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Abstract: This article presents an investigation into the problem of 3D radar echo extrapolation
in precipitation nowcasting, using recent AI advances, together with a viewpoint from Computer
Vision. While Deep Learning methods, especially convolutional recurrent neural networks, have
been developed to perform extrapolation, most works use 2D radar images rather than 3D images.
In addition, the very few ones which try 3D data do not show a clear picture of results. Through
this study, we found a potential problem in the convolution-based prediction of 3D data, which is
similar to the cross-talk effect in multi-channel radar processing but has not been documented well in
the literature, and discovered the root cause. The problem was that, when we generated different
channels using one receptive field, some information in a channel, especially observation errors,
might affect other channels unexpectedly. We found that, when using the early-stopping technique to
avoid over-fitting, the receptive field did not learn enough to cancel unnecessary information. If we
increased the number of training iterations, this effect could be reduced but that might worsen the
over-fitting situation. We therefore proposed a new output generation block which generates each
channel separately and showed the improvement. Moreover, we also found that common image
augmentation techniques in Computer Vision can be helpful for radar echo extrapolation, improving
testing mean squared error of employed models at least 20% in our experiments.

Keywords: precipitation nowcasting; radar echo extrapolation; multi-channel radar processing;
convolutional recurrent neural networks; cross-talk effect; data augmentation

1. Introduction

In precipitation nowcasting, the Radar Echo Extrapolation (REE) problem has become an
important research topic [1,2]. Its results can be used in many practical fields, such as flood warning,
local convective storm/thunderstorm warning, aviation management, etc. Recently, Deep Learning
technologies have been applied successfully for solving this task, with many advantages in comparison
to traditional numerical methods and Computer Vision-based solutions [2–7]. In the related works,
some typical advantages are more effective and accurate forecasting, no demand of hand-crafted
features, better leveraging big amount of data, or better dealing with uncertainty in weather data,
to name a few. However, most of those works predict only one channel of raw radar images (such as
composite reflectivity images or images of one elevation angle, which we referred to as 2D radar
images). This article presents our study on the prediction of multi-channel radar image (3D radar
image) sequences using deep neural network based image processing techniques. This work was
extended from our previous work with 2D data [8], in which we proposed to use some common
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Image Quality Assessment (IQA) metrics to train and evaluate models for improving prediction
quality successfully.

From that starting point, we targeted to improve our work by acknowledging some limitations of
using 2D data in comparison to using 3D data. On the one hand, using 2D images is able to increase
the uncertainty since the altitude factors are neglected in the mapping process, and such a mapping
from above-ground observation to ground observation is not an easy task [9]. On the other hand, it is
obvious that 3D observation of the atmosphere is more informative than 2D observation, as it can
provide more details about the dynamics on the vertical dimension [10]. To the best of our knowledge,
we found only two works in the literature try applying Deep Learning approaches with 3D radar
data for the REE task, but do not show results clearly and do not address specific challenges of this
3D prediction [7,11]. The former one does not discuss or figure out any differences between the 3D
prediction and the 2D prediction [7], while the latter one only describes that the input and output
data are of multiple elevation angles [11]. We therefore considered this as a gap in the literature of
applications of Deep Learning for the REE task.

In contrast, since the beginning of using radar data, traditional approaches have used radar
images of several or many elevation angles, especially to detect storm motions [12]. It is strongly
agreed that traditional methods for identifying and tracking storm cell usually need 3D radar image
data [1]. For examples: based on the Continuity of Tracking Radar Echoes by Correlation (COTREC)
method, a 3D-radar-extrapolation method is proposed to forecast fast growing storms and the results
show that using 3D data are more accurate than only 2D data [10]; in another work, sequential 3D
Constant Altitude Plan Position Indicator (CAPPI) radar images are used to analyze 3D structure of
the initialization of local convective storms [13]; another work claimed that 3D prediction of radar
images can provide a better estimation of clouds and storms, which is important in aviation turbulence
nowcasting [14]. Particularly, hazardous phenomena like a local convective storm and thunderstorm
can appear, develop and dissipate very fast, even within one hour, so there is a high demand for
real-time or near real-time prediction of such quick “come and go” weather phenomena [1,10]. Such
very short-term nowcasting systems were used in big sport events like the Sydney Olympics (2000)
and the Beijing Olympics (2008) [1].

After success in using Convolutional Recurrent Neural Networks (ConvRNNs) for predicting
multiple steps of one channel of radar image sequences [8], we argued that similar achievements can
be obtained for the prediction of multi-channel radar data. The main research question is how to
apply ConvRNNs well for predicting multi-channel radar image sequences? For finding the answer,
we made several sub-questions: (1) What challenge(s) may the ConvRNN models for predicting 2D
radar image sequences face when they are used to predict 3D radar image sequences? (2) How the
uncertainty in weather radar data would affect the overall prediction quality (like we saw in the 2D
prediction)? (3) Can we use common Computer Vision techniques (such as image data augmentation
and IQA metrics) for supporting this type of forecasting? This paper is an extended version of a
chapter in the first author’s Ph.D dissertation [15] (unpublished). In this work, we employed recent
advanced ConvRNN methods, including Convolutional Long-Short-Term Memory (ConvLSTM) [3],
Convolutional Gated Recurrent Unit (ConvGRU) [4], Trajectory Gated Recurrent Unit (TrajGRU) [4],
Predictive Recurrent Neural Network (PredRNN) [16] and PredRNN++ [17]. As in [8], we continued to
use the Shenzen dataset, which consists of 14,000 CAPPI radar reflectivity image sequences of rainfall
observation over the Shenzen city (China) [18]. Each image covers an area of 101 × 101 km and of four
elevation angles at 0.5, 1.5, 2.5 and 3.5 km (for more details, see Section 2.2). Different to [8], however,
we required the models to predict all four channels.

