carrier
phase measurements, compared with Doppler-based velocity and differencing consecutive positions
from SPP. The time difference between the carrier phase observations φ at two successive epochs, tj
and tj−1, can be expressed as [21]:

λ·∆φ = λ·
(

φtj − φtj−1

)
= ∆ρ + c·∆dtu + c·∆dts + ∆deph − ∆diono + ∆dtrop + ∆η

(3)

where ∆ is the differencing operator, ∆dtu and ∆dts are the differenced user receiver and satellite clock
error, respectively, ∆deph, ∆diono, and ∆dtrop are the differenced residuals of ephemeris, ionosphere,
and troposphere errors, and ∆η indicates the differenced multipath and receiver noise. ∆ρ is the
change in the geometric range between two epochs. ∆dts, ∆diono, and ∆dtrop are negligible between
epochs, and ∆deph is negligible too if the ephemeris errors remain quasi-constant between epochs.
Thus, Equation (3) can be simplified and linearized as

λ·∆φ− ∆D + ∆g = −etj ·∆ru + c·∆dtu + ∆ε (4)

with
∆g = etj ·ru,tj−1 − etj−1 ·ru,tj−1

∆D = etj ·rs,tj − etj−1 ·rs,tj−1

(5)

where ru and rs are the receiver position and satellite position, respectively, while e is the
receiver-satellite unit vector. The user position change ∆ru and receiver clock change ∆dtu can be
estimated using the weighted least squares method. Assuming m (m > 4) in Equation (4), a SNR-based
variance covariance matrix can be constructed as follows:

Σ = diag(s1, s2, . . . , sm)

si = a + b·10
−SNRi

10 , i = 1, 2, . . . , m
(6)

in which the constants a and b need to be determined for each type of equipment. Here, the following
values have been used: a = 10 m2 and b = 1502 m2 Hz [22].

The user velocity Vu can be derived from the user position change ∆ru as follows:

Vu = ∆ru/
(
tj − tj−1

)
(7)

and the horizontal position change ∆Sgnss and the heading αgnss of GNSS can be expressed as

∆Sgnss = ‖
(
VE

u , VN
u
)
‖·
(
tj − tj−1

)
αgnss = atan2

(
VE

u , VN
u
) (8)

where the user velocity Vu is expressed in the local navigation frame, which consists of east (E), north
(N), and up (U) components.
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3.2. Fusion Filter Design with Improved 3-D PDR

As shown in Figure 4, the error detection of GNSS observations is carried out first. The SNR
and pseudorange rate of observations are tested. If the SNR of the smartphone GNSS observation
is lower than 15 dB-Hz, the corresponding satellite will be eliminated. If the difference between the
pseudorange rate and Doppler is greater than the threshold value (3 m/s is set in our algorithm), this
satellite will also be eliminated in this epoch. After error detection, if the number of available satellites
is greater than the number of unknowns in the least square equations, the GNSS position and velocity
estimations are performed. According to Equation (8), the horizontal position change and the heading
of GNSS can be obtained. Thus, the bias of PDR is described as{

δS = ∆Sgnss − ∆Spdr
δα = αgnss − αpdr

(9)

where δS and δα are the step length bias and the heading bias of PDR, while ∆Spdr and αpdr are the
horizontal position change and the heading of PDR, respectively. The PDR system is a relative position
system and errors accumulate over time. Since the velocity of the TDCP in Equation (7) is very accurate,
the bias correction in Equation (9) will improve the accuracy of PDR. The inaccuracy of heading using
GNSS should considered, when the estimated velocity is lower than 5 km/h. Thus, the inaccurate
heading of GNSS will not be used to correct PDR heading. The improved PDR can calculate more
accurate relative positioning during GNSS signal outage, which is crucial for continuous pedestrian
navigation in harsh situations.

In order to continuously provide 3-D relative positioning, the barometer is used to compute any
change of altitude. In the aerospace industry and GPS/barometer-augmented navigation systems, a
well-known empirical formula is used to covert barometric pressure p to altitude h [23,24]:

h =

(
R·T
g·M

)
· ln p0

p
(10)

where h is the difference between the starting height and the measurement height, R is the universal
gas constant (0.31447 J/(mol·k)), g is the gravitational constant at the Earth’s surface (9.80665 m/s2 at
sea level), M is the molar mass of air (0.0289644 kg/mol), p0 and T are the pressure and temperature at
the starting height, and p is the pressure at the measurement height. The commonly used barometer
sensors, such as BMP180/182 and LPS331AP, have a low absolute accuracy ranging from −20 to
20 m, but with a high relative accuracy varying within ±2 m. As an accurate estimation of absolute
barometric altitude requires calibration, we used the relative altitude that directly determines the user
vertical position change.

