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Abstract: In this study, a residual soil moisture prediction model was developed using the stepwise 

cluster analysis (SCA) and model prediction approach in the Upper Blue Nile basin. The SCA has 

the advantage of capturing the nonlinear relationships between remote sensing variables and 

volumetric soil moisture. The principle of SCA is to generate a set of prediction cluster trees based 

on a series of cutting and merging process according to a given statistical criterion. The proposed 

model incorporates the combinations of dual-polarized Sentinel-1 SAR data, normalized difference 

vegetation index (NDVI), and digital elevation model as input parameters. In this regard, two 

separate stepwise cluster models were developed using volumetric soil moisture obtained from 

automatic weather stations (AWS) and Noah model simulation as response variables. The 

performance of the SCA models have been verified for different significance levels (i.e.,� =

0.01,� = 0.05,and � = 0.1). Thus, the AWS based SCA model with � = 0.05was found to be an 

optimal model for predicting volumetric residual soil moisture, with correlation coefficient (r) 

values of 0. 95 and 0.87 and root mean square error (RMSE) of 0.032 and 0.097 m3/m3 during the 

training and testing periods, respectively. While in the case of the Noah SCA model an optimal 

prediction performance was observed when � value was set to 0.01, with r being 0.93 and 0.87 and 

RMSE of 0.043 and 0.058 m3/m3 using the training and testing datasets, respectively. In addition, 

our result indicated that the combined use of Sentinel-SAR data and ancillary remote sensing 

products such as NDVI could allow for better soil moisture prediction. Compared to the support 

vector regression (SVR) method, SCA shows better fitting and prediction accuracy of soil 

moisture. Generally, this study asserts that the SCA can be used as an alternative method for 

remote sensing based soil moisture predictions.  

Keywords: sentinel; stepwise cluster analysis; synthetic aperture radar; NDVI; soil moisture 

 

1. Introduction 

Soil moisture is a critical component of agricultural development because its availability and 

distribution substantially determine the growth and productivity of crops. Soil moisture is one of the 

limiting factors in countries such as Ethiopia where the country is predominantly affected by 

recurrent drought and dependent on rain-fed farming practices [1]. Ethiopia’s crop production and 

productivity are low and dominated by smallholder farmers [2]. Most of these farmers are unable to 

sustain their livelihoods by a single harvest during the main rainy season [3,4]. More specifically, the 
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Upper Blue Nile (UBN) basin of Ethiopia receives an adequate amount of rainfall (>2000 mm per 

annum), with more than 75% of the rainfall occurring during the summer growing season [5,6]. 

Across the UBN basin, following the harvest of main season cropping, certain carry-over moisture, 

called residual soil moisture, is left in the soil, particularly after the periods of heavy rainfall, which 

could be used for additional short or medium cycle cropping to increase food and feed production. 

However, practicing additional cropping depends on the extents of residual moisture available in 

the soil, both at spatial and temporal scale. Thus, multi-temporal monitoring of residual soil 

moisture in the off-season is of great importance. Measurements of soil moisture using the 

conventional in-situ methods and hydrological modeling remain challenging due to their specific 

location point estimates [7] and the difficulties to determine the input parameters of the hydrological 

model [8], respectively. 

In this perspective, remote sensing technique is a viable approach to monitor soil moisture on a 

large scale with better spatial representation and in time [9,10]. Space-based driven products from 

optical and both active and passive microwave remote sensing satellites have been successfully used 

to estimate surface soil moisture [11]. Among active microwave remote sensing systems, Synthetic 

Aperture Radar (SAR) imaging techniques are gaining a particular attention for the estimation of 

surface soil moisture due to its high sensitivity to surface soil moisture and sensing abilities to 

all-time and all-weather conditions [11]. The radar systems have a higher potential for soil moisture 

monitoring in the agricultural areas due to the significant difference in dielectric constant (ε) of very 

moist soil (~25) and that of dry soil (~2.5) at frequency bands of the SAR systems [12]. Thus, the 

difference in the values of ε is a good indicator of the amount of moisture available in the soil. In 

agricultural soil, apart from soil moisture, SAR imaging is also sensitive to several other surface 

parameters such as roughness, crop cover, and topography [13,14]. Therefore, the soil moisture 

retrieval model should account for the effects of these target parameters and minimize them from 

the backscattering coefficient values to get a full response from soil moisture [15]. 

To take account of surface parameters and various sensor configurations in SAR based soil 

moisture estimation, many backscattering models have been developed over the past few decades. 

These models are generally classified into three main categories: a theoretical model [16–18], 

semi-empirical [19,20], and empirical models [21,22]. For example, Zribi et al.[23] used C-band 

ASAR data and Water Cloud Model (WCM) to estimate soil moisture with RMSE of 0.06 m3/m3 in 

semiarid regions. While He et al. [24] achieved better soil moisture retrieval accuracy with an RMSE= 

0.033 m3/m3, through integrating WCM and the Integral Equation Model (IEM) in the alpine 

grassland area. Chai et al.[25] compared the modified Chen and Dubois soil moisture retrieval 

model using RADARSAT-2 SAR data, reasonable results with an average RMSE= 4.2% has been 

observed by the modified Dubios model. Tomer et al. [26] introduced a promising soil moisture 

retrieval algorithm based on the Cumulative Density function (CDF) and multi-temporal 

RADARSAT-2 data. The validation using field data has confirmed that the potential of the 

developed algorithm with RMSE ranging from 0.02 to 0.06 m3/m3 for the majority of observed plots. 

Gao et al. [27] proposed a capable soil moisture prediction model in the domain of change detection 

method through combining Sentinel-1 SAR and Sentinel-2 optical data, their validation lead to a 

RMSE equal to0.059 m3/m3. Alternatively, Zhang et al. [28] introduced soil moisture estimation 

techniques using the Alpha approximation model and multi-temporal SAR data obtained from 

RADARSAT-2 and Senteinel-1 sensors, characterized by an RMSE of 0.08 cm3/cm3. While Hosseini et 

al. [29] presented an integrated statistical soil moisture prediction model based on RADARSAT-2 

data. They reported a best-performing model and managed to reduce the prediction error within 

the range of 3%–4%, in comparison to a previous report (RMSE=6.2%) using the Dubios model in 

the study area.  

Apart from the above-mentioned inversion models, given the complexity and non-linearity of 

retrieval problems, recently studies have successfully introduced the more advanced statistical 

techniques, such as the non-linear machine learning approaches, in the field of soil moisture 

estimation using remote sensing data. Among the different machine learning techniques, the 

Artificial Neural Network (ANN) can be mentioned as the dominant method being in use for soil 
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moisture inversion using remote sensing data. Satalino et al. [30] used the ANN approach to retrieve 

soil moisture from ERS data with an overall RMSE of 6%. While Santi et al. [31] reported better soil 

moisture retrieval accuracy with an RMSE close to 0.023 m3/m3, using ENVISAT/SAR data and ANN 

technique. Baghdadi et al. [32] predicted soil moisture values derived from C-band SAR data using 

the ANN approach, with an RMSE approximate to 0.065 m3/m3 and 0.098 m3/m3 with and without 

considering a priori information related to the soil parameters over bare agricultural areas, 

respectively. Subsequently, Lakhankar et al. [33] have compared the performances of ANN with 

other statistical methods such as fuzzy logic and multivariate regression techniques. The ANN 

approach has shown a comparable performance (RMSE=3.39%) as compared with fuzzy logic 

(RMSE=3.45%) but was better than the multivariate statistics method (RMSE=4.48%). Palosica et al. 