Besides the common challenges of weather radar image data for predicting models such as high
uncertainty, the blurry image issue (the visual quality of predicted images degrade rapidly when
predicting further into the future [3,8]) and noises, we quickly found another unique challenge of the
3D prediction problem. In a preliminary experiment with ConvGRU using the same (and common)
mechanism of generating a 2D image for a 3D image, we realized that error signals from a channel of
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observation (in the input sequence) appeared in the predicted images of other channels. To illustrate
this issue, we plotted an example in Figure 1. We found that the main reason was due to using the same
convolutional output kernel (or receptive field) to produce several channels at a time. If we trained
the model long enough, it can learn to cancel or reduce this effect. However, training too long can
lead to over-fitted models, and the early stopping technique is often adopted in training precipitation
nowcasting models to reduce the over-fitting situation [3,4,8]. In many cases, the learning process is
terminated too quickly but can still provide better testing results than being trained longer. We argued
that this cross-channel duplication effect is not an inherent shortcoming of only ConvGRU, but of all
convolution-based multi-channel radar forecasting models, and is a noticeable dilemma. To the best of
our knowledge, it has not been documented well in the REE literature.

In multi-channel radar image processing, a similar issue is called the cross-talk effect [19] (see the
description below). We would use this term throughout this paper. It is problematic because there are
many types of errors that appear in radar observation, such as wide-and-narrow spikes, speckle echoes,
non-meteorological echoes, radar beam blockage, and radar beam attenuation [20]. Moreover, ensuring
the quality control of weather radar data, especially 3D data, is also a challenge, and data assimilation
and many quality-control techniques are often used to reduce this effect, but still can not deal with
it completely [20]. In addition, we argued that, in a real-time operational context, this practice will
slow down the nowcasting process. Therefore, we proposed to test the applicability of deep neural
network modeling for this problem, since Deep Learning models can deal with observation noises and
errors. However, we believed that there is a critical need to customize deep neural networks to deal
with the mentioned challenges. Our research objectives are to tackle this cross-talk issue to enhance
the image quality of predicted results, and find a solution to improve testing accuracy in the context of
high uncertainty in weather data. Our goal was inspired by a claim saying that better visualization of
weather data can improve weather forecasting [21].

Cross-talk problem: In multi-channel radar image processing, it is possible that a signal in one channel
can leak or couple to other channels [19]. This is not expected, and it would be ideal if the output
of a channel is not affected by the signal in other channels. Especially in our case, this is more
problematic because the leakage information is almost observation errors.

Our contributions in this work are four-fold: (1) even though our work was not the pioneering
one in predicting 3D radar images, we seemed to be the first that intensively investigated this challenge
with ConvRNNs; (2) we addressed the cross-talk problem which can appear in predicted images and
proposed an innovative way to reduce its impacts (this is the main contribution of our work); (3) we
showed that some common image augmentation techniques in Computer Vision were effective for
training neural network models in the REE task; and (4) we evaluated the importance of the early
stopping technique in training those neural network models as a regularization method for dealing
with the uncertainty in weather radar data.
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Figure 1. Example of preliminary results of ConvGRU over the Shenzen dataset. (a): the first four
rows are four channels of a tested sample with 15 steps (seven input steps and eight expected output
steps); in the first channel, the radar beam blockage causes observation error (but this error does not
appear in other channels); the last four rows are predicted images produced after 15 training epochs;
(b): we processed these images to show the cross-talk effect more clearly by changing the luminosity
(both brightness and contrast); (c): the processed prediction after 80 training epochs, showing that the
cross-talk effect was significantly reduced.
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2. Materials and Methods