In our integration method, a robust Kalman filter is employed. The state vector Xtj is composed
of three-dimensional position (x, y, z) expressed in earth-centered earth-fixed frame (e frame) and
receiver clock dt error for each system (take GPS as an example), as follows:

Xtj = [x, y, z, dt]T (11)

with the subscript tj indicating the epoch. The system model in the discrete form is given by

Xtj = Φtj ,tj−1 ·Xtj−1 + Btj−1 ·utj−1 + Wtj−1 (12)

where Φtj ,tj−1 is the transition matrix from the time tj−1 to tj, utj−1 is the system input vector, Btj−1 is the

input matrix, Wtj−1 is state noise vector with a distribution Wtj−1 : N
(

0, Qtj−1

)
, Qtj−1 is the covariance

matrix of state vector. The transition matrix is a unit matrix
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Φtj ,tj−1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

4×4

(13)

The input vector is composed of relative position ∆rn
u = (dE, dN, dU) of two epochs expressed in local

navigation frame (n frame) and time-differenced receiver clock error ∆dt, as

utj−1 = [∆rn
u, ∆dt]T (14)

The input matrix is given by

Btj−1 =

[
Re

n 0
0 1

]
︸ ︷︷ ︸

4×4

(15)

where Re
n is the coordinate transformation matrix from n frame to e frame. The covariance matrix of

state vector is composed the variance of relative position σ2
∆rn

u
and the variance of time-differenced

receiver clock error σ2
∆dt as

Qtj−1 =

[
Re

n·σ2
∆rn

u
·Re

n
T 0

0 σ2
∆dt

]
︸ ︷︷ ︸

4×4

(16)

Here, if the number of available satellites is more than four, the relative position ∆rn
u can be estimated

from TDCP, and the time differenced receiver clock error ∆dt can also be computed. The estimation
accuracy of ∆rn

u determines the value of σ2
∆rn

u
, which is generally between 0.022 m2 and 0.22 m2. The

variance of time-differenced receiver clock error σ2
∆dt is about 52 m2. If the number of available satellites

is less than four, the TDCP will not work. Thus, the relative position ∆rn
u of PDR will be take into

consideration with an accuracy of approximately 0.12 m2. The time differenced receiver clock error
will be set to zero with an accuracy of 1002 m2, that means the receiver clock error will be re-estimated
in the measurement update.

The measurement model is given by

Ztj = Htj ·δXtj + Rtj (17)

where the construction of measurement residual vector Ztj and design matrix Htj are shown in

Equation (2), Rtj is measurement noise vector with a distribution Rtj : N
(

0, Σtj

)
, Σtj is obtained from

SNR-based weighting scheme shown in Equation (6), δXtj is the correction to the initial position of
linearization. The predicted position from Equation (12) is used as initial position of linearization, and
the user position Xtj can be obtained through a few iterations in Equation (17).

It can be found that the Kalman filter is used to fuse the relative position and the absolute position
of SPP. Since the relative position is accurate and the process noise is small, the noisy position of
SPP will be smoothed through the weighted action of the Kalman filter. In addition, the fault of the
measurement update should be detected and eliminated. Thus, the posteriori residuals of the Kalman
filter are tested. If the posteriori variance σ2 exceeds the threshold (62 m2 is set in our algorithm), the
satellite with max posteriori residuals would be excluded and the epoch would be reprocessed. The
posteriori variance is σ2 = (VT PV/n). Here, n is the number of used satellites, V is the posteriori
residuals vector of the Kalman filter, and P is the weight matrix of the observations vector. As described
at the beginning of this section, the SNR and pseudorange rate of observations are first tested to detect
the error of GNSS observations. We call this a prior gross error detection. Finally, the posteriori error
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detection is used for Kalman filter. In this way, the gross error of GNSS observations can be detected
and eliminated step by step, that improve the reliability of positioning results.

