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Abstract: Vegetation state is usually assessed by calculating vegetation indices (VIs) derived from
remote sensing systems where the near infrared (NIR) band is used to enhance the vegetation signal.
However VIs are pixel-based and require both visible and NIR bands. Yet, most archived photographs
were obtained with cameras that record only the three visible bands. Attempts to construct VIs
with the visible bands alone have shown only limited success, especially in drylands. The current
study identifies vegetation patches in the hyperarid Israeli desert using only the visible bands from
aerial photographs by adapting an alternative geospatial object-based image analysis (GEOBIA)
routine, together with recent improvements in preprocessing. The preprocessing step selects
a balanced threshold value for image segmentation using unsupervised parameter optimization.
Then the images undergo two processes: segmentation and classification. After tallying modeled
vegetation patches that overlap true tree locations, both true positive and false positive rates are
obtained from the classification and receiver operating characteristic (ROC) curves are plotted.
The results show successful identification of vegetation patches in multiple zones from each study
area, with area under the ROC curve values between 0.72 and 0.83.

Keywords: segmentation; classification; vegetation; arid regions; gray-level co-occurrence matrix;
texture; object-based image analysis; threshold; optimization

1. Introduction

As early as 1974, Rouse et al. [1] proposed the well-known normalized difference vegetation
index (NDVI), which is based on the difference between the maximum absorption of radiation
in the red band (620–680 nm) due to chlorophyll pigments and the maximum reflection of radiation
in the near infrared (NIR) band (720–780 nm) caused by leaf cellular structure. With this basic tool,
remote sensing has played a key role in vegetation mapping, even in arid regions. For example,
a thorough population dynamics study of Acacia species (Isaacson et al. [2]) in the arid southern desert
of Israel used both ground surveys and NIR band aerial images to follow changes in the canopy cover
and tree size distribution. In another early paper, Wiegand et al. [3] compared NDVI from Landsat TM
(Thematic Mapper) imagery to a spatial distribution of Acacia, also in southern Israel. Both of those
research projects analyzed population distributions of Acacia by comparing NDVI-derived tree vitality
to topography and ephemeral flooding in the dry river beds of their study areas.

More recently, both multispectral and hyperspectral imagery have also been used to identify
and characterize vegetation. A review of applications of multispectral and hyperspectral imagery to
the mapping of mangrove forests appeared in Pham et al. [4]. They covered spectral-based classifiers
as well as object-based image analysis. Both Paz-Kagan et al. [5] and Hong et al. [6] have shown
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that hyperspectral images with limited spatial coverage can be used to train multispectral images
with a larger spatial extent for vegetation mapping. Hong et al. [6] used small-scale hyperspectral
images to train three classification models, then applied the models to multispectral images of a
much larger area. Similarly, Paz-Kagan et al. [5] identified the penology stage of an invasive species
using hyperspectral data with a random forest classifier, then expanded the analysis to a much larger
region using multispectral imagery. Hong et al. [7] addressed the issue of mixed pixels by expanding
the classic linear mixed model to more accurately derive abundance maps. They applied their method
using both synthetic data and hyperspectral images over an urban region and showed high-quality
identification of urban vegetation areas and good separation from non-vegetation pixels.

1.1. Vegetation Indices

The NDVI has found extensive use in various applications such as space-time trend analysis of
vegetation health (Shoshany and Karnibad [8]), mapping of invasive species (Paz-Kagan et al. [5]),
and identification of environmental factors that influence vegetation (Karnieli et al. [9]).
Despite widspread adoption, several notable limitations of this index have been documented.
For example Mbow et al. [10] critically examined the correlation between NDVI and biomass,
measured as above-ground net primary production. Théau et al. [11] compared several different
vegetation indices using multispectral satellite imagery and reported inconsistencies between
them. Peng et al. [12] reviewed the MODIS NDVI product in the context of “spring greenup” and
discovered spatial heterogeneity compared to other vegetation index products. To overcome these
drawbacks, alternative vegetation indices (VI) have appeared, and their advantages have been
demonstrated. Huete [13] introduced the soil-adjusted vegetation index (SAVI), then a few years
later the modified SAVI (MSAVI) was proposed by Qi et al. [14]. Following that work, Huete et al. [15]
presented a comparison of the NDVI to another adjusted index: the soil and atmosphere adjusted
vegetation index (SARVI). This index, which uses the NIR and red bands after applying atmospheric
correction, showed better results in desert regions. Importantly, almost all of these commonly used
indices rely on the NIR band to distinguish vegetation.

However, a large archive of aerial imagery is available covering only the visible spectrum,
i.e., the three red, green, and blue (RGB) bands. Among the vegetation indices, only a few attempt to
differentiate vegetation with RGB bands only. Motohka et al. [16] presented and analyzed the green-red
vegetation index (GRVI) on a seasonal time scale. The GRVI is derived similarly to the NDVI:

GRVI = (ρgreen − ρred)/(ρgreen + ρred), (1)

where each ρ component refers to reflectance at a specific spectral band. McKinnon and Huff [17]
also tested the accuracy of two RGB-only vegetation indices from drone-acquired images: the visible
atmospheric resistance index (VARI) and the triangular greenness index (TGI).