2.1. Related Work

2.1.1. Convolutional Recurrent Neural Networks for Radar Echo Extrapolation

Since the first ConvLSTM was proposed [3], the family of ConvRNNs has emerged rapidly and
been leading many spatio-temporal modeling domains in Deep Learning-based applications and
research, such as video frame prediction, medical image analytics and precipitation nowcasting [22].
In our point of view, ConvLSTM, ConvGRU and TrajGRU can be considered as the fundamental
methods of this family. In radar-based precipitation nowcasting, they are applied successfully in many
tasks [3–5,8,11,13,23,24]. Among them, TrajGRU is shown to be better than ConvLSTM, ConvGRU and
other only Convolutional Neural Network (CNN)-based models including 2D-CNN and 3D-CNN [4,8].
In particular, the prediction quality of these Deep Learning models can be enhanced by using different
types of loss functions rather than the common Mean Squared Error (MSE) and Mean Absolute Error
(MAE) in the training process, such as balanced MSE and balanced MAE [4], discriminator’s loss of the
Generative Adversarial Network (GAN) method [23], or composite of IQA metrics [8]. In our previous
work, a combination of MSE, MAE and Structural SIMilarity (SSIM) is shown to be a very efficient
and effective solution to reduce the blurry image issue for these models [8]. We also used Multi-Scale
SSIM (MS-SSIM) and Pearson’s Correlation Coefficient (PCC), two other common distance metrics in
Computer Vision, to evaluate prediction quality. Our previous results showed that improvements in
these scores (which are commonly used in Computer Vision) can lead to improvements in operational
metrics in precipitation nowcasting, including Critical Success Index (CSI), Probability Of Detection
(POD), and False Alarm Rate (FAR) [8]. Besides radar image data, they are also applied successfully
to satellite image data for precipitation nowcasting [6,25], or storm-eye tracking [26]. Similarly to
the radar-based REE task, ConvLSTM models for the satellite-based weather forecasting tasks can be
improved by using specific loss functions too, such as a forecaster loss function, which incorporates
higher weights for the MSE measure of low-value pixels, used for nowcasting cloudage [25].

In practice, sequence-to-sequence network structures with several to many stacked recurrent
layers are used to leverage the power of ConvRNN methods. Figure 2 illustrates two main structures,
including Iterative Multi-step Estimation (IME, Figure 2a) and Direct Multi-step Estimation (DME,
Figure 2b) [22]. In an IME model, encoding and decoding components are placed vertically as stacked
layers, and at each input step there is an output. To predict the next step in a multi-step prediction
fashion, an input is always needed. In training, ground-truth can be used as the input for that purpose,
but, in testing, the current output must be fed back into the network. To reduce potential problems
when the model sees good data in the training phase but degraded data in the testing phase, a common
practice is to selectively feed the output back into the model in the training phase [22,27]. Meanwhile,
in a DME model, the encoder and decoder are placed horizontally. In this design, the vertical directions
of the encoder and decoder are contradictory [4,8,22]. By this way, layers of the same abstract level
in the encoder and decoder are connected naturally, and there is no need to feed the current output
back into the network for producing the next output. The three models ConvLSTM, ConvGRU and
TrajGRU usually follow the IME structure [22].

Recent advances in ConvRNNs include the introduction of external memory, PredRNN and
PredRNN++. The PredRNN architecture contains several stacked layers and one external memory,
each layer contains one ConvLSTM cell that is connected to that external memory through several
gates [16]. By this way, the cell accesses to two memories, one horizontally and one vertically, so that
it can “remember” and update the spatial correlation (that the previous layers extract) as well as the
temporal correlation (that the previous steps extract) at a time [16]. This is different to the simple
ConvLSTM model, which just can recall and update the temporal correlation [16]. The PredRNN++
architecture incorporates more connections from the internal cell memory and the external memory,
as well as a Gradient Highway Unit (GHU) to shorten the gradient from the output layer to the
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input layer [17]. Both of the PredRNN and PredRNN++ models are designed following the DME
structure [22]. PredRNN is shown to be better than TrajGRU in both of the REE and video frame
prediction tasks [16], and PredRNN++ is shown to be better than PredRNN in the video frame
prediction task [17]. We noticed that PredRNN++ was not tested with the REE task [17]. Another work
in this direction proposed to change the structure of ConvGRU and achieved better overall results than
TrajGRU [24]. However, we noticed that it is worse than TrajGRU in predicting heavy rain [24].

yt+1

xt-1 xt xt+1

yt+2

(a)

(b)

xt-1 xt yt+1 yt+2

Figure 2. Two main types of sequence-to-sequence structures of ConvRNN models for the REE task in
precipitation nowcasting (adapted from [22]). (a): Iterative Multi-step Estimation. (b): Direct Multi-step
Estimation. The encoder cells are white while the decoder cells are gray. In (a), the red color arrow-lines
illustrate the feeding-back operation in the testing phase. In the training phase, this operation can be
used selectively to replace the real input (blue color). In (b), this operation is not needed. Basically,
on the vertical direction, the encoder uses convolutions (often with stride size >1) and the decoder
uses deconvolutions. Moreover, in practice, convolutional layers are usually used to extract feature
maps from the raw input before feeding them into the bottom recurrent layer, and deconvolutional
layers are used to reconstruct the original shape—best view in color.

2.1.2. 3D Radar Echo Extrapolation

As aforementioned in Section 1, traditional methods have been used to deal with the 3D
REE task [1,12]. A related work proposed a 3D-radar-extrapolation method based on COTREC
for precipitation nowcasting and showed that using 3D data are more accurate than only 2D data
in forecasting fast growing storms [10]. The authors found that it is more advantageous with 3D
nowcasting than 2D nowcasting in estimating the downward motions of precipitation particles in the
mature and decaying stages of convective storms, especially with fast moving patterns. However,
this approach still needs hand-crafted features, a noise reduction procedure, and specific domain
knowledge, which may not be applicable in many cases. Moreover, the evaluation is done with data of
only two events and the lead-time limitation is only 10 min. We argued that this time span is too short
(so the changes are little and can be easily predicted) and two events are too little (so we did not know
how the model would deal with uncertainty in many other events).