4. Field Test Results and Discussions

In this section, the Walker application is tested in the field in terms of characteristics of observation,
accuracy of static GNSS positioning, and kinematic navigation performance. The GNSS observations
are assessed in terms of C/N0, station single-difference pseudorange residuals, pseudorange rate,
phase rate, and Doppler. The stochastic errors of the MEMS sensors are analyzed using the Allan
variance method. The static GNSS data were collected under a normal open sky with devices, as
shown in Figure 5, including Samsung S8 and Huawei P10 smartphones as well as a geodetic-quality
antenna (Trimble Zephyr-2) and a receiver (NovAtel ProPak6). The kinematic track shown in Figure 5
is in a playground surrounding the field under open sky, except for several parts shielded by nearby
trees and buildings. There are some reference points along the track whose coordinates are determined
by professional RTK equipment previously. The accuracy of RTK fixed solution is centimeter level,
which ensures the accuracy of reference point. Two reference points in short tunnels are measured by
total station. In addition, the accuracy comparison of all results is in WGS84 coordinate system.
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4.1. Characteristics of Smartphone GNSS Observations

The C/N0 obtained from a GNSS receiver is the result of the gains and losses along the complete
transmission chain, providing critical performance data for characterizing a variety of accessible signals.
The average C/N0 of S8, P10, and the geodetic devices are analyzed with respect to the elevation
angle. As illustrated in Figure 6, the C/N0 values measured with two smartphones are approximately
10 dB-Hz lower than the values obtained from a geodetic-quality device, which indicates the quality
of the smartphone observations. For smartphones, the C/N0 values vary more significantly, while
they are more stable in geodetic devices. the C/N0 values of the employed Samsung and Huawei
smartphones also show differences, with the S8 being slightly larger than the P10 as well as more stable.

For the smartphone devices with a built-in GNSS antenna, it is hard to carry out the zero-baseline
experiment without external hardware. Thus, we used a short-baseline experiment to determine the
pseudorange noise of smartphones with the geodetic devices as a reference. The single-difference
combination between a smartphone and a nearby (less than 1 m) geodetic receiver is defined as

∆Pj
rb = ∆ρ

j
rb + c·∆dtrp + ∆Mj

rb + ∆εP (18)

where ∆ is the differencing operator, the subscripts r and b represent smartphone receiver and geodetic
receiver, while the superscript j is the j-th GNSS satellite. P is the pseudorange observation, ρ is
the ranges between the satellite and the station calculated using broadcast ephemeris and prior
station coordinates, c is the speed of light, dt is the receiver-closk error, M is multipath error, ε

is the pseudorange noise. As the satellite and atmospheric delay errors were differenced and the
receiver-clock bias estimated with a known receiver position, the SD residual (∆Mj

rb + ∆εP) mainly
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represents the noise of the pseudorange observations plus multipath error. Assuming that the
smartphone pseudorange noise is much larger than that of a geodetic-level device, the SD residual
is basically affected by the smartphone pseudorange noise and multipath error. Figure 7 shows the
comparison of station single-difference (SD) pseudorange residuals. The smartphones’ SD residuals
range from −20 to 20 m for GPS and GLONASS pseudorange, while the geodetic device’s SD residuals
range from −1 to 1 m. Thus, the smartphones’ pseudorange measurements have a much higher noise
level than that of a geodetic-quality device. However, the SD residuals of BDS pseudorange obtained
from S8 vary within ±10 m, which is much smaller compared with GPS and GLONASS. The statistic
of SD pseudorange residuals of GPS, GLONASS, and BDS for the S8 smartphone are 15.93 m, 29.87 m,
and 5.17 m, respectively, reflecting the characteristics of the code noise of smartphone GNSS.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 17 

 

 
Figure 6. Average C/N0 values vs. elevation for GPS, GLONASS, and BDS observations from S8, P10, 
and geodetic devices. The C/N0 values within an elevation range of 1° are classified into one group, 
and compute a group average. 

For the smartphone devices with a built-in GNSS antenna, it is hard to carry out the zero-baseline 
experiment without external hardware. Thus, we used a short-baseline experiment to determine the 
pseudorange noise of smartphones with the geodetic devices as a reference. The single-difference 
combination between a smartphone and a nearby (less than 1 m) geodetic receiver is defined as Δ𝑃 = Δ𝜌 + 𝑐 ∙ Δ𝑑𝑡 + Δ𝑀 + Δ𝜀  (18) 