VARI = (ρgreen − ρred)/(ρgreen + ρred − ρblue) (2)

TGI = ρgreen − 0.39 ∗ ρred − 0.61 ∗ ρblue (3)

Results in that work were inconsistent. They reported a good correlation between the RGB-only
indices and the NDVI in healthy corn fields, but a less accurate match in rice fields. Their conclusions
refer to sporadic matches between these RGB-only indices and the actual crop health. Moreover,
desert plants are relatively sparse, their photosynthetic duration is short, and their color is more grey
than green, further challenging a pixel-based vegetation index approach.

The recent advancement of drone technology for acquiring aerial imagery has revived interest
in RGB-only methods to classify vegetation. The need to use both archived and new consumer-grade,
drone-based, RGB-only imagery has led to a different approach. The pixel-based spectral signature
classification, which underpins all VIs, is being replaced by object-based image analysis (OBIA).
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OBIA took a foothold in the remote sensing discipline and became known as geographic OBIA
(GEOBIA), some two decades ago. By 2008, GEOBIA techniques had become a primary tool for
image segmentation and classification (Blaschke et al. [18], and Cheng and Han [19]). The advantages
of object-based over pixel-based classification were reported and summarized by Myint et al. [20]
and Hussain et al. [21]. Feng et al. [22] applied drone images to the mapping of vegetation in an urban
environment. In that work, using OBIA techniques, the researchers were able to differentiate trees and
grass from the surroundings.

1.2. Image Texture

Image texture, a central component of OBIA, describes the relationship between a pixel
and it’s surrounding neighbors within a given window size. By characterizing this relationship,
it becomes possible to distinguish, for example, areas that are homogeneous from areas of high
local contrast. Texture parameters are derived from a gray-level co-occurrence matrix (GLCM),
first presented by Haralick et al. [23]. Alternative algorithms include wavelet transform, the Gabor
transform, Laws energy filter (Laws [24]), and others. A comparison of these different algorithms
that appears in Selvarajah and Kodituwakku [25] finds only minor differences in their ability to
recognize content in generic images. Ruiz et al. [26] performed a comparison between texture-based
and spectral-based classification on satellite imagery using several different texture routines,
including GLCM. He analyzed imagery covering three forest and one urban area and found no
definitive difference among the texture-based classifications. The GLCM method was also chosen
by Marceau et al. [27] in an early work to evaluate SPOT (Satellite Pour l’Observation de la Terre)
satellite classification procedures over a mixed urban and forested coastal region of northern Quebec.

The GLCM method examines the relative frequency of pairs of gray-level values for neighboring
pixels within a given window size in an image. The matrix is a tabulation of how frequently different
combinations of gray levels occur. Aerial photographs usually have 8-bit radiometric resolution,
giving a range of 255 shades of gray, thus the co-occurrence matrix is 255 × 255 cells. Each cell (i, j)
value equals the number of pixels in the image window with value i that have an adjacent cell with
value j. Furthermore, the GLCM cell values are normalized so that the final matrix contains values
from 0 to 1.0.

Once the GLCM is calculated, texture parameters are derived from the matrix. Maillard [28]
reviewed eleven GLCM-derived texture parameters and reported that five specific parameters are
most often applied in the context of classification of vegetation: angular second momentum, contrast,
correlation, inverse distance moment, and entropy.

1.3. OBIA Applied to Vegetation Classification

Mapping of vegetation has been specifically targeted by researchers using OBIA. Yu et al. [29]
applied OBIA to satellite imagery at 1 m resolution with four spectral bands, RGB and NIR. They used
OBIA to create a set of ancillary data, then applied a procedure known as classification and regression
tree algorithm (CART) that successfully distinguished different types of vegetation. Lucas et al. [30]
applied the proprietary eCognition c© software to a time series of Landsat Thematic Mapper (TM) and
Enhanced TM (ETM+) imagery to improve the habitat and agricultural area classifications in Wales.
Their work utilized both visible as well as infrared bands. OBIA techniques have been applied to
the characterization of forests by Blaschke et al. [31]. A work by Cleve et al. [32] also demonstrated
a clear improvement in landuse–landcover delineation at urban–wildland interfaces when OBIA was
used. Another application of eCognition c© software appears in Moffett and Gorelick [33], where they
described the advantages of OBIA over the classic pixel-based segmentation methods. They mapped
wetland vegetation using 1 m resolution satellite images taking advantage of four bands: RGB and
NIR. A study in West Africa (Karlson et al. [34]) applied a multistep procedure to identify tree
crowns and clusters. The GEOBIA procedure in their study included classification, OBIA to refine
results, and then calculation of NDVI only in those identified pixels to characterize the wooded
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areas. Juel et al. [35] performed mapping of vegetation in a coastal region by combining OBIA with
a random forest classifier. A report by Alsharrah et al. [36] details a comparison of three vegetation
mapping techniques using 2 m resolution satellite imagery in an arid climate: classic VI, OBIA, and a
vegetation shadow model. Their results suggest that combining a VI classification with OBIA achieves
the best match to true vegetation locations. A large-scale landcover classification was carried out
recently by Maxwell et al. [37] by applying GEOBIA to four-band (including NIR) aerial photographs.
After creating texture rasters and employing several sets of ancillary data, they reported a very good
match between the classification and known objects on the ground.