[34] have made a comparative analysis between the performances of ANN and the Single Chanel 

Algorithm developed by the US Department of Agriculture using AMSR-E data. The findings 

demonstrated that both algorithms can meet or exceed the AMSR-E mission soil moisture accuracy 

requirements (i.e., RMSE ≤ 0.06 m3/m3). In the last few years, there have also been other studies in 

the field of geo-/bio-physical parameter retrieval based on recent machine learning techniques, such 

as support vector regression (SVR) [35]. In this connection, different studies (e.g., [36–38]) have 

investigated the potential of a SVR model for soil moisture inversion using remote sensing data. 

Thus, an improved performance of the SVR algorithm (with RMSE=1.98%), when compared to 

ANN (RMSE=2.79%) and the conventional multiple linear regression approaches (RMSE=2.84%) 

was achieved by Ahmad et al. [36]. 

In a different approach, stepwise-cluster analysis (SCA) is an alternative statistical method 

intended for modeling the nonlinear relationships between independent and dependent variables 

[39].The SCA has been extensively used to handle multivariate modeling problems in environmental 

prediction and hydrological monitoring activities [39]. It can also effectively work either with 

continuous or discrete variables [40]. The modeling outputs of SCA are provided by a series of 

cluster trees, which gives a set of prediction systems (tip clusters), to reproduce the relations 

between multiple independent and dependent variables [41]. The SCA technique was first 

introduced by Liu and Wang [42] to solve multivariate modeling problems in medical research. 

Later, Huang [40] improved the SCA approaches and used for modeling the correlation between 

major air pollutants and multiple source factors in an urban environment. Eventually, the SCA has 

gained much attention and a large number of application studies based on the SCA method have 

been reported. For example, [39,43,44] developed a forecasting system using SCA for mapping the 

link between contaminating concentration and operating conditions in groundwater bioremediation 

processes. More recently, many works have successfully applied SCA for climate projection [45], 

stream flow prediction [46], hydrological processes modeling [47,48], and air quality management in 

an urban environment [49]. All these efforts attested the effectiveness of SCA for environmental and 

hydrological prediction systems. It is thus likely that the SCA approach could be applied for soil 

moisture inversion from remote sensing data and it might be used as an alternate technique. 

However, no attempts have been made to apply SCA statistical methods in this area so far. 

Therefore, as a supplement of the previous efforts, the objective of this study is to develop and 

test a stepwise-cluster soil moisture inference model based on the statistical relationship between 

volumetric soil moisture and remote sensing data (obtained from SAR and optical sensing systems). 

Explicitly, we first (i) investigated the effect of surface parameters such as vegetation cover, 

topography, and soil properties on the relationship between SAR backscattering signals and soil 

moisture in our area of interest; (ii) then the synergy of dual-polarized SAR data, normalized 

difference vegetation index (NDVI), and digital elevation model (DEM) have been used to establish 

the SCA based soil moisture prediction model; (iii) followed by validation of the proposed 

prediction system, and (iv) compared with other statistical method. 

2. Materials and Methods 

2.1. Site Description 
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The Upper Blue Nile (UBN) basin is located in the northwestern part of Ethiopia (Figure 1). The 

UBN basin is a main source of the Nile River water resource, and it contributes about 60% of the 

annual flow of the Nile [50,51]. The basin has an approximate drainage area of 176,000 km2 [52]. It is 

characterized by a complex topography with elevation ranging from 4239 m a.s.l. at the northeastern 

part of the basin to 490 m a.s.l. at the western part of the basin near the Ethiopian–Sudan border 

(Figure 1). The climate of the UBN basin ranges from humid to semi-arid. The main rainfall season 

(known as “Kiremt”) occurs from June to September. The dry season runs from October to January 

followed by a short rainy season (called “Belg”) from February to May. According to Kim et al. [53], 

about 70% of the annual precipitation in the study area (UBN basin) is observed during the Kiremt 

season. The UBN basin receives up to 2200 mm of annual rainfall. The annual mean rainfall varies 

between 1200 and 1800mm [52] with an increasing trend from northeast to southwest [53]. However, 

the basin is characterized by large temporal fluctuations in rainfall [52,54] both on intra-annual and 

inter-annual scale. As a result, the hydrological processes in the basin are quite complex and highly 

variable in space and time. Although quite a diversity of land use systems is common, the 

livelihoods of the majority of the populations in the basin are highly dependent on rain-fed 

agriculture. 

 

Figure 1.Digital elevation model (DEM) of the Upper Blue Nile basin and its location in Africa. The 

northeastern regions have higher elevation, while the northwestern regions have lower elevation 

(Imagery source: SRTM Global elevation data- https://earthexplorer.usgs.gov). 

2.2. Data 

Remote sensing input data were acquired from Sentinel-1 SAR, Moderate Resolution Imaging 

Spectroradiometer (MODIS), and the Shuttle Radar Topographic Mission (SRTM). Volumetric soil 

moisture data were also collected from ground-based automatic weather stations (AWS) and land 

surface parameters simulated from the Noah 3.3 model in the Famine Early Warning Systems 

Network (FEWS NET) Land Data Assimilation System (FLDAS). Data were collected/acquired for 

the periods of 2016 and 2017 (for the months of September, October, November, December, and 
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January). Those months, except September, are the dry periods in the study area when farmers can 

potentially practice additional cropping using residual soil moisture. The month of September 

indeed belongs to the wet period of the study area; however, the main season cropping reaches to 

the stage of physiological maturity and crops have limited moisture intake during this month. So, 

dry season farming may start as of September for efficient utilization of the residual soil moisture. 

Descriptions of each data are provided below. 

2.2.1. Remote Sensing Data 

This study used SAR image data from the Global Monitoring for Environment and Security 

(GMES) Sentinel-1 mission. It operates in C-Band SAR instrument with the frequency of 5.405 GHz. 

Sentinel-1 has four different operating modes; however, over land, it uses the main operational 

Interferometric Wide-Swath (IWS) mode and measured at dual polarization (i.e., vertical transmit 

and vertical receive –VV and vertical transmit and horizontal receive -VH) with a 250 km swath and 

an average temporal resolution of 12 days in the study area. Free data can be accessed via the 

European Space Agency (ESA) website (https://scihub.copernicus.eu/dhus/#/home) once it is 

acquired. In this study, 66 level-1(for 32 acquisition dates) product of IWS mode generated as 

Ground Range, Multi-Look, and Detected (GRD) products were acquired for the periods of 2016 and 

2017 (Appendix A Table A1, lists of Sentinel-1 SAR data used). The GRD product of high-resolution 

class has a spatial resolution of 20 × 5 m and a pixel spacing of 10 m. This study used data from 

descending orbit, which provides dual -polarized SAR data acquired both at VV and VH 

polarizations simultaneously. The essential characteristics of Sentinel-1 IW swath mode data are 

given by [55]. 