There are still very few works in the literature applying Deep Learning methods,
particularly RNNs, for the 3D radar image prediction, despite of its importance. Several works
have tried this research direction but are still limited and have not shown a clear picture. A work
applied ConvLSTM for predicting multi-channels radar images by simply extending the dimensional
space of the input and output data with an elevation dimension [11]. However, this is just a simple
application of ConvLSTM, and there is no report about how the model works with the multi-channel
prediction challenge. A more complicated work proposed 3D Successive Convolutional Network
(3D-SCN) to fuse radar images from different observation stations and performed extrapolation [7].



Remote Sens. 2019, 11, 2303 7 of 21

Their findings in nowcasting convective storm provided more evidence to show that Deep Learning
methods are better than traditional methods for the REE task. However, their methods are still based on
CNN only, and they had to use fixed filters for a fixed length of input–output sequences [7]. This makes
their method less flexible to necessary changes of prediction lengths, as well as unable to exploit
long-distance correlations like LSTM-like models. In addition, the final output is a single channel image
(composite reflectivity) rather than a 3D representation of data. Overall, these works do not investigate
the new challenges that 3D prediction may pose to the convolution-based prediction models.

2.2. Data: Shenzen Radar Image Dataset

As mentioned above, we employed the Shenzen dataset provided by the Conference on
Information and Knowledge Management (CIKM) Analytics Cup 2017 competition [18]. Each image
covers an area of 101 × 101 km surrounding a certain weather observation site in the Shenzhen
(Figure 3). Note that there are several sites taken into account, but, due to the competition, there
is no detailed information about each of them. This dataset has 10,000 samples in the training set,
and 4000 samples in the two test-sets, testA and testB [18]. Each sample is a sequence of 15 time
steps (1 step = 6 min) of CAPPI radar images with four elevation-angles (0.5, 1.5, 2.5 and 3.5 km).
Each image is of size 101× 101 (pixels), representing a resolution of 1× 1 km, which is considered
as a convective scale [1]. The original range of pixel value is [0, 255], but we normalized to [0.0, 1.0].
A histogram comparison of these sets is given in Figure 4, showing that the inconsistency of the
train-set and the two test-sets is significant. Note that this characteristic is because the train-set
is sampled in two consecutive years and the two test-sets are sampled within the next year. This
characteristic is typical in weather data and poses a more challenging obstacle to the forecasting models
than the cross-validation mechanism commonly used in machine learning, as the data distributions are
different [3]. For calculating some operational evaluation metrics in the experiment, we converted the
pixel space to the echo reflectivity space with an assumption of the gain and offset values (gain = 95,
offset = 10) as used in [8]. By this way, the proportions of dBZ > 5, dBZ > 20 and dBZ > 40 are 48.37%,
23.68% and 1.40%, respectively. An important target of this study is to get high CSI and POD scores,
and low FAR score for the last two types of rainfall, which are normal rain (dBZ > 20) and heavy rain
(dBZ > 40).

Figure 3. The study region: Left: location of the Shenzhen, China (source: Google Maps); Right: some
weather observation sites in Shenzhen (source: Meteorological Bureau of Shenzhen Municipality’s
website [28]). Some of them may be used in the CIKM Analytics Cup 2017 competition [18], but, due to
the competition policies, the organizer did not reveal which ones—best view in color.
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Figure 4. Histograms of non-zero pixel values in the dataset (divided into three parts: train, testA and
testB)—best view in color.

2.3. Methods

2.3.1. Data Augmentation

Firstly, in a search for simple Computer Vision tools which can improve the REE task,
we investigated if using some common data augmentation techniques can help improve the
generalization ability of RNN models. While this method is widely adopted in Computer Vision
and Deep Learning [29] (Chapter 7), it has not been used to enhance the training process of neural
networks in the precipitation nowcasting problem, and is rarely used in the neural networks-based
Remote Sensing literature. However, there are some works in this field hinting at its usability for
the REE task. For example, the interpolation technique is usually used to impute missing sensing
data in the precipitation nowcasting problem [3,30]. For a Remote Sensing classification task, simple
image augmentation techniques such as flipping, rotating and translating are shown to be helpful
for improving deep convolutional models [31]. While this simple idea is not innovative, we seemed
to be the first to fill the gap between the data augmentation techniques in Computer Vision and the
radar-based REE task. We argued that this practice would help neural network models learn more
patterns and changes in the training process, so that they could be more tolerant to uncertain changes
in the future data.