The majority of research applying GEOBIA to vegetation classification, including all the papers
cited above, employed the NIR band. Furthermore, ancillary data layers such as topography
(Kim et al. [38]) or LIDAR (light detection and ranging) (Weinstein et al. [39]) were sometimes added as
well. In almost all cases, study areas were in a vegetation-rich temperate climate. Significant exceptions
are Alsharrah et al. [36] and a study by Ozdemir and Karnieli [40] that focused on forest structure
in the semi-arid Negev (see map in Figure 1) desert in southern Israel. Their work, based on
multispectral (eight-band) WorldView-2 images, used image segmentation and derived image textures
to determine forest structure. That example notwithstanding, almost all previous research with
GEOBIA employed spectral bands beyond the visible range and focused on temperate climates.

Figure 1. (a) Three study areas along the Afro-Syrian rift valley with aridity index data from https:
//cgiarcsi.community/data/global-aridity-and-pet-database/, (b) overview map.

The expanded application of GEOBIA was a direct result of improvements in aerial photography.
OBIA can discriminate objects and lead to successful classification when the image pixel size is small
compared to the object size. With the advent of high-resolution, multispectral aerial photography over
the past few decades, application of GEOBIA grew. The importance of pixel size in OBIA is pointed out
by Yu et al. [29], and in an older work, Marceau et al. [27] even predicted that with higher resolution
images the pixel-based, spectral approach would suffer due to “salt and pepper” effects. In a study
applying GEOBIA to drone-acquired imagery for precision agriculture, Torres-Sánchez et al. [41]
pointed to spectral heterogeneity as a limitation in classic image classification. OBIA, on the other hand,
ideally handles high-resolution imagery. Now that drone aerial images are becoming an accepted
research tool with a very small pixel size, GEOBIA techniques are gaining more widespread use.

https://cgiarcsi.community/data/global-aridity-and-pet-database/
https://cgiarcsi.community/data/global-aridity-and-pet-database/


Remote Sens. 2019, 11, 2308 5 of 21

1.4. Segmentation and Classification

OBIA consists of two stages: segmentation and classification. The segmentation stage collects
image pixels into clusters such that within each cluster the pixels are alike and between clusters
the pixels are different. The measures of likeness and difference, as described by Espindola et al. [42],
are: variance within each cluster and spatial autocorrelation between clusters. The balance
between these two measures determines how well segmentation identifies real-world objects.
If intracluster variance is kept low, then clusters will contain only very similar pixels. This can lead to
oversegmentation, where real-world objects become divided and cover several clusters. Conversely,
if the spatial autocorrelation between different clusters is maintained low, then intracluster variance
increases and one cluster might expand to cover several real-world objects. This balance between
intracluster variance and intercluster spatial autocorrelation is regulated by the threshold input
parameter (sometimes referred to as scale) to the segmentation procedure. Choosing the best threshold,
described by Espindola et al. [42], is crucial for a successful match between segmented clusters and
real-world objects.

The classification stage associates each segmented cluster of pixels with a certain
class. Many machine learning algorithms, reviewed by Cánovas-García and Alonso-Sarría [43],
use supervised classification with a training set of known classes. For example, Yu et al. [29] applied
a CART algorithm to identify vegetation in a coastal area of California using image texture rasters
derived from the spectral bands, along with ancillary environmental factors. Luca Malatesta et al. [44]
compared a maximum likelihood (ML) classifier and a sequential maximum a posteriori (SMAP)
model (without OBIA) and reported better results from the SMAP model. Rapinel et al. [45] used
an ML classifier together with OBIA to map vegetation in a coastal region of France. They also
employed ancillary data and image texture rasters. In a recent work, Mboga et al. [46] applied
a fully convolutional neural network to OBIA-derived segmentation to produce landcover maps
in an urban setting.