The preprocessing of SAR data consists of several steps including radiometric correction, 

speckle filtering, and geometric correction. These processes have been done using the Sentinel 

application platforms (SNAP) provided by ESA. The calibrations of raw SAR data have been made 

using the radiometric toolbox in SNAP. Radiometric calibration is required to convert SAR pixel 

values to exact backscattering coefficient of the scene. A 7 × 7 Enhanced Lee filtering window was 

applied to the SAR data to reduce the speckles that may degrade the quality of the SAR image. The 

geometry of the SAR data has been corrected using Range Doppler Terrain correction tool in SNAP. 

Ground vegetation coverage has an effect on the backscattering characteristics of SAR data. In 

this aspect, the normalized difference vegetation index (NDVI) were used to assess ground 

vegetated land cover. For this study, MODIS NDVI data product (MOD13A2) was downloaded 

from the USGS earth explorer website for the period of 2016 and 2017. We have used NDVI data of 

MOD13A2 prepared with 16-day composite and a spatial resolution of 1 km. Daily values of MODIS 

NDVI were obtained by interpolating the 16-day composite using temporally corrected time-series 

information of composite. The digital elevation model (DEM) with a spatial resolution of 30m 

provided by the Shuttle Radar Topographic Mission (SRTM) was used for geometric correction of 

SAR data during the preprocessing phase. However, the topographic variation still determines the 

spatial distributions of soil moisture in the field [56] and the acquired SRTM Global elevation data 

was also considered in the SAR based soil moisture prediction model. 

2.2.2. Soil Moisture 

The prediction models in this study were calibrated and validated using known volumetric soil 

moisture data obtained from automatic weather stations (AWS) and FLDAS Noah model simulated 

for East Africa. 

Ground Observed Soil Moisture Data 

Ground observed soil moisture dataset is valuable for model calibration and validation when 

we are dealing with soil moisture estimation using remote sensing data. However, many African 

countries, including Ethiopia, are characterized by the scarcity or unavailability of ground based soil 

moisture observations [57]. Recently, the National Meteorological Agency (NMA) of Ethiopia has 



Remote Sens. 2019, 11, 125 6 of 24 

 

installed about 16 automatic weather stations (AWS), which can measure soil moisture data at 

different depths of soil in addition to other climatic information. 

For this study, only six stations are found in and around the UBN basin, corresponding to the 

acquisition of Sentinel- 1, were used for the period of 2016 and 2017. The six stations are “Dangila”, 

“Kachis”, “Motta”, “Nedjo”, “Simada”, and “Weliso” (Figure 1). At each site, soil moisture 

measurements are taken at 20, 50, and 100 cm depth with a 15 minutes time interval. To overcome 

the absence of calibration standards, the spatiotemporal distributions of AWS (0 to 20 cm) data sets 

have been compared to FLDAS Noah soil moisture product (0 to 10 cm depth) and Climate Hazards 

Group Infrared Precipitations with Stations (CHIRPS) satellite rainfall product. The CHIRPS has 

shown good agreement with ground observed rainfall over our area of interest [58]. To define the 

spatial patterns in the relationship, a point to pixel-wise correlation between the daily mean of all the 

six AWS observed volumetric soil moistures with that of FLDAS Noah and CHIRPS precipitation 

has been made (Figure 2). Within this domain, AWS observations have shown consistent 

spatiotemporal distribution with the simulated FLDAS Noah and CHIRPS precipitation events 

(Figure 2). A strong correlation of AWS measured volumetric soil moisture with simulated FLDAS 

Noah (r=0.74) and CHIRPS precipitation (r=0.53) can be noted. 

 

Figure 2.Time series of daily mean automatic weather stations (AWS) measured volumetric soil 

moisture (blue line) and daily values of Land Data Assimilation System (FLDAS) Noah simulated 

(red line) soil moisture and daily accumulated precipitation (black line) over the six observation 

stations for the period of November 2015 to May 2018. 

It is also noticed that the inconsistency of the soil depth measured by AWS (0 to 20 cm) and the 

sensitivity of C-band SAR data are usually more responsive to the top few centimeters of soil [59]. 

However, [60] have observed that the sensitivity of the C-band SAR data to soil moisture variation 

could extend up to 20 cm depth. For example, Humphrey [61] has found a significant correlation 

between backscatter variables extracted from the C-band RADARSAT imagery and soil moisture 

measured at both 5 cm and 20 cm depths, with r= 0.83 and 0.79, respectively. Similarly, [62] reported 

the sensitivity of RADARSAT-2 SAR data to the amount of soil moisture measured at 20 cm depth 

and resulted in a correlation value of 0.85. A correlation value up to 0.84 between backscatter values 

from ERS SAR data and in-situ soil moisture also observed at a depth of 20 cm [63]. Therefore, these 

may suggest the sensitivity of C-band SAR data up to 20 cm depth measurements of soil moisture 

and could be used to calibrate a soil moisture prediction model using Sentinel-1 SAR data. However, 

still readers should note that the vertical heterogeneity of soil moisture at 20 cm depth of soil could 
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affect the relationship between SAR backscattering and volumetric soil moisture and might affect 

model prediction performance. It is also clear that a better correlation and model inversion 

performance would be observed with soil moisture measured at a top few centimeters of soil. 

FLDAS Noah Model 

To expand the spatial and temporal evaluation of the proposed method (SCA), a model-based 

soil moisture product has been used as an additional resource. Thus, FLDAS Noah model (simulated 

for East Africa) was used in this study, in addition to ground AWS, to calibrate and validate the SCA 

method [64]. The FLDAS Noah model is simulated from the widely used Noah land surface model 

and provides volumetric soil moisture data at different soil layers and spatiotemporal resolutions 

[64]. In this study, the top 10 cm soil layer moisture content with a spatial resolution of 0.1 × 0.1 

degree was obtained from the NASA Goddard Earth Science Data and Information Services Center 

(GES DISC) web site. The FLDAS Noah measurements that correspond to Sentinel-1 SAR temporal 

coverage are available for 2016 and 2017 at a daily time step. 

2.3. Methods 

Volumetric soil moisture from both AWS observations and FLDAS Noah model were used as a 

dependent variable, while backscatter values of both VV and VH polarizations from Sentinel-1 SAR, 

vegetation information based on NDVI analysis, and elevation information derived from DEM data 

were considered as independent variables to calibrate and validate the model. The Sentinel-1 SAR 

data and DEM were provided with a spatial resolution of 10 and 30 m, respectively. Therefore, for 

the first model based on AWS observation, average values of backscatter measurements and 

elevation within a 1 × 1 km ground area were used to keep the spatial resolution consistent with 

MODIS NDVI. In this case, it was assumed that point measurement at the ground station is 

representing the average soil moisture in the area corresponding to remote sensing data. The main 

limitation is still the necessity for having sufficient number of distributed ground observation at 

each satellite footprints/grid cells in order to assure that the assumption of point measurement is 

corresponding to satellite observations. Similar methods of data preparation were applied to soil 

moisture data obtained from the FLDAS Noah model. Dual-polarized Sentinel-1 SAR, NDVI and 

DEM data measurements were resampled to the ground resolution of ~ 10 × 10 km in order to match 

with the spatial resolution of FLDAS Noah soil moisture. 