where ∆ is the differencing operator, the subscripts r and b represent smartphone receiver and 
geodetic receiver, while the superscript j is the j-th GNSS satellite. 𝑃 is the pseudorange observation, 𝜌 is the ranges between the satellite and the station calculated using broadcast ephemeris and prior 
station coordinates, c is the speed of light, dt is the receiver-closk error, M is multipath error, 𝜀 is the 
pseudorange noise. As the satellite and atmospheric delay errors were differenced and the receiver-
clock bias estimated with a known receiver position, the SD residual (Δ𝑀 + Δ𝜀 ) mainly represents 
the noise of the pseudorange observations plus multipath error. Assuming that the smartphone 
pseudorange noise is much larger than that of a geodetic-level device, the SD residual is basically 
affected by the smartphone pseudorange noise and multipath error. Figure 7 shows the comparison 
of station single-difference (SD) pseudorange residuals. The smartphones’ SD residuals range from 
−20 to 20 m for GPS and GLONASS pseudorange, while the geodetic device’s SD residuals range 
from −1 to 1 m. Thus, the smartphones’ pseudorange measurements have a much higher noise level 
than that of a geodetic-quality device. However, the SD residuals of BDS pseudorange obtained from 
S8 vary within ±10 m, which is much smaller compared with GPS and GLONASS. The statistic of SD 
pseudorange residuals of GPS, GLONASS, and BDS for the S8 smartphone are 15.93 m, 29.87 m, and 
5.17 m, respectively, reflecting the characteristics of the code noise of smartphone GNSS. 
 

   
(a) (b) (c) 

 

Figure 6. Average C/N0 values vs. elevation for GPS, GLONASS, and BDS observations from S8, P10,
and geodetic devices. The C/N0 values within an elevation range of 1◦ are classified into one group,
and compute a group average.

Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 17 

 

 
Figure 6. Average C/N0 values vs. elevation for GPS, GLONASS, and BDS observations from S8, P10, 
and geodetic devices. The C/N0 values within an elevation range of 1° are classified into one group, 
and compute a group average. 

For the smartphone devices with a built-in GNSS antenna, it is hard to carry out the zero-baseline 
experiment without external hardware. Thus, we used a short-baseline experiment to determine the 
pseudorange noise of smartphones with the geodetic devices as a reference. The single-difference 
combination between a smartphone and a nearby (less than 1 m) geodetic receiver is defined as Δ𝑃 = Δ𝜌 + 𝑐 ∙ Δ𝑑𝑡 + Δ𝑀 + Δ𝜀  (18) 

where ∆ is the differencing operator, the subscripts r and b represent smartphone receiver and 
geodetic receiver, while the superscript j is the j-th GNSS satellite. 𝑃 is the pseudorange observation, 𝜌 is the ranges between the satellite and the station calculated using broadcast ephemeris and prior 
station coordinates, c is the speed of light, dt is the receiver-closk error, M is multipath error, 𝜀 is the 
pseudorange noise. As the satellite and atmospheric delay errors were differenced and the receiver-
clock bias estimated with a known receiver position, the SD residual (Δ𝑀 + Δ𝜀 ) mainly represents 
the noise of the pseudorange observations plus multipath error. Assuming that the smartphone 
pseudorange noise is much larger than that of a geodetic-level device, the SD residual is basically 
affected by the smartphone pseudorange noise and multipath error. Figure 7 shows the comparison 
of station single-difference (SD) pseudorange residuals. The smartphones’ SD residuals range from 
−20 to 20 m for GPS and GLONASS pseudorange, while the geodetic device’s SD residuals range 
from −1 to 1 m. Thus, the smartphones’ pseudorange measurements have a much higher noise level 
than that of a geodetic-quality device. However, the SD residuals of BDS pseudorange obtained from 
S8 vary within ±10 m, which is much smaller compared with GPS and GLONASS. The statistic of SD 
pseudorange residuals of GPS, GLONASS, and BDS for the S8 smartphone are 15.93 m, 29.87 m, and 
5.17 m, respectively, reflecting the characteristics of the code noise of smartphone GNSS. 
 

   
(a) (b) (c) 

 Figure 7. Station single-difference pseudorange residuals of all observed satellites in static data
collected by smartphone S8 (a), smartphone P10 (b), and geodetic devices ProPak6 (c), respectively.
Different colors correspond to different satellites.

As illustrated in Figure 8, the C/N0 values showed a strong relationship with the smartphone
SD residuals, and gross errors were present when the C/N0 decreased to 20 dB-Hz. As expected,
for the geodetic receiver, the SNR is smaller when the satellite is tracked at lower elevation angles,
which justifies the elevation-dependent weighting. However, for the smartphones, such a correlation
is not as clear because the SNR varies more significantly, regardless of the elevation angle. Therefore,
SNR-dependent weighting is more appropriate during smartphone GNSS data processing.