Recent research has often shown a preference for random forest (RF) classifiers
(for example, Li et al. [47] and Feng et al. [22]). A comparison of four classification algorithms
was presented by Grippa et al. [48], where they performed GEOBIA segmentation and classification in
two urban regions. They compared k-nearest neighbors, support vector machine, recursive partitioning,
and RF, as well as combinations of the above, and found that RF outperformed all others. A theoretical
analysis of RF by Biau [49] and other practical applications (i.e., Nicolas et al. [50], Cánovas-García
and Alonso-Sarría [43], Juel et al. [35]) pointed to on-par or superior results compared with the more
traditional maximum likelihood or support vector machine classifiers. RF was also applied successfully
by Maxwell et al. [37] in a large-scale landcover classification project.

1.5. Objectives

This study adopts an object-based image analysis approach for mapping vegetation in arid
regions, replacing the traditional pixel-based method that underlies VI calculations. The work
attempts to derive an accurate spatial dataset of vegetation patches while restricting the input to
the RGB visible bands of aerial imagery to enable full utilization of older, archived photographs
as well as consumer-grade, drone-acquired imagery. In addition, recent advancements in GEOBIA
are incorporated into the method. This approach to identifying vegetation in a hyperarid region,
while limiting the technique to visible bands only, constitutes an innovation.

2. Materials and Methods

2.1. Study Areas

The GEOBIA technique was applied to three study areas along the hyperarid Rift Valley
in southern Israel (Figure 1). These areas were chosen due to the availability of accurate tree locations
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from monitoring campaigns. Table 1 lists auxiliary data, in addition to tree locations, that was collected
at each study area during the monitoring. The climate in all areas is inducive to a mix of vegetation
including some subspecies of Acacia Vachellia tortilis, a keystone species in these areas, as well as
Retama raetam, and Tamarix aphylla bushes. These study areas all fall in a hyperarid region with
an aridity index, the quotient of precipitation and potential evapotranspiration, below 0.5, as defined
by UNEP in the World Atlas of Desertification (Cherlet et al. [51]).

Table 1. Auxiliary data collected at each study area during monitoring campaigns.

Year Initialized Shizaf Shitta Ashalim
2007 2017 2012

Species x x x
Number of trunks x

Trunk circumference x x
Age (est.) x

Canopy height (est.) x x x
Canopy area (est.) x x

Canopy E–W x
Canopy N–S x

Mistletoe parasite (T/F) x
Status (live/dead) x x x
Monitoring date x x

Continuous Monitoring (T/F) x
Flowering x

The northern site, Wadi (ephemeral riverbed) Ashalim, drains a watershed of approximately
26 km2. The upstream reaches of the watershed are at an elevation of 250 m, and the outlet into
the Dead Sea is at −350 m. The soil in the upstream region is loess, similar to the desert mountains
in southern Israel, whereas near the outlet, the stream bed enters the marl soil that typifies the Dead
Sea area. This area is classified in Köppen Geiger as hot semi-arid, with an annual average rainfall of
100 mm and summer daily average temperatures of 41/26 ◦C (high/low). In addition to the trees and
bushes mentioned above, species of Atriplex also appear at this site. Analysis was done on a 427 ha
area of the hyperarid, lower extent of the wadi, covering three groups of monitored trees.

The Shizaf Nature Reserve was the location of the second study area. With only 40 mm of rainfall
per year, this area is classified in Köppen Geiger as a hot desert. The high/low daily summer average
temperatures are similar to Ashalim, 41/26 ◦C. Unlike Ashalim, the nature reserve covers a flat terrain.
A large cluster of Acacia trees was geolocated in 2005. An area of 396 ha was selected for analysis,
which encompassed this group of monitored trees.

The southern site, Wadi Shitta, is located about 100 kilometers further south and drains a small
watershed of 16 km2. This wadi exhibits uniform loamy/sandy soil and a moderate slope. The average
daily summer temperatures are slightly lower than the northern study areas (40/23 ◦C) since this wadi
is higher in altitude. The ongoing tree monitoring project, part of a Long Term Ecological Research
(LTER) site (https://data.lter-europe.net/deims/site/lter_eu_il_015), was carried out in the eastern
section of the watershed, but before the wadi enters the marl soil area. Monitoring covers two clusters
of some 240 trees (Vachellia tortilis, Vachellia radiana, and also Acacia pachyceras), of which 43 are
monitored continuously and 40 others are flagged as dead. The analysis region extended over 256 ha
to cover the two clusters of trees.

Aerial Photographs

Ortho-rectified aerial photographs were acquired for each of the regions at a geometric resolution
of 25 cm/pixel. The indigenous vegetation in the study areas included trees and bushes with diameters
typically above 2 m. Lahav-Ginott et al. [52] report an average tree canopy of 10 m2 in area, and Ward
and Rohner [53] refer to 39 m2. The paper by Ward and Rohner [53] included the species Acacia gerrardii,

https://data.lter-europe.net/deims/site/lter_eu_il_015
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a much larger tree, explaining the difference in canopy size. In either case, tree canopies are covered by
at least several tens of pixels in the 25 cm resolution aerial photographs available in the current research.
The imagery contained only the visible RGB bands, with eight-bit radiometric resolution, thus each
band spanned a gray level range (digital numbers) from 0 to 255. The Ashalim aerial photograph
was acquired in 2012. For the Shizaf Natural Reserve study area, an archived aerial photograph was
obtained from 2010, some years after the tree monitoring campaign. Since these areas are nature
reserves, no substantial changes are expected in the few years between mapping of the tree locations
and the acquisition date of the photographs. Photographs from Wadi Shitta were available from 2017,
coinciding with the tree monitoring campaign. In all three study areas, the aerial photographs were
acquired during the late winter to early spring seasons.