Studies have reported that soil moisture radar backscattering is affected by a number of time 

and space varying parameters such as vegetation, soil property, and topography [14,65,66]. Thus, 

our study was started by investigating the effect of each remote sensing input variable for soil 

moisture estimation in our area of interest. So, the linear regression analyses between remote sensing 

data and volumetric soil moisture was conducted (Table 1). The simple linear regression was first 

done between backscattering values from VV polarization and volumetric soil moisture and then the 

multiple regressions were continued using VV and VH radar backscattering values. Afterward, in a 

step fashion, the other independent variables (i.e., vegetation and elevations) were sequentially 

added to the regression model. 

Table 1.Statistical values of simple and linear regression model between independent and dependent 

variables. 

No Independent Variables Dependent Variables (Volumetric Soil Moisture) 

  
AWS Observed  FLDAS Noah Model 

r N  r N 

1 ���  0.36 83  0.34 1000 

5 ��� , ���  0.41 83  0.35 1000 

6 ��� , ��� , NDVI 0.63 83  0.57 1000 

7 ��� , ��� , NDVI, E 0.76 83  0.65 1000 

Note: ���- Backscatter value from VV polarization; ���- Backscatter value from VH polarization; NDVI- 

Normalized difference vegetation index; and E-Elevation; N-Number of data pairs. 
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The models’ coefficient of correlation (r) values were used to evaluate the soil moisture 

prediction performance of each model. All the regressions in Table 1 have a significant correlation at 

P<0.01 with volumetric soil moisture (for both AWS observed and FLDAS Noah simulated model). 

The combination of VV and VH polarization has shown a slight improvement in the correlation 

values but VH backscatter seems to be important for the overall performance of the model. The 

inclusion of vegetation (NDVI) into the regression model has considerably improved the correlation 

values to 0.63 and 0.57 for AWS and model simulated soil moisture, respectively. The effect of 

elevation cannot be ignored in our case and its inclusion in the modeling process has further 

improved the prediction performance of the model with r 0.76 (0.65) for AWS (model simulated) soil 

moisture. Thus, to get complementary information from all these remote sensing variables, it was 

decided to feed a combination of��� ,���,NDVI, and E as input parameters to the proposed 

stepwise-cluster analysis model. According to [67], the combined use of remote sensing data 

obtained from different sensing systems (e.g., microwave and optical sensing system), can grant 

complementary information regarding the extent of soil moisture content in a given land use class. 

2.3.1. A Stepwise Cluster Analysis (SCA) 

Model Development 

Considering the complexity and non-linearity of retrieval problems, a statistical relationship 

between volumetric soil moisture and remote sensing variables (i.e.,��� ,��� , NDVI, and DEM) was 

established using a SCA model. The principle of SCA is to divide samples (containing a number of 

independent and dependent variables) into a set of clusters with significant differences based on a 

series of cutting (i.e., splitting one set into two) and merging (i.e., joining two sets together) process 

according to a given statistical criterion [40–42]. Similar to other nonparametric tree regression 

statistical methods such as the Random Forest (RF), SCA can effectively capture the inherent 

nonlinear relationship between predictors and predictands [68], apply a defined set of criteria to 

split and merge datasets into different nodes, and use the regression tree method for predicting. 

However, unlike the SCA method, the RF uses a bootstrapping method for training/testing the 

model [69]. While splitting the tree’s node, RF searches for the best features, among a random subset 

of features instead of searching for the most important features from the dataset. In addition, RF uses 

multiple decision trees for prediction, afterward these decision trees are merged together to get more 

stable estimation [70]. 

Basically, the SCA approach follows four major steps: (i) set criteria for cutting and merging 

clusters-, based on Wilks statistic [71], (ii) cutting/merging clusters operation-based on the criteria, 

(iii) produce single SCA cluster tree-, that contains a set of prediction nodes, and (iv) prediction. 

Generally, the SCA clustering process begins with a cutting action by which the original training 

sample dataset will be split into two groups. Then, the merging and cutting loops will be continued 

up until none of the sub-clusters can be further divided or merged with other sub-clusters. Finally, a 

cluster tree which contains a set of prediction nodes (tip cluster) will be generated from the training 

sample datasets and used to predict the dependent variable for any new values of the independent 

datasets. The flow of SCA model development is given in Figure 3. 

Training 

In order to train the SCA model, first, the original datasets were divided into training and 

testing datasets randomly. The training sample datasets contains a set of independent (��� ,��� , 

NDVI, and DEM) and dependent variables (volumetric soil moisture). Assuming that there are ��  

samples, with m independent variables (X) and one dependent variable (Y). Thus, the training set 

can be given as one cluster (�), shown as the following equation (Equation (1)): 

� = [��, ��, … , ��, �] =

⎣
⎢
⎢
⎡

���, ���, … , ���

���, ���, … , ���

��

� �

⋮ ⋮
����, ����, … , ���� ���⎦

⎥
⎥
⎤

 (1) 
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Thus, a cluster tree can be derived through cutting and merging operation of the training set 

following the cut-merge loop provided in Figure 3. 

 
Figure 3. Flow chart of Stepwise cluster analysis (SCA) 

Let cluster �, which contains ��  samples, be cut into two sub-clusters �and�, which contain 

�� and �� samples, respectively (�� = �� + ��). According to Wilks’ likelihood-ratio principle, the 

cutting point is optimal only if the value of Wilks statistic Λ is minimum [40,71]. The smaller the Λ 

value refers the larger the difference between the sample means of � and � sub-clusters. When 

the Λ  value is very large, sub-cluster �  and � cannot be cut and must be merged instead. 

According to Rao’s F-approximation [61], the Wilks Λ  statistic under the above two sub-clusters (� 

and�) can be correlated to F-variant as follows (Equation (2)): 

� = ��, �� + �� − � − 1� =
1 − Λ

Λ

�� + �� − � − 1

�
 (2) 

Where �= number of predictors. Since the Λ is related to the F statistics, the sample means of 

the sub-cluster � and � can be evaluated for their significant differences using an F-test [39]. 

Therefore, cutting (or merging) of clusters will be decided based on the F tests [72]. The null 

hypothesis would be ��: �� = �� versus the alternative hypothesis ��: �� ≠ �� , where �� and �� 

are sample mean of � and �. Let the significance level be �. In this study, the sensitivity of 

modeling result has been tested for different significance levels (i.e.,� = 0.01, � = 0.05, and � =

0.1). An operation of cutting would be applied if: ���� ≥ �� and �� is false, which implies that 

differences of means between two sub-clusters are significant; whereas, ���� < ��and �� is true 

would be the merging action that indicates these two sub-clusters have no significant variations. 

All the sub-cluster produced from the original training sample dataset will go through a 

number of iterative runs of cutting and merging processes and the training procedures are 

completed when all tests are undertaken and all hypotheses of further cut (or merge) are rejected. 

Then, a cluster tree can be obtained. Afterward, Y can be predicted for any new input data of X using 

the derived cluster tree. A cluster tree usually contains a tip cluster and a series of cutting and 

merging rules. Tip clusters are those clusters that contain the prediction systems, which can no 
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longer be split or merged with others. Usually, the mean value of the tip cluster is used to estimate 

the predicted results [41]. 