In the training process, the image augmentation is performed with four steps as follows. Firstly,
for each training mini-batch, 50% of samples were randomly selected for being augmented. Secondly,
for a selected sample, the whole sequence will be transformed by one randomly selected operation
among the set of {flipping up-down, flipping left-right, flipping up-down and flipping left-right, rotating 90◦

clockwise, rotating 90◦ counter-clockwise, rotating 90◦ clockwise and flipping up-down, rotating 90◦ clockwise
and flipping left-right} widely used in the literature. Thirdly, again, 50% of the mini-batch are randomly
selected to apply a reverse-order operation (reversing the selected sequences). In addition, finally, 50%
are randomly selected to apply an illumination scale (scaling the brightness of the selected sequences).
By applying each modifying operation on the whole sequence, we were able to enrich the spatial
dynamics in the dataset but preserve the temporal dynamics. In addition, by reversing the order of
image sequences, we were able to enrich the temporal dynamics but preserve the spatial dynamics.
Note that the validating data were augmented by the same way too, but the testing data were not.

2.3.2. Channel-Wise Output Generation Block

In our study, we employed both of the IME and DME structures, and adapted the proposed
models in previous works to the Shenzen dataset (see Appendix A). We did not target altering the
basis of these models but proposed new ways of applying them for improving the prediction quality.
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Our major contribution here is to investigate the output generation block, which produces yt from the
last decoder cell. As we described in Section 1, if we simply extended the 2D models to the 3D models
by increasing the number of channels of the final output, the cross-channel duplication, or cross-talk,
problem would appear. To deal with this problem, we proposed to not use one set of convolution and
deconvolution for all output channels but separate the generation of each channel as early as possible.
Figure 5 illustrates this idea more clearly. In the common way (a), all output channels are generated by
the same filter in each layer, meaning that the cross-channel information is directly taken into account
in every transition. In our proposed way (b), each channel is generated with a separated set of filters,
meaning that the cross-channel information is taken directly only in the first transition. After that, it is
considered as indirect information and its side effects can be degraded gradually. Finally, after each
single-channel image is generated, four images are concatenated to produce the expected shape. In this
design, we used three convolution layers and one deconvolution layer to balance the performance
and computing time, but one can stack more layers to reduce the cross-channel effect more. Note that,
with this way, our output generation block can be easily generalized to any image sizes (and hence
spatial scales of the REE task) by simply changing the sizes of convolutional kernels and feature maps.

51×51×64

51×51×16 51×51×16 51×51×16 51×51×16

conv

101×101×8 101×101×8 101×101×8 101×101×8

deconv

conv conv conv

deconv deconv deconv

101×101×4 101×101×4 101×101×4 101×101×4

conv conv conv conv

101×101×1 101×101×1 101×101×1 101×101×1

conv conv conv conv

101×101×4

concatenate

(b) Our proposed output generation block

conv convdeconv

51×51×64

101×101×32
101×101×16 101×101×4

(a) Common output generation block

Figure 5. Two types of output generation blocks for producing four channels of radar images at a time.
For convenience, the layer-to-layer transitions in (a) are presented horizontally (in fact, the arrows in
the both sub-figures have the same direction).
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3. Results

We performed experiments in TensorFlow [32] (version 1.8) on P100 Nvidia GPUs. With the data,
we divided 10,000 samples in the train-set into 8000 for training and 2000 for validating (to specify the
early-stopping point), and used 4000 samples in the test-sets for testing. In training, we used batch-size
4 (we saw that other bigger batch-sizes did not give better testing accuracy, and set the learning rate
to start at 10−4 and decreased it by a factor of 0.7 after each 5 epochs. Similarly to Figure 1, we input
seven steps and output eight steps (42 min of observation and 48 min of prediction, respectively). Even
though this prediction time span is not long, we believed that it is enough to demonstrate the aspects
we were focusing on. In addition, due to the fact that we initialized the weights of models with a
random mechanism, we trained each model several times and chose the best one (similarly to [8]).

3.1. Data Augmentation

3.1.1. Training with L1 Loss

We compared several models proposed in the previous works, including ConvLSTM [3],
ConvGRU [4], TrajGRU [4], PredRNN [16] and PredRNN++ [17], trained without and with data
augmentation. All models were trained by only the MSE loss and early stopping strategy (after at
least 10 epochs, or 20,000 weight-updating iterations, to allow PredRNN to converge stably). Results
are presented in Tables 1 and 2, respectively, following the viewpoint from Computer Vision used
in [8]. The results provide very interesting findings. Firstly, it was clear that the data augmentation
techniques helped improve the generalization with large margin for all models, especially in MSE
(Table 3). It was also clear that the models trained without this support got over-fitted more severely.
Secondly, PredRNN showed outstanding performance of all criteria over the previous models which
do not have external memory, while PredRNN++ seemed to get over-fitted similarly to ConvLSTM.
In terms of IQA metrics, PredRNN and PredRNN++ often outperformed the models without external
memory. This means that the external memory mechanism was helpful to reduce the blurry image
issue, which is consistent with the findings in [16,17]. Finally, the TrajGRU model seemed to not work
well in this context while the ConvLSTM model got over-fitted more than the others in both cases.

Table 1. Test results of models trained without data augmentation.