2.2. Preprocessing

2.2.1. Image Texture

Referring to Figure 2a, five GLCM parameters (Section 1.2) were derived from the green color
band of each of the original aerial photographs: angular second momentum, contrast, correlation,
inverse distance moment, and entropy. As recognized by Maillard [28], these five, derived with
Equations (4) to (8), are most often used in vegetation identification.

Figure 2. Flow diagram of the object-based image analysis procedure.

Contrast:

Contr =
Ng

∑
i,j=0

p(i, j)2; (4)

Angular Second Momentum (ASM):

ASM =
Ng

∑
i,j=0

p2
i,j; (5)

Entropy:

Entr =
Ng

∑
i,j=0

, pi,j ∗ (−ln(pi,j)); (6)
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Homogeneity (Inverse Distance Moment):

IDM =
Ng

∑
i,j=0

pi,j

(1 + (i− j)2)
; (7)

Correlation:

Corr =
Ng

∑
i,j=0

pi,j ∗
(i− µ) ∗ (j− µ)

σ2 , (8)

where pi,j is the GLCM value at matrix location (i, j), µ is the mean, and σ is the standard deviation of
gray-level values within the image window.

GLCM parameter rasters derived from each of the color bands were very similar, and thus were
very highly correlated to each other. Including GLCM texture rasters for all colors would have led
to overfitting at the classification stage, thus GLCM texture rasters from only one color band (green)
were included.

Choice of window size impacts the resulting texture rasters. A small window results in more
speckled texture rasters, whereas a larger window smooths the fine texture. A reasonable window
size should reflect the smallest object to be differentiated. Considering tree canopies of a few meters
(and referring to Lahav-Ginott et al. [52]), in this research a 7 pixel window size (1.75 m) was chosen.

2.2.2. Unsupervised Parameter Optimization

Unsupervised parameter optimization (USPO), as introduced by Espindola et al. [42],
was implemented by Johnson et al. [54] and Georganos et al. [55]. The routine, applied in this
work, performed segmentation repeatedly on small but representative subsets of the original image,
while stepping through a range of threshold values. These subset polygons were delineated in
advance, ensuring that each subset included a representative mix of the classes in the full analysis area.
Then the parameter optimization routine was run in the extent of each subset.

The normalized values of variance and spatial autocorrelation at each iteration were summed
(Figure 3), and the optimal threshold was that value that achieved the maximum sum of
the two measures.

Figure 3. Unsupervised parameter optimization. Graph (a) shows decrease in spatial autocorrelation
between clusters as the threshold increases. Graph (b) shows an increase in variance within clusters as
the threshold increases. The normalized combination of the two appears in graph (c), with the optimal
threshold indicated by the vertical dotted line. These graphs were derived from the unsupervised
parameter optimization (USPO) procedure in the Shizaf study area.
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The optimized threshold for each study area was determined separately since variations in contrast
and color balance among the aerial photographs (from different years and different seasons) led
to distinct intracluster variance and intercluster spatial autocorrelation for each image. The final
optimized threshold values for each study area appear in Table 2.

Table 2. Optimal threshold values for each study area.

Study Area Optimized Threshold

Ashalim 0.11
Shizaf 0.13
Shitta 0.12

2.2.3. Superpixels

The concept of superpixels, introduced by Ren and Malik [56], allows for producing a quick
preliminary segmentation by k-means clustering. This initial segmentation can be used as a seed for
the full segmentation procedure, thus making the overall process more efficient. Among the algorithms
for creating superpixels, reviewed recently by Stutz et al. [57], simple iterative linear clustering (SLIC)
(Achanta et al. [58]) was shown in that paper to be relatively quick and as successful as the others.
An innovative improvement to the SLIC algorithm, known as SLIC0 (pronounced “slick naught”),
was demonstrated by Csillik [59]. This approach, implemented in the current work, initializes the
regular k-means clustering with a distribution of cluster center points such that nearby center points
do not fall on pixels that have similar spectral signatures. In this way, the superpixel clustering ensures
that adjacent clusters are different. As shown in Csillik [59], using a seed produced by SLIC0 leads to
a final segmentation that stabilizes quickly and more closely matches real-life objects.