Prediction 

Following the completion of model training, a cluster tree can be derived for a new sample 

prediction. The prediction is indeed a searching procedure by itself, starting from the top of the tree 

and ending at a tip cluster, following the route lead by the cutting and merging rules [45]. When a 

new sample (��, ��, … , ��, ��: ����������) enters the tree at a cutting point, step-by-step the sample 

set will eventually drop into one of the tip sub-cluster which cannot be either cut or merged further. 

The right tip sub-cluster is determined by the routes (or values) of new independent variables 

(��, ��, … , ��). The predicted value of ��will be the mean of dependent variables of the training 

samples in that tip cluster. Let cluster � be the tip cluster where the new sample {��} enters. The 

predictand ���� is (Equation (3)): 

 �� = ��
� ± ��

�  (3) 

Where ��
� = mean of dependent variable (e.g., volumetric soil moisture) in sub-cluster �(Equation 

(4)) and ��
�= radius of ��in sub-cluster� (Equation (5)). 

��
� =

�

��
∑ ��,�

���
��� ,(3) (4) 

��
� = �������,�

� � − ������,�
� ��/2, (4) (5) 

The correlation coefficient (r) and the root mean square error (RMSE) were used to evaluate the 

performance of the SCA model during the training and testing periods. The software packages 

(called rSCA) included in ‘R’ statistical packages were used in this study [73]. To examine the 

performance of the developed model, SCA was compared with a nonlinear support vector 

regression (SVR) method. 

2.3.2. Support Vector Regression (SVR) 

The support vector regression (SVR) technique is based on the structured risk minimization 

principle. This method maps the input data into a high dimensional feature space using non-linear 

mapping and then a linear regression problem is obtained in the feature space. A set of training data 

(x�, y�) is considered where x�  is the input vector (e.g., the SAR backscattering coefficients) and y�  is 

the corresponding output vector (e.g., the volumetric soil moisture); i=1, 2…, L and L is the total 

number of data pairs, y ∈ R, x ∈ RD. The aim of the SVR model is to find a function �(�)that has at 

most �-deviation from the actually obtained targets for all the training data (Equation (6)). The 

function is given as [74]: 

�(�) = 〈�, �〉 + � (6) 

Where 〈�, �〉 denotes the dot product of a weighted vector w and input vector x, and b is the 

bias. The first prediction is attained according to �-insensitive losses function, where � quantifies 

the tolerance to errors. A penalty function is applied to the output variables if the predicted value is 

greater than a distance � from the actual values and, the penalty can be represented by one of two 

slack variables ��and ��
∗ (Where�� ≥ 0, ��

∗ ≥ 0∀�) (Equation (7)). The cost function to minimize can 

then be written as: 

 1

2
‖�‖� + � �(�� + ��

∗)

�

���

 (7) 

Satisfying the following constraints (Equation (8)) 

�

�� − [�. �� + �] ≤ � + �� ,

[�. �� + �] − �� ≤ � + ��
∗, � = 1,2, �

��, ��
∗ ≥ 0,        

 (8) 
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Where C is a regularization parameter determining the tradeoff between the training errors and 

the complexity of the function�(�). The slack variables decide the degree to which sample data 

points are penalized if the error is greater than�. Therefore, for any (absolute) error small than �, 

��=��
∗=0.The constrained optimization problem in Equation 7 can be solved using dual formulation. 

In dual formulation, Lagrange multipliers � and �∗, are used and the minimization problem is 

solved by differentiating relating to the primary variables (Equation (9)). The final estimation 

function can then be written as follows: 

�(�) = �(�� − ��
∗)

�

���

�(�, ��) + �, (9) 

Where � and �∗are Lagrange multipliers; and �(�, ��) is the kernel function. A kernel function 

measures non-linear dependence between the two input variables � and ��. The ��′s are “support 

vectors” and N (usually N ≪ L) is the number of selected data points or support vectors 

corresponding to values of the independent variable that are at least � away from actual 

observations. 

Several nonlinear kernel functions such as Radial Basis Function (RBF), linear, polynomial, and 

sigmoid have been proposed [75]. The RBF kernel (Equation (10)) performs better in comparison to 

other kernel functions [76]. The nonlinear radial basis function is defined as: 

�(�, ��) = ��� �−
‖x − x�‖

�

2��
� (10) 

Where � is known as the kernel parameter (radial width).  

Thus, a nonlinear SVR model using RBF kernel was developed to estimate residual soil 

moisture. The SVR model was tuned and the optimum values for insensitive loss function (�), 

regularization parameter (C), and kernel parameter (�) were used. In this study, an internal 10–fold 

cross-validation during the development of SVR model was used for the optimal combinations of 

the three parameters. 

3. Results 

3.1. Stepwise Cluster Analysis 

In this study, two different SCA cluster trees were generated to show the relationship between 

remote sensing variables and volumetric residual soil moisture (obtained from both AWS 

observations and model simulations). The prediction performance and the structure of the SCA tree 

could be affected by the internal parameters such as the cutting (or merging) action of clusters 

governed by the significance level (�) used in the analysis. According to Sun et al. [41] and Wang et 

al. [45], SCA analysis at different significance level could lead to different cluster trees with a 

different number of cluster nodes and predictions. Thus, it is vital to iteratively run SCA model 

adjusting for different significance levels until the prediction model showed the finest performance 

in reproducing observed values. The SCA cluster model, in this study, has been verified for different 

significance levels (i.e.,� = 0.01,� = 0.05,and� = 0.1). Table 2 provides the statistical performance 

of the SCA cluster tree at different significance levels during training and testing phases. Also, 

Figure 4 provides the scattering properties of predicted values obtained from different significance 

levels during the testing periods. 

Results in Table 2 indicated that the number of cluster nodes and cutting operations is 

increased with an increase of � from 0.01 to 0.1. The SCA cutting (or merging) action, as well as the 

rejection of the iteration process, relied on this parameter. Model with � =0.1 produced a more 

complex cluster tree among the three significance levels and produced a large number of cluster 

nodes, due to more cutting actions than the others (Table 2). The reason for this is that the higher � 

value results in the decreased strictness in the cutting operation [41,45]. Thus, the higher � value 

will lead to more cutting actions and more cluster nodes. According to the statistical results in Table 

2, different values of significance levels lead to distinct prediction results. However, a good 
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agreement was found between remote sensing based estimates and observed/simulated volumetric 

soil moisture for all significance levels of the SCA model. 

Table 2.The statistics of SCA cluster trees at different significance level. 

X Y � 
Total 

Node 

Tip 

Cluster 

Cutting 

Action 

Merging 

Action 

Validation 

Training Test 

r RMSE r RMSE 

���, ���, 

NDVI, E 

AWS 

observation 

0.01 21 8 9 2 0.93 0.038 0.81 0.096 

0.05a 39 14 17 4 0.95 0.032 0.87 0.097 

0.1 52 25 25 1 0.94 0.038 0.83 0.088 

FLDAS 

Noah model 

0.01b 185 24 69 46 0.93 0.043 0.87 0.058 

0.05 579 131 236 106 0.98 0.020 0.82 0.069 

0.1 883 295 392 98 0.99 0.013 0.83 0.069 

aThe optimal SCA cluster tree for AWS observed model; b The optimal SCA cluster tree for FLDAS 

Noah model. 