Figure 9 shows the comparison of the pseudorange rate, phase rate, and Doppler data. The
majority of GPS and GLONASS pseudorange rates vary within ± 10 m/s, while phase rates and
Doppler vary within ± 0.2 m/s. Similar to the case of the GNSS SD residuals, the pseudorange rate of
BDS has a higher accuracy than that of GPS and GLONASS, but the accuracy of Doppler and phase
rates for smartphone GNSS are comparable. The meter-level pseudorange rate noise is approximately
two orders of magnitude larger than the phase rate and the Doppler. Therefore, the phase and Doppler
observations show a centimeter per second precision and can be used to derive user velocity and
detect observation error.
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4.2. Stochastic Error of Smartphone MEMS Sensors

The outputs of MEMS sensors fixed inside a smartphone are not perfect and suffer from some
error sources, including bias, scale factor, axis misalignment, and non-orthogonality, as well as impact
of temperature. The Allan variance is a method that can analyze the sensors’ frequency stability in
the time domain and determine the characteristics of the underlying random process. As shown in
Figure 10, the log-log plot of the Allan standard deviation versus the cluster time is obtained from about
10.48 hours static data obtained from a Huawei P10 smartphone. For the three-axis accelerometer, three
main noises are identified, including a velocity random walk in the −1/2 slope part, a bias instability in
the 0 slope part, and a rate random walk given by the +1/2 slope part. Similar findings were obtained
for the three-axis gyroscope and three-axis magnetometer, including an angular random walk in the
−1/2 slope part, a bias instability in the 0 slope part, and a rate random walk given by the +1/2 slope
part. The mean values of accelerometer, gyroscope, and magnetometer bias instability are 28.60 mGal,
7.38 deg/h, and 0.28 mGauss, respectively, and the values on each axis are of same order of magnitude.
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4.3. GNSS Static Positioning Analysis

In this experiment, the GNSS observations of P10 and S8 smartphones are processed with the
proposed algorithm as shown in Figure 4, where the pure GNSS model is selected. Figure 11 shows
the number of GPS, GLONASS, and BDS satellites viewed. For the S8 smartphone, there are about
19 visible GNSS satellites, while it declines to 15 for the P10, due to the absence of BDS. After error
detection, only five to seven GPS satellites were found to be used in the positioning process, and
there were about two to four GLONASS satellites and three BDS satellites added for the GNSS
positioning process.
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S8 (b).

As illustrated in Figure 12, the GNSS position errors in the east, north, and up directions decrease
dramatically compared to the error level when only GPS is used. The horizontal position errors of
S8 GPS reach to more than 2 m, and it is even worse for P10. When GNSS observations are applied, the
horizontal positioning accuracy of P10 and S8 reached the decimeter-level, and the filtering positions
show lower noise. Meanwhile, the root mean square (RMS) error of the up-vertical position is reduced
by 2 m, and the up-vertical accuracy of the S8 GNSS is approximately 1 m. The increase of GLONASS
and BDS enhances the geometry of the satellites, which decreases the position dilution of precision;
thus, the positioning accuracy was improved.
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As shown in Table 1, the horizontal position RMS error of SPP reaches 5 m, and it reaches about
10 m in the up-vertical direction. It is hard to achieve 1-m-level positioning accuracy with only a
noisy smartphone pseudorange. There is some improvement over SPP for smartphone GNSS chipsets,
especially in the vertical direction. As such, the traditional phone’s GNSS positioning is labeled as
being within a few meters’ accuracy for public users. Benefiting from the release of android raw GNSS
measurements, our proposed positioning method exhibits an obvious improvement. Its horizontal
position RMS declines to 0.5 m, as well as improving in the vertical component. The proposed method
is capable of achieving 1-m-level accuracy because the noisy pseudorange position is smoothed by the
accurate time-differenced carrier phase. In addition, it is convenient to be implemented in mass-market
smartphones without external corrections or reference stations.

Table 1. The statistics of root mean square (RMS) errors of different positioning methods, including
GNSS processed by single-point positioning (SPP), and results of the GNSS chipset built-in smartphones
and GNSS processed by our proposed method (positioning filtering).