2.3. Segmentation and Classification

As illustrated in Figure 2b, eight raster layers were used in the segmentation process: the three
original color bands and the five texture rasters. These, together with the optimized threshold value
and superpixel seed layer as described above, were input into the segmentation routine. The resulting
output grouped all similar pixels from the original image into clusters, where each cluster should
represent some real-world object. The similarity (i.e., variance) within each cluster and difference
(spatial autocorrelation) between clusters was regulated by the threshold parameter. Furthermore,
the superpixel preliminary segmentation, used as a seed, allowed the procedure to complete efficiently.
By separating the initial raster layers into clusters, this segmentation stage successfully identified
real-world objects allowing the following classification stage to correctly associate a class to each
cluster. Thus, the segmentation stage was crucial to achieving positive model results overall.

Classification requires, in addition to the segmentation raster output, a dataset of training points.
These datasets were prepared manually by on-screen digitization, with the aerial image as background,
pinpointing 98, 73, and 74 training points for the Ashalim, Shizaf, and Shitta study areas, respectively.
Points were digitized covering trees, sandy areas in the wadi, soil outside the wadi, and rocky
areas on the slopes. Care was taken that no tree training point overlapped true tree locations from
the monitoring campaigns, thus the validation (Section 2.5) tested tree locations that were kept
independent of the training points.

The classification step took into account eleven rasters. First, following the segmentation step,
the three initial color bands and five texture bands were used. In addition, three geometric data
layers—the area, perimeter, and circle compactness—were prepared for all segmentation clusters.
Given a polygon of perimeter P and area A, compactness is given by Equation (9):

Compact =
P

2 ∗
√

π ∗ A
. (9)
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All segmentation clusters obtained values for each of these eleven rasters by averaging pixel
values within each polygon from each raster. Thus, the classification step modeled one dependent
variable, the class, using eleven independent variables. Then classification of the segmented raster was
performed using a random forest (RF) classifier. This machine learning algorithm randomly chooses
a subset of the independent variables at each tree split, thus making it more resistant to overfitting
when variables are correlated. In the current work, variables are mostly derived from the three RGB
bands, so correlated variables might be a concern. Therefore, RF was a suitable choice because of both
its widespread use (Section 1.4) and avoidance of overfitting. The algorithm was configured with
a depth of 200 trees, and number of variables at each split (mtry) of three. Tree depths from 100 to 800
were tested in the Ashalim study area, and a visual examination showed no difference with higher
numbers of trees, thus a tree depth of 200 was considered sufficient.

The categorical raster output of the classification procedure assigned to each pixel one of
the training category values: vegetation, soil, sand, or rock (Figure 4). In addition, the classification
procedure also produced a probability raster, where each pixel was given a value between 0.0 and 1.0
indicating the probability that the pixel should belong to the assigned class. Finally, vegetation patches
were obtained by filtering only the the vegetation class from the full classification result, and that
filtered raster was vectorized to produce a polygon dataset of vegetation patches.

Figure 4. Random Forest (RF) classification result (a) and RF probability raster (b) in a section of the
Shitta study area.

2.4. Post-Processing

The geometric parameters of area and compactness (Section 2.3) allowed recognition of vegetation
patches by their size and shape: long thin areas have a high compactness value. A demographic study
of the Acacia population, carried out by Lahav-Ginott et al. [52], used panchromatic aerial images to
determine canopy cover and tree size distribution. Their work and the study by Ward and Rohner [53]
were both based on the assumption of more or less round or oval-shaped tree canopies. They recognized
Acacia trees in black and white images as darker, circular patches on the light background. However,
dead trees and other non-vegetation dark patches do not maintain this round shape. Dead trees appear
as very irregular dark shapes, and elongated dark shapes could represent asphalt-paved roads or
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shadows under cliffs. Thus, a high circular compactness parameter, as given in Equation (9), was a good
indicator of dark shapes that were not vegetation. Using a maximum compactness cutoff value allowed
the filtering out of these areas. Furthermore, very small patches were considered suspect and ignored.
The empirically determined cutoff values chosen in this work were: maximum compactness = 2.6 and
minimum area = 1.0 m2. These steps appear in Figure 2c.

2.5. Validation

Validation was carried out in each study area for each group of monitored trees separately.
The groups of monitored trees, referred to as validation zones, in all study areas covered only a small
portion of the total analyzed area. For example, the analyzed area in the Shizaf reserve extended over
396 ha, while the two validation zones were of 1.8 and 2.5 ha. Analysis was carried out over the full
extent in order to visually justify the derived vegetation patches; however, statistical validation was
limited to these small zones since true tree locations were available only in the zones. The validation
zones surrounding the monitored trees in each zone were delineated by constructing a concave hull
(Park and Oh [60]) implemented in R (R Development Core Team [61]) using the concaveman package
(Gombin et al. [62]). An example validation zone from the Shizaf study area appears in Figure 5.