 

Figure 4. Comparison of the scattering properties of predicted values obtained from different 

significance levels during the testing periods. 

For AWS based SCA model (Table 2), there is a slight improvement in predicting volumetric 

soil moisture while � value increases from 0.01 to 0.05, with r being 0.95 (0.87) and RMSE 0.032 

(0.097) m3/m3 during training (testing) phase. Although further increasing � value to 0.1 leads to 

the higher number of cluster nodes and cutting actions, it resulted to decrease the statistical 

performance of the prediction model, except a slight improvement in RMSE (0.088 m3/m3) during 

the testing phase. Thus, the AWS based SCA model with � = 0.05 is an optimal model for 

predicting volumetric residual soil moisture in our area of interest. 

In the case of FLDAS Noah SCA model, an optimal prediction performance was observed when 

the � value was set to 0.01 with r being 0.93 (0.87) and RMSE 0.043 (0.058) m3/m3 during the training 

(testing) phase. In fact, the performance of the prediction model has improved while the � value 

increases from 0.01 to 0.1 for the training datasets but not confirmed during the testing period. 

Thus, the validation result clearly demonstrated that the SCA model is a reliable technique for soil 

moisture prediction using remote sensing data. 
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Also, Figure 4 shows that at a lower significance level (i.e., � = 0.01, in Figure 4a,d) the 

prediction models have produced several redundant values, but still with strong correlation 

coefficients, for a single value of AWS observed and FLDAS Noah volumetric soil moisture. Thus, 

plots in Figure 4a,d have presented intense horizontal lines. However, as the significance level 

increased (Figure 4b,c,e,f), the prediction models have produced a relatively wide range of values. 

The two optimal SCA prediction model derived from the combinations of SAR and optical remote 

sensing data (Figure 4b,d) have shown a good performance in predicting maximum and minimum 

soil moisture values observed/simulated by automatic weather stations and FLDAS Noah model. 

The SCA has managed to produce volumetric soil moisture with an overall bias value of 1.21 and 

0.99, where a value of 1 is a perfect score, in comparison to AWS observed and FLDAS Noah 

simulated soil moisture, respectively. Thus, the overall agreement between observed/simulated and 

predicted soil moisture indicates that coupling of satellite data (e.g., Sentinel-1 SAR and NDVI) and 

the nonlinear SCA approach is capable of detecting surface soil moisture and its spatiotemporal 

dynamics. 

Figure 5 and 6 gives the two optimal SCA cluster trees for the case of AWS and model 

simulated soil moisture. The cluster tree clearly shows the role of every independent remote 

sensing parameter in describing the relationship. Both Figure 5 and 6 demonstrated that �� 

(vegetation) is the most important variable that determines the accuracy of residual soil moisture 

prediction of the model. The other independent variables (��= backscattering from VH polarization, 

��= backscattering from VV polarization, and ��= elevation information) also have a profound 

effect on the predicted volumetric soil moisture. Based on these trees, the residual soil moisture 

values for new observations of the remote sensing variables can be predicted. 
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Figure 5.The optimal SCA tree with significance level � = = 0.05 for AWS observed soil moisture. 

The boxes are called as nodes (total nodes=39). The nodes with green and yellow colors are tip 

clusters (14) which basically contains the prediction systems. 

For example, let �� = −20.4, ��= −4.5, ��=0.41 and ��= 2100 as a new observations for Figure 5 

(AWS model) cluster tree. To predict the residual soil moisture: the new values: �� ≤0.437 for the 

first cluster so that the sample input enters to cluster 2; �� ≤2017, so that it enters to cluster 6; ��> 

0.326, so that it enters to cluster 25; ��> −9.66 so that it finally enters to tip cluster 27 with a soil 

moisture prediction value of 0.409 m3/m3. On the same cluster tree (Figure 5), let us take another 

input sample, ��= −20.4, �� = −22.5, ��=0.35, and ��= 2500. Then to predict the volumetric residual 

soil moisture for these new input variables, for the first branch �� ≤0.47, so that it enters to cluster 

2; ��> 2417so that it enters to cluster 7; �� ≤0.377, so that it enters to cluster 8; �� ≤0.376, so that it 

enters to cluster 10; ��>0.306, so that it enters to cluster 13; ��> −22.37, so that it enters to cluster 15; 

�� ≤0.376, so that it enters to intermediate cluster 16 and 30 and then merged to cluster 31; 

�� ≤0.503, so that it enters to intermediate cluster 37 and then finally enters to cluster 39 with a 

prediction value of 0.45 m3/m3. Similarly, it is possible to find the prediction values for new 

observations using FLADAS Noah cluster tree (Figure 6). 

 

Figure 6.The optimal SCA tree with � = 0.01 for FLDAS Noah soil moisture. The total nodes and tip 

clusters are 185 and 24, respectively.Note that parts of the SCA tree are zoomed in just to show the 

links among variables and the yellow boxes indicates the tip clusters. The high resolution copy of this 

figure is provided as supplementary information. 
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3.2. Comparing SCA with SVR method 

Results of the SCA model were also compared with the SVR, state-of-the-art techniques used 

for soil moisture prediction using remote sensing data [36,38]. The SVR model, using the same 

datasets as those used for the two clusters, was developed. Then, quantitative evaluation between 

model predicted and observed/simulated soil moisture were implemented (Figures7 and 8). Scatter 

plots in Figure 7 presents the comparison between the model (SCA and SVR) predicted and AWS 

observed residual soil moisture both during the training and testing periods. In this case, both SCA 

and SVR model have shown a comparable performance in predicting residual soil moisture. 

However, the proposed method (SCA) outperformed the SVR model for predicting residual soil 

moisture in our area of interest (Figure 7) in terms of Pearson correlation coefficient (r) and the root 

mean square error (RMSE). 

 

Figure 7.Prediction comparsion of SCA and support vector regression (SVR) for AWS based cluster 

tree. 

The statistical parameter during the training phase showed SCA’s highest r= 0.95 and lowest 

RMSE= 0.032 m3/m3, in comparison to, SVR model’s r=0.93 and RMSE=0.039 m3/m3. The superiority 

of SCA over SVR prediction model was clearly demonstrated during the testing phase with r= 0.87 

and RMSE= 0.097 m3/m3, in comparison to, SVR’s r= 0.62 and RMSE= 0.132 m3/m3. 

Also, Figure 8 gives the comparison made between the model predicted and the FLDAS Noah 

model simulated soil moisture both during the training and testing phase of the analysis. The SCA 

soil moisture model has shown as good a performance as the SVR method, with slightly better 

prediction accuracy during the testing phase. The SCA model achieved r = 0.93 (0.87) and RMSE = 

0.043 (0.058) m3/m3, while SVR method resulted in r = 0.93 (0.86) and RMSE = 0.043 (0.061) m3/m3 

during the training (testing) phase. In general, the result implied the better fitting and predictive 

performance of SCA tree relative to the SVR when dealing with the nonlinear relationship between 

remote sensing variables and volumetric soil moisture. In addition, unlike SVR, SCA produced a 

cluster tree that shows the links among variables and one can clearly identify the role of every 

independent variable in mapping the relationships. 
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Figure 8.Prediction comparsion of SCA and SVR for FLDAS Noah based cluster tree.. 