Model Validating Testing

MSE×100 MSE×100 MAE×10 SSIM MS-SSIM PCC

Last input - 1.7379 0.7990 0.4568 0.4675 0.7005
TrajGRU 0.4397 0.9804 0.6382 0.5008 0.5951 0.8154
ConvGRU 0.3172 0.9688 0.6201 0.5223 0.6002 0.8205
ConvLSTM 0.3203 0.9825 0.6223 0.5227 0.6047 0.8187
PredRNN 0.3271 0.8686 0.5786 0.5524 0.6398 0.8403
PredRNN++ 0.3588 0.9654 0.6230 0.5230 0.6021 0.8202

MSE: Mean Squared Error; MAE: Mean Absolute Error; SSIM: Structural SIMilarity; MS-SSIM: Multi-Scale
SSIM; PCC: Pearson’s Correlation Coefficient.

Table 2. Test results of models trained with data augmentation.

Model Validating Testing

MSE×100 MSE×100 MAE×10 SSIM MS-SSIM PCC

TrajGRU 0.7207 0.7528 0.5741 0.5110 0.6503 0.8590
ConvGRU 0.6241 0.7383 0.5579 0.5362 0.6633 0.8617
ConvLSTM 0.5794 0.7650 0.5647 0.5283 0.6659 0.8569
PredRNN 0.6473 0.6918 0.5313 0.5545 0.6920 0.8713
PredRNN++ 0.5733 0.7409 0.5501 0.5467 0.6738 0.8627
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Table 3. Detailed improvement of the testing metrics obtained by using data augmentation.

Model MSE MAE SSIM MS-SSIM PCC Average

TrajGRU 23.22% 10.04% 2.04% 9.28% 5.35% 9.98%
ConvGRU 23.79% 10.03% 2.66% 10.51% 5.02% 10.40%
ConvLSTM 22.14% 9.26% 1.07% 10.12% 4.67% 9.45%
PredRNN 20.35% 8.17% 0.38% 8.16% 3.69% 8.15%
PredRNN++ 23.25% 11.70% 4.53% 11.91% 5.18% 11.32%

We investigated further into the effectiveness of data augmentation by plotting the step-wise
coefficient of determination scores. As shown in Figure 6, it is interesting to see that the models
trained with data augmentation had quite similar performance with the models trained without data
augmentation for the first and second steps but were significantly better for the next steps.
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Figure 6. Step-wise coefficient of determination score (R2) of models trained with and without data
augmentation—best view in color.
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3.1.2. Training with Combined Loss

In this experiment, we used a Combined Loss Function (CLF) based on MSE, MAE and SSIM for
training the above models to obtain less blurry images [8]. We defined this CLF as:

LMSE+MAE+SSIM =
1
3
(LMSE + 0.1LMAE + 0.02LSSIM).

Results are given in Table 4. As there was other information in the loss function, the MSE score
got worse, but the overall accuracy was compensated by significant improvements of the MAE and
SSIM scores. This means that the image quality was significantly improved and the blurry effect was
reduced. In general, PredRNN and PredRNN++ were still better than the models without external
memory. Since PredRNN still outperformed the others in all aspects, we concluded that it was the
best model in the data context of this paper and would use it for further experiments. To confirm the
relation between the learning iterations with the cross-talk effect, we also tried training this PredRNN
model more to see if training longer could make the receptive field to learn to reduce this impact.

Figure 7 shows an example to illustrate this experimental finding. Intuitively, the observation
error from the top channel appeared in other channels after both 15 and 80 training epochs like in
Figure 1. This means that the cross-talk effect still appeared, even though we used different models
and training loss functions, and still happened with other data samples. In addition, even though we
trained the model longer, it still appeared (with lesser degree). Note that, in these processed images,
some parts of the precipitation particles can be missed due to the changes in intensity, contrast and
brightness (original images are given in Figure A1, Appendix B). In particular, if the error signal has
high intensity while other channels are low intensity, the estimation of low intensity particles in those
channels will be affected severely. We also saw that the practice of training more did not solve this
issue completely, but led to another problem, the over-fitting issue. We illustrated this finding by
plotting the CSI, FAR and POD scores against training epochs (for two important cases: dBZ > 20
and dBZ > 40) in Figure 8. In general, it can be said that, after around 35 to 40 training epochs, these
operational expectations did not get better, or even got worse. Hence, it was problematic to solve the
cross-talk issue by increasing the number of training iterations, and we had to use another solution
here, changing the output generation block.

Table 4. Test results of models trained with data augmentation.

Model Validating Testing

CLF×100 MSE×100 MAE×10 SSIM MS-SSIM PCC

TrajGRU 0.6367 0.7672 0.5341 0.5965 0.6672 0.8583
ConvGRU 0.5796 0.7809 0.5338 0.5987 0.6683 0.8568
ConvLSTM 0.5562 0.7715 0.5258 0.6063 0.6729 0.8586
PredRNN 0.5841 0.7492 0.5201 0.6087 0.6789 0.8633
PredRNN++ 0.5727 0.7734 0.5273 0.6063 0.6752 0.8589

CLF: Combined Loss Function.
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(a) After 15 training epochs

(b) After 80 training epochs

Figure 7. Example of a tested prediction of the PredRNN model trained with the LMSE+MAE+SSIM.
We processed the images to make the duplicated parts emerge clearly (see the original ones in
Figure A1). Different to Figure 1, we chose this sample to show that the error signal in a channel might
affect the estimation of edges of precipitation particles in other channels.
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Figure 8. Variations of operational nowcasting metrics on the test-set provided by PredRNN over two
rain-rate thresholds (dBZ > 20 and dBZ > 40) against training epochs.