Figure 5. Validation zone (blue dashed line) in the Shizaf study area. The monitored tree locations
appear as red “Xs”.

The number of true tree locations in each validation zone appears in Table 3 (Section 3).
The true trees from the monitoring campaigns were compared to the vegetation patches

as determined by the GEOBIA procedure only within each validation zone. Both true positives
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(trees correctly identified as vegetation patches) and false positives (vegetation patches that did not
overlap true trees) were tallied. In addition, the probability values for all vegetation patches were
extracted from the classification probability raster. These probabilities together with the counts of true
positives composed the true positive rate (TPR), sometimes called sensitivity. False positives with their
probabilities became the false positive rate (FPR), equivalent to 1− speci f icity. The receiver operating
characteristic (ROC) curve plots the TPR against the FPR. Then the area under these ROC curves (AUC)
represents a measure of accuracy.

2.6. Implementation

Application of the method was straightforward. In addition to the three-band ortho-rectified
image, preparation of certain vector data was required in advance:

• a small, representative subset of the full study area for USPO;
• a layer of training points for supervised classification (Section 2.3);
• the true tree locations from monitoring campaigns;
• the validation zones as described above in Section 2.5.

The steps described above in Sections 2.2, 2.3, and 2.4 were implemented in the Python scripting
language, run within the environment of GRASS-GIS (GRASS Development Team [63]). The choice of
this open platform avoids the need for proprietary solutions and allows the details of implementation
to be examined and developed further in the future. The code and an example implementation
are available from a public repository (https://github.com/micha-silver/obia_vegetation.git).
Several GRASS-GIS add-ons (https://grass.osgeo.org/grass76/manuals/addons/) were prerequisite:
i.segment.uspo and r.neighborhoodmatrix for performing the USPO, i.superpixels.slic for
preparing the superpixel seed and r.learn.ml, which contains code for the random forest classifier.

The Python code called GRASS-GIS functions to perform all image analyses and segmentation
steps. In the preprocessing stage, these functions created texture rasters, calculated the optimized
threshold, and prepared the superpixel segmentation. Then, calls to additional functions performed
full segmentation and classification. The classification step was executed with a call to the Python
Scikit-learn (Pedregosa et al. [64]) library. This library also included routines for plotting the ROC
curves and calculating the AUC as described in Section 2.5.

3. Results

The following visual representation of results includes:

• sections of aerial photographs with modeled vegetation and true tree locations;
• graphs showing receiver operating characteristic (ROC) curves;
• a table summarizing AUC values for all validation zones.

The vegetation patches from classification are presented in Figure 6 for one validation zone from
each study area. The true tree locations from monitoring campaigns appear in red, and classified
vegetation patches are outlined in green. Visual inspection verifies that the GEOBIA procedure
successfully located vegetation throughout each study area. Results from Ashalim (Figure 6a) show
that some rock faces outside the dry riverbed were incorrectly identified as vegetation. The dark,
slightly green shade of volcanic rock covering the hill tops might explain this misidentification.
Model results from the Shizaf study area (Figure 6b)show very good identification of vegetation
throughout. In the Shitta study area (Figure 6c), some dark patches south of the dry riverbed seem
to be missed by the GEOBIA model; however, these are confirmed dead trees and thus correctly
skipped, as illustrated in Figure 7. The ground photographs in this figure were taken in late spring,
yet clearly, the large tree (panel a) is viable, whereas the tree in panel b shows no vegetation, and the
post-processing filter correctly identified this due to the irregular shape of the dead tree.

https://github.com/micha-silver/obia_vegetation.git
https://grass.osgeo.org/grass76/manuals/addons/
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Figure 6. Three vegetation classification results. Wadi Ashalim (a), northern zone in Shizaf (b),
and the eastern zone in Shitta (c). Monitored tree locations appear as red crosses, and vegetation
patches are outlined in green.
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Figure 7. Closeup of the Shitta region. Two trees were photographed and the pictures georeferenced.
The photo (a) shows a live tree correctly identified as a vegetation patch, while photo (b) shows
a non-vegetative tree that was correctly skipped by the model.

Three sample ROC curves appear in Figure 8, and the complete set of AUC values for all
validation zones is presented in Table 3. The northern validation zone in the Shizaf nature reserve,
showing the lowest AUC value, encloses many small bushes, especially Tamarix aphylla. However,
the tree monitoring campaigns all focused on Acacia trees, the keystone species in this desert region.
Thus, the model correctly identified vegetation patches that were not located in the monitoring
campaign, leading to a somewhat high false positive rate and thus a lower AUC.

Table 3. Area under the curve (AUC) values and number of validation trees for all validation zones.