East (m) North (m) Up-Vertical (m)

Huawei P10
SPP 5.3164 7.9280 14.2151

GNSS chipset 1.5638 1.4062 4.8635
Position filtering 0.4823 0.7415 3.9041

Samsung S8
SPP 3.8822 4.2733 8.7364

GNSS chipset 1.6545 3.8972 3.2401
Position filtering 0.4935 0.3654 1.0114

4.4. Integrated Navigation Performance Analysis

In the kinematic experiment, the two tracks shown in Figure 5 are tested. The PDR bias correction
with the TDCP is verified in this approximately 500-m track (track 1). The aim of the other experiment,
inclusive of track 1 and track 2, is to test the performance of the GNSS/PDR integration algorithm.
During the kinematic test, the employed P10 smartphone is a handheld model, and the initial heading
is given by the smartphone compass sensor.

Figure 13 presents the track comparison and the horizontal position errors computed from the
reference points. It is found that the track of the GNSS chipset does not agree well with the reference,
while there is some improvement in the track involving GNSS filtering only. However, it is not smooth
and accurate due to the unstable quality of GNSS observations. In particular, in the south of track, the
high buildings and trees provide shelter from the line of sight of GNSS signals, in addition to causing
a strong multipath effect. The fusion of GNSS and PDR can make up for the discontinuous positioning,
due to the accurate recursion ability of the trained PDR. The horizontal position errors of integrated
GNSS and PDR are about 1 m to 3 m, while the errors of the GNSS chipset and the GNSS filtering-only
approaches are twice as much. The RMS values of the three tracks are 5.28 m, 3.18 m, and 2.57 m,
respectively, which indicate the kinematic positioning accuracy of the proposed method in a normal
pedestrian environment.

As illustrated in Figure 14, the step length bias and heading bias are estimated in the integrated
GNSS and PDR navigation. It can be seen that the estimated step length bias is approximately−0.025 m
with few fluctuations. The comparison of the heading bias demonstrates that there is an offset between
the initial heading obtained from the smartphone compass and the direction in which the user is
moving. The error of the gyroscope heading increases linearly with time, and the error of the compass
heading shows periodic variation with time. Generally, the linearly increased error of the gyroscope
heading is mainly caused by gyroscope bias, and the periodic variation of the compass heading could
be influenced by magnetic disturbances. The precise estimation of the PDR bias indicates that the
improved PDR system functions as a continuous relative position estimator, which plays an important
role in urban pedestrian navigation.
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Figure 15 shows the comparison of kinematic tracks in a poor observation environment. When
going through short-distance tunnels, the GNSS filtering-only approach exhibits an outage, and the
GNSS chipset also diverges to the wrong position. In this case, where GNSS signals are degraded or
not available, sensor fusion has an obvious advantage. The integrated GNSS and PDR approach can
provide continuously reliable user positions. The RMS values of three tracks are 12.17 m, 7.12 m, and
2.87 m, respectively. By comparing the GNSS-only results in Figure 12, Figure 13, and Figure 15, the
GNSS observations show a large difference in positioning performance, which is mainly affected by the
complex multipath and signal quality. With a discontinuous GNSS carrier phase, it is hard to smooth
the noisy pseudorange. Moreover, the cycle slip and gross errors increase in degraded-observation
conditions. These statistics of position errors indicate that the proposed method can bridge the outages
of GNSS, as well as keep a 2-m-level accuracy in harsh observation scenarios.
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5. Conclusions

We introduced a dedicated android smartphone application named Walker, which provides
continuous and precise pedestrian navigation by fusing GNSS and MEMS sensors. Some key
techniques were discussed, including source observations generation and synchronization as well as
the integration of GNSS and PDR algorithms.

Then, a series of field tests was carried out to validate the proposed Walker application. The quality
assessment of android GNSS observations indicated that the time-differenced carrier phase can smooth
noisy pseudorange in the positioning domain. The low-cost sensor output was imperfect; the bias
should be calibrated. The static experiment results demonstrate that the proposed method is effective
to achieve 1-m-level accuracy without the assistance of external corrections or reference stations. The
kinematic experiment showed that this method can bridge the outage of GNSS, in addition to achieving
an accuracy within two meters for pedestrian navigation. In summary, the release of android GNSS
observations from mass-market smartphones facilitates the achievement of high-precision positioning
for mass-market users, and the fusion of smartphone GNSS and PDR enhances pedestrian navigation
in urban environments.
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