3.2. Output Generation Blocks

In this experiment, which is the most important part of our work, we chose the above PredRNN
model but combined it with different output generation blocks described in Figure 5 and trained it
with the CLF. Our intention was to show that the proposed output generation block could be a worthy
alternative to the common convolutional mechanism to reduce the cross-talk issue, but still able to take
advantages of the early-stopping technique to avoid the over-fitting problem. For a fair comparison
in terms of training iterations, we chose to report the results of each model after 40 training epochs
here. The example in Figure 9 illustrates the differences between the two PredRNN models. Intuitively,
the model with our proposed output block significantly reduced the cross-talk effect. Especially in
the top-second and bottom channels, this effect almost disappeared. In addition, we saw that this
result was even better than the result provided by the model using the common output block trained
for 80 epochs. Note that we also tried this experiment with other ConvRNN models and saw similar
results (of course with lower accuracy than the PredRNN model).

To confirm that our proposed method did not cause unexpected side effects to the overall
prediction quality, we took a look at the testing criteria of Computer Vision and operational
expectations, as shown in Tables 5 and 6, respectively. As we expected, our proposed output generation
block did not cause a significantly negative effect, and even slightly improved the overall prediction
quality (of course not always). In particular, in terms of operational criteria, our output generation
block seemed to be more stable with medium to heavy rainfall events. From the example in Figure 9,
we noticed that this could be because our output block might preserve the higher intensity slightly
better. From these findings, we could argue that our proposed method is competitive enough to be
applied in practice.
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(a) PredRNN model with the common output block

(b) PredRNN model with our output block

Figure 9. Example of predicted results of PredRNN models (after 40 training epochs) using the common
output block (a) and our proposed output block (b). Original images are given in Figure A1.

Table 5. Comparison of the common output block and our output block over Computer Vision criteria
(after 40 epochs of training).

Model
Validating Testing

CLF×100 MSE×100 MAE×10 SSIM MS-SSIM PCC

PredRNN (common block) 0.5884 0.7492 0.5206 0.6087 0.6783 0.8632
PredRNN (our block) 0.5964 0.7481 0.5212 0.6081 0.6788 0.8633
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Table 6. Comparison of the common output block and our output block over operational criteria.

Testing metric Method dBZ Threshold

5 20 40

CSI Common block 0.7418 0.5484 0.1400
Our block 0.7413 0.5499 0.1403

FAR Common block 0.1290 0.2451 0.5117
Our block 0.1300 0.2421 0.4950

POD Common block 0.8201 0.6540 0.1766
Our block 0.8204 0.6526 0.1774

4. Discussion

Firstly, we discussed the success of using some simple image data augmentation techniques in
Computer Vision for training the REE models. Even though the variations of added images are simple,
they enriched the number of patterns in the training set. This allowed the models to be exposed
to more uncertainty before they were used for testing. The fact that the models trained with data
augmentation obtained higher validating error but lower testing error means that the over-fitting
problem was significantly reduced. From Figure 6, we noticed that this improvement was similar to the
dec-seq2seq model structure proposed in [8]. However, we argued that using the data augmentation can
be safer and more stable because it increases the number of patterns to a countless extent and allows
big models to remember these patterns, rather than using smaller models and causes a limitation
in the memorizing ability. We therefore believed that data augmentation is a good solution to deal
with the high uncertainty in weather data in general, not only radar data. Furthermore, we also
argued that the generalization ability of precipitation nowcasting models can be enhanced more with
more complicated augmentation techniques in Computer Vision, such as GAN, but would leave this
investigation as a future work.

Secondly, we discussed the outstanding performance of PredRNN in our experiments.
From Tables 1, 2 and 4, this model consistently outperformed others in all testing criteria. This
finding is consistent with the claim that PredRNN is better than ConvLSTM stated in [16], but opposite
to the claim that PredRNN++ is better than PredRNN stated in [17]. However, we noticed that, while
the former comparison is done with the REE task, the latter one is done merely on tasks of prediction of
video frames or moving digits data. Therefore, here we contributed another clear comparison of these
two models for the REE literature. We believed that the external memory mechanism of PredRNN did
help capture information and explore new patterns better than ConvLSTM, ConvGRU and TrajGRU
(note that PredRNN++ was also better than these three models). On the other hand, it seemed that
the architecture of PredRNN++ is too complicated and could not be trained well in the context of
our employed data. Table 1 showed that it was less accurate than PredRNN in both training and
testing, while Tables 2 and 4 showed that it was more over-fitted. In addition, from a comparison of
network sizes inferred from Table A1, at first, we thought that PredRNN was less over-fitted because
it had the least number of trainable parameters. However, when we tried reducing the number of
channels in the abstract levels as done in [8], we saw results that were a little worse than all of the
current models. We also tried setting the number of channels of ConvLSTM, ConvGRU and TrajGRU
as 64− 64− 64 to reduce their size but still saw the same situation. Therefore, we concluded that
PredRNN outperformed the others because of its characteristics, which might be more suitable to the
dataset, rather than because of the network size.