Study Area Validation Zone AUC Number of Trees

Ashalim Wadi Amiaz 0.818 62
Ashalim Wadi Ashalim 0.749 85
Ashalim south 0.850 66

Shizaf north 0.712 134
Shizaf south 0.731 159
Shitta east 0.830 72
Shitta west 0.730 82
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Figure 8. Three receiver operating characteristic (ROC) curves. Wadi Amiaz zone in Ashalim (a),
northern zone in Shizaf (b), and the western zone in Shitta (c).
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4. Discussion

Since the beginning of high-resolution, commercial, color aerial photography decades ago,
a large archive of imagery consisting of only the RGB visible bands has accumulated. Recently,
with the expansion of consumer-grade drone aerial photographs, even more imagery covering only
the RGB bands has become available to environmental research. Numerous papers, reviewed briefly
in Rapinel et al. [45], have used remote sensing for vegetation mapping. In research similar to
the current work, Staben et al. [65] used high-resolution aerial imagery in an OBIA procedure to
determine woody biomass in arid and semiarid regions of Australia. Shoshany and Karnibad [8] also
examined biomass change and water-use efficiency in the semi-arid region of the eastern Mediterranean.
However, each of these efforts used remote sensing data that included an infrared band. Much research
has focused on time series analyses of desertification or forest decline (Peters et al. [66], Joshi et al. [67],
and more recently Dorman et al. [68], Bajocco et al. [69], Fensholt et al. [70], and Zhang et al. [71]).
Remote sensing data has aided research in tracking the health and distribution of certain species of
vegetation (Escobar-Flores et al. [72], Pham et al. [4], Paz-Kagan et al. [5]). Yet, again, all of the above
employed additional spectral bands.

However, as was demonstrated above, the classic pixel-based classification that takes into account
only the spectral signature of the color bands achieves unsatisfactory results. The VI methods were
shown to be especially unsuited to arid regions (i.e., Moleele et al. [73]) due to the weak reflectance
of green and strong interference from the surrounding bright soil. Mbow et al. [10], working in the
semi-arid Sahel region, showed only limited success in vegetation mapping, and only when they used
soil moisture as an auxiliary variable.

GEOBIA has become a standard tool in remote sensing for over a decade. By first segmenting
an image based on OBIA factors, including image texture, spectral signature, and geometry, real-world
objects are correctly separated. Then the second classification stage successfully identifies and classifies
those objects. The demand to take advantage of RGB-only aerial imagery has reinforced the move to
GEOBIA. Not only does GEOBIA overcome the shortcomings of VI methods, but it also deals very
well with the high-resolution imagery available recently by avoiding the “salt and pepper” problem.

The procedure in this work demonstrated successful mapping of vegetation in arid regions,
using imagery with only RGB color bands. Initially, five texture rasters were prepared using the GLCM
algorithm from one of the color bands. Two innovative preprocessing steps were adopted: a superpixel
preliminary segmentation and optimized selection of the threshold parameter. With those inputs,
segmentation was executed followed by the classification step using a random forests classifier.
The map images and tables presented in Section 3 suggest that accurate mapping of vegetation in arid
regions by RGB-only imagery is achievable. The weak green coloring of desert vegetation is overcome
by using OBIA texture factors and careful selection of the threshold parameter in segmentation.
Furthermore, by adding the geometric measures of area and circle compactness before classification,
the model filtered out clusters with irregular or elongated shapes that could not be vegetation patches.

5. Conclusions

The GEOBIA remote sensing tool demonstrated in this research can open the way to ecological
investigation that was not easily achievable previously by utilizing archives of aerial imagery.
Large-scale mapping of vegetation in arid regions potentially raises questions of tree canopy density,
change detection, patch analysis, comparisons with explanatory environmental variables, and so
on. Ground-based monitoring campaigns can cover only limited areas, so these avenues of research
were mostly closed. Early applications of remote sensing, when based on classic vegetation indices,
showed limited success in extensive mapping of trees in desert regions. Whereas by adopting and
tuning the object-based method presented here, ecologists can obtain relatively accurate vegetation
maps both from past archives of RGB-only aerial imagery and from new and inexpensive images
acquired by drones. The current work, which applies recent advances in GEOBIA (Subsection 2.2),
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could revive ecological research in arid region vegetation by enabling use of archives of RGB-only
aerial photographs, merged with recently acquired imagery from consumer grade drones.

The procedure (Section 2) does not require costly proprietary software, rather the steps are
transparent and open to critical analysis. The authors believe that with careful testing and adjusting
of the threshold parameters, highly reliable vegetation maps can be attained. Looking forward,
application of the techniques offered herein could expand research and the understanding of arid
region ecosystems.
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Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
OBIA object-based image analysis
GEOBIA geographic object-based image analysis
NDVI Normalized differential vegetation index
VI Vegetation index
NIR near infrared
LIDAR light detection and ranging
GLCM gray-level co-occurrence matrix
RF Random forest
RGB red, green, blue
SLIC simple iterative linear clustering
TPR true positive rate
FPR false positive rate
ROC receiver operating characteristic
AUC area under the curve
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