3.3. Spatial Patterns of Estimated Soil Moisture 

Six soil moisture maps, for two selected sites of the study area, were presented from the time 

series to demonstrate the spatial variability of estimated soil moisture (using AWS based SCA 

prediction model) at various dates (Figure 9). The spatial patterns of soil moisture in both sites (site 

one and site two) follow the meteorological and geomorphological conditions of the selected area. 

The higher soil moisture values for both sites have been observed in areas relatively with high 

vegetation cover and elevation values. Most parts of the sites with scattered vegetation and lower 

elevation have shown a comparatively small amount of estimated soil moisture values. 

Thus, the higher soil moisture values for the site are observed in the southeastern and 

northwest parts, which appear towards the highest elevation and vegetation coverage areas. While 

the lower estimates are observed in north and south ends of the site that can be characterized by a 

relatively low elevation and scattered vegetation condition. With the same spatial pattern in site two, 

the higher soil moisture values are observed in higher elevation and vegetation areas situated in the 

south and southeastern parts, while their lower values are concentrated in the north and central 

parts. Indeed, for the selected dates in site one and site two the estimated soil moisture values are 

reasonably high in most places on 28 September 2016 (Figure 9a) and 29 October 2016 (Figure 9d), 

respectively, due to rainfall events and good surface moisture conditions on these dates. However, 

the spatial distributions of soil moisture are gradually reduced in the other dates (e.g., 22 October 

2016 and 22 November 2016) following the dry days, with the exception of the river catchment areas, 

which are described by higher values of soil moisture even during the dry periods. 
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Figure 9.Spatial variability of estimated soil moisture in selected sites of the study area: Site one 

provides soil moisture estimated (a) 28 September 2016, (b) 22 October 2016, and (c) 09 December 

2016: Site two (d) 29 October 2016, (e) 22 November 2016, and (f) December 16 2016. 

4. Discussion 

Previous studies (e.g., [16–22, 77–79]) demonstrated that surface soil moisture (representing 0–5 

cm depths) can be derived from SAR data. However, the radar backscattered signal is not only 

dependent on the soil moisture content but also sensitive to other time and space varying 

parameters such as vegetation, topography, and soil properties [14,65,66]. Thus, the linear 

relationship, between volumetric soil moisture and sentinel-1 SAR backscatter coefficients, made in 

this study result in lower r (0.34 to 0.36) values. Indeed, the lower r values in our study might not 

only attributed to the effect these surface parameters but it could be also due to the reduced 

sensitivity of SAR to soil moisture observed beyond the top few centimeters of soil. Note that 

simulated and observed soil moisture datasets at 10/20 cm depth of soil were used in this study. 

However, incorporating additional ancillary variables such as vegetation and elevation conditions of 

the study area have improved the linear models with r (0.65 to 0.76). Moreover, scholars (e.g., 

[36,56]) argued that incorporating these and other ancillary variables have further increased the 

accuracy of SAR based soil moisture prediction using the nonlinear regression model, such as SVR 

and artificial neural network (ANN) techniques. Although using more predictors would lead to 

more computational complexities, it can help to develop a more comprehensive relationship and 

further improve the model prediction performance [47]. 

In this paper, SCA was used as an alternative statistical approach intended for modeling the 

nonlinear relationships between remote sensing variables (i.e., dual-polarized Sentinel- SAR data, 

NDVI, and DEM) and volumetric soil moisture. The SCA model has been trained for volumetric soil 

moisture obtained from both AWS and FLDAS Noah models. 

Previous studies (e.g., [45–49])applied SCA method in different disciplines have shown that 

SCA model is characterized by higher performance in describing the nonlinear relationship between 

state variables and dependent variables and better accuracy in predicting observed values. Our 

findings support these observations using the relationship between volumetric soil moisture and 
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remote sensing data. The SCA generated cluster trees could be used to predict volumetric soil 

moisture given inputs of the remote sensing variables. However, the process of SCA analysis is 

affected by a number of internal parameters such as the significance level [41,45]. Accordingly, 

various significance levels (i.e., 0.01, 0.05 and 0.1) have resulted in different cluster trees so that a 

considerable effect on the prediction performance of SCA model has been observed. Thus, an 

optimal soil moisture prediction cluster tree for AWS and FLDAS Noah based analysis was obtained 

at � =0.05 and� =0.01, respectively. Our result is consistent with the findings of [41], who applied 

the SCA model for microbial biomass prediction in food waste compositing, with an optimal 

prediction performance of � = 0.05 and � = 0.01 for thermophilic and mesophilic bacteria, 

respectively. This implies that an optimum prediction level of the SCA model could be affected by 

the type and the scale of datasets used in the calibration. Thus, for every dataset an iterative run that 

is adjusted for different significance levels is the best approach to obtain optimal prediction models 

using the SCA method. However, at lower significance levels our prediction models have produced 

several redundant values (still with strong correlation coefficients) for a single value of observed 

and simulated soil moisture. The same result has been obtained by [41,49] using the SCA method 

for the prediction of microbial biomass and concentrations of pollutants at lower significance levels, 

respectively. This could possibly be due to the limited cutting actions at lower significance levels, 

which in turn results in a lower number of tip clusters (prediction nodes). 

The SCA method could not only help to provide the nonlinear relationships between remote 

sensing parameters and soil moisture, but also provide a cluster tree that shows the links among 

remote sensing variables and the effects of each variable on residual soil moisture values [49]. This 

could give us the basis for further understanding the inherent mechanism and determining critical 

characters of the soil moisture prediction model [47]. The beauty of SCA lays on its 

step-wise-regression method in which it iterative selects the most important covariates in the 

prediction model. Thus, each prediction node (tip clusters) contains the most important covariate 

variables according to the given statistical criteria, instead of incorporating all possible variables in 

the model. This could contribute in reducing/controlling the overfitting problem often shown in 

statistical prediction models [80]. Thus, our prediction tree (Figures 5 and 6) indicated that NDVI is 

the most important input variable, incorporated in each tip clusters, which has a significant effect on 

the output of the SCA model in comparison to SAR backscattering values and elevation information. 

Thus, the prediction accuracy of our model is highly controlled by the vegetation conditions of the 

study area. However, the SAR backscattering and DEM input variables have also a profound effect 

on the model and important for the optimum results. In this regard, our findings demonstrated the 

importance of integrating Sentinel-1 SAR data with ancillary surface variables obtained from other 

optical and/or microwave satellites for the finest prediction of surface soil moisture. 

The support vector regression (SVR) method was analyzed to further illustrate the performance 

of SCA in soil moisture prediction, and the results are presented in Figures 7 and 8.The SCA method 

performs well in predicting residual soil moisture, particularly during the testing periods, with 

smaller prediction errors and higher correlation coefficients than the SVR model. Previous studies 

that applied the SCA model for predicting stream flow, hydrological process, and urban air quality 

have also confirmed the better fitting and predictive ability of SCA relative to other statistical 

methods such as random forest, ANN, and SVR [46–49]. The relatively good prediction accuracy by 

SCA method might be related to SCA’s ability to discriminate the most important predictors and 

apply cutting/merging actions through searching for the minimum Wilks’ statistics (Λ) in each step 

of the process [56]. Simply put, in the SCA, the optimal cutting point, which split the original sample 

dataset into two sub-clusters is determined through sequencing the values of the predictor (��). 

When the samples are sequenced according to the values of ��, should satisfy that Λ is minimum 

comparing to that of any other cutting alternatives using other predictor variables in the model. 

Then, the SCA analysis will calculate the mean of each sub-cluster and test for their mean difference 

using an F-test. If a significant difference between the two sub-clusters is observed, we can confirm 

that the original sample cluster can be cut into two sub-clusters using the optimal cutting point. 

Then, ��  is identified as the most important predictor, which considerably affects the values of the 



Remote Sens. 2019, 11, 125 19 of 24 

 

predictands. If the mean difference of the sub-cluster is insignificant, the sample cluster cannot be 

cut and the analyst will go for testing other alternatives until no cluster can be further cut. Therefore, 

our finding indicates the potential of the SCA method and it could be used as an alternative 

statistical approach for soil moisture prediction using remote sensing data. 

Our models (including SVR method) prediction error seems to be high in comparison to 

previous SAR/remote sensing based soil moisture prediction studies (e.g., [23–25, 36–38]) and 

showed an overestimation of soil moisture in comparison to AWS observed values. This could be 

attributed to (i) the limited number of ground observed stations-with the limited number of 

observation stations, it is difficult to entirely characterize the spatial patterns of soil moisture over 

the study area, (ii) the use of soil moisture observed/simulated at 20/10 cm soil depth during model 

development, while microwave signals at the C-band are more sensitive to volumetric moisture to 

the top few centimeters of soil [81], (iii) spatial scale difference between ground observed points 

and satellite footprints/pixels, and (iv) sub-pixel heterogeneity of land surface conditions for lower 

scale analysis. Also, the overestimation of the model could be explained by the reduced relationship 

that could be established by low SAR backscattering values and volumetric soil moisture observed at 

20 cm depths of soil during the dry periods. Because, being the dry season of our study period, 

where there is no/small amount of rainfall events and evaporation, leads to high vertical 

heterogeneity of soil moisture (i.e., sharply reduce the relationship between surface and 20 cm depth 

moisture) and low amounts of surface moisture, which in turn results in low backscattering values. 

The model reliability in this aspect could be improved further using a large number of distributed 

soil moisture datasets measured at ≤a 5cm depth of soil. 

5. Conclusions 

The aim of this paper was to develop a stepwise-cluster soil moisture inference model by 

analyzing the nonlinear relationships between multisource/multi-temporal remote sensing data and 

volumetric soil moisture in the Upper Blue Nile basin. Sentinel-1 SAR data, MODIS, and SRTM have 

been used as a source for dual-polarized SAR data, NDVI and elevation information, respectively. 

The analysis was carried out for the period of 2016 and 2017. Two separate SCA models were 

developed using volumetric soil moisture obtained from AWS and FLDAS Noah model simulations 

as response variables. The proposed technique incorporates combinations of SAR data (from 

both ��� and ���), NDVI, and DEM as input parameters to develop soil moisture prediction models. 

The Pearson correlation coefficient (r) and the root mean square error (RMSE) were calculated to 

present the accuracy of the developed prediction trees. 

Our findings reveal that the nonlinear SCA approach can efficiently predict the volumetric 

residual soil moisture with r as much as 0.87 and RMSE of 0.058 m3/m3. Moreover, the results 

denoted the fact that NDVI is the most significant input variable, which has a considerable effect on 

the output of the SCA model. Compared to the support vector regression (SVR) model, SCA was 

better in fitting and predicting volumetric residual soil moisture. Thus, we conclude that the SCA is 

an alternative option for soil moisture prediction using remote sensing data, particularly when we 

are dealing with soil moisture estimation from multiple satellites. Also, ancillary information (such 

as vegetation condition, elevation information, and soil properties) obtained from other sensors 

(e.g., optical sensors) was verified substantial for the finest performance of SAR based soil moisture 

prediction. We argue that this study is the first attempt to shape the SCA technique for mapping the 

relationship between remote sensing variables and volumetric soil moisture. The model can be 

easily transferable to other sites with different climate, land use land cover condition, and 

geo-morphological settings, given the free and global coverage of C-band SAR, MODIS NDVI and 

SRTM data. However, it should be noted that the model needs further validation work on 

independent sites using ground measurements taken at the top few centimeters of soil. In addition, 

the optimum prediction of the model could be affected by the type and scale of the dataset used 

and better performances are achieved with multiple input variables. In the future, the SCA method 

can be further enhanced for more reliable results by incorporating other auxiliary parameters (e.g., 

soil texture, soil roughness, and soil temperature). 
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Further, it is likely that the SCA would have a wider application to other complex relationships 

in hydrology. 
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Appendix A 

Table A1.lists of Sentinel-1 SAR used in this study. 

SN 
Acquisition 

Date 
N Pol. Orbit Product SN Acquisition Date N Pol. Orbit Product 

1 20 January 2016 2 VV, VH Desc. GRD 17 11 September 2017 2 VV, VH Desc. GRD 

2 28 September 2016 2 VV, VH Desc. GRD 18 30 September 2017 2 VV, VH Desc. GRD 

3 05 October 2016 1 VV, VH Desc. GRD 19 05 October 2017 2 VV, VH Desc. GRD 

4 22 October 2016 2 VV, VH Desc. GRD 20 12 October 2017 2 VV, VH Desc. GRD 

5 29 October 2016 4 VV, VH Desc. GRD 21 17 October 2017 2 VV, VH Desc. GRD 

6 22 November 2016 3 VV, VH Desc. GRD 22 24 October 2017 2 VV, VH Desc. GRD 

7 09 December 2016 2 VV, VH Desc. GRD 23 29 October 2017 2 VV, VH Desc. GRD 

8 16 December 2016 3 VV, VH Desc. GRD 24 05 November 2017 2 VV, VH Desc. GRD 

9 02 January 2017 2 VV, VH Desc. GRD 25 10 November 2017 2 VV, VH Desc. GRD 

10 09 January 2017 2 VV, VH Desc. GRD 26 17 November 2017 1 VV, VH Desc. GRD 

11 26 January 2017 1 VV, VH Desc. GRD 27 22 November 2017 2 VV, VH Desc. GRD 

12 28 January 2017 1 VV, VH Desc. GRD 28 29 November 2017 2 VV, VH Desc. GRD 

13 02 October 2017 2 VV, VH Desc. GRD 29 04 December 2017 2 VV, VH Desc. GRD 

14 07 October 2017 1 VV, VH Desc. GRD 30 11 December 2017 2 VV, VH Desc. GRD 

15 14 October 2017 3 VV, VH Desc. GRD 31 16 December 2017 3 VV, VH Desc. GRD 

16 06 September 2017 3 VV, VH Desc GRD 32 23 December 2017 2 VV, VH Desc GRD 

Pol.-Polarization; VV-vertical transmit vertical receive; VH-vertical transmit horizontal receive Desc.- 

descending ; GRD (Ground Range, Multi-Look, and Detected); N-Total number of scene at each acquisition 

date. 
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