Thirdly, we discussed the cross-talk effect. Unfortunately, even the best model, PredRNN, still
had the problem of cross-channel duplication of information, especially with the samples in which
observation errors are severe (similarly to the example in Figure 1). In fact, we saw this effect with a
similar degree in the results of all employed models. Therefore, we could confirm that the cross-talk
effect is an inherent shortcoming of all of these models, as hypothesized previously. We realized
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that this issue could be even more severe with PredRNN than ConvGRU (and other models without
external memory) because the external memory could bring detailed information of the observation
errors from low abstract levels to high abstract levels directly. The results from Section 3.2 showed
that our proposed output generation block could deal with this issue well. This can be explained
easily as it is thanks to the early separation of information of channels. Moreover, this finding can
help promote the application of PredRNN (or PredRNN++) in many multi-channel prediction tasks.
However, we must admit that the cross-talk issue still appeared in our best model, and argued that it
could be reduced more with a deeper output generation block. In addition, we believed that this effect
is unavoidable because we have to balance between the depth of the output generation block and the
computing cost, which can increase when adding more transition layers. Despite this fact, we thought
that the current design of our output generation block is enough to demonstrate our idea in dealing
with this issue.

Finally, besides those achievements, there are some points that need to be investigated more.
A drawback of our proposed output block is that one must initiate many sets of convolutions and
deconvolutions when there are many channels, e.g.,: 20 elevation angles are corresponding to 20 sets of
filters. This would increase the number of trainable variables significantly. However, we argued that,
if using the common way in such case, the cross-talk effect may be more severe, and training neural
networks can be more difficult. For future work, we thought that testing this argument would be an
interesting direction. We also propose to test our generation block with longer sequences (e.g., 20 input
steps and 20 output steps), and with a multi-radar multi-channel data source. It is also important to
find a suitable way to quantitatively assess the cross-talk effect (e.g., template-matching or pattern
matching in Computer Vision). Finally, a framework for automatically choosing appropriate method(s),
network structures, and hyper-parameters will be another interesting research direction.

5. Conclusions

This paper has presented a part of our study on using recent advanced tools in Deep Learning
and Computer Vision for the problem of radar-based precipitation nowcasting. Our main contribution
is an investigation into adapting ConvRNN models for the 3D REE task. Most importantly, we showed
that the cross-talk problem can appear when applying the same convolutional mechanism of the 2D
prediction models for the 3D prediction task. We discussed several aspects that should be considered
surrounding this problem such as the number of learning iterations and the early termination of
the training process. To deal with the cross-talk effect, we proposed a promising solution, a novel
output generation block which separates the generation of each channel as early as possible. While
the overall performance of using our proposed output block is not clearly better than the common
way, we believed that the reduction of the cross-talk effect would reduce the uncertainty in operational
contexts. As we argued, it is able to promote PredRNN or other external-memory-based ConvRNN
methods in the context of 3D radar data prediction, since the external memory may cause this effect
to be more severe. We also showed that common data augmentation techniques in Computer Vision
are helpful for dealing with high uncertainty in weather radar data. Even though our experiments
were done with a quite limited sequence length, the adopted settings can be useful in nowcasting
phenomena like thunderstorms or hails, for which real-time responding models are critically needed.

Author Contributions: Q.-K.T. collected the data, developed the model, and designed and performed the
experiments. Q.-K.T. and S.-k.S. analyzed the results. Q.-K.T. wrote the paper. S.-k.S. provided the overall
guidance to the study, and reviewed and edited the manuscript.

Funding: This research was funded by Korea Institute of Science and Technology Information (KISTI),
project “Construction of Research Data Open Platform and its Utilization Support”, Project No.: K-19-L01-C04.
The APC was funded by the same source.

Acknowledgments: We thank Jung-Ho Uhm, Seongchan Kim and Ph.D candidate Seungkyun Hong in KISTI for
their great support and discussions. Finally, we thank the organizers of CIKM AnalytiCup 2017 for sharing their
data freely.



Remote Sens. 2019, 11, 2303 18 of 21

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Description of Models

Table A1 below summarizes the description of models used in our experiment. We constructed
ConvLSTM, ConvGRU and TrajGRU following the DME structure (Figure 2b), with three recurrent
layers in both of the encoder and decoder. The numbers of channels in the layers are 64− 128− 128
from bottom to top. Whilst PredRNN and PredRNN++ are constructed following the IME structure
(Figure 2a), with two encoding layers (64− 64) and two decoding layers (64− 64). Note that the feature
map sizes of layers in PredRNN and PredRNN++ are not changed, so we used dilation in high abstract
levels to allow receptive fields to “see” broader views. Following [16,17], we used the sigmoid function
to activate switching gates (for choosing which signals are turned on or off) and the tanh function to
activate gate operations in all cells. In all models, before feeding data into the encoder, the input image
of shape 101× 101× 4 is convolved by a receptive field of size k = 3 to result in a feature map of shape
51× 51× 32. Moreover, to produce the final output, one deconvolution and two convolutions are used
to transfer the state of shape 51× 51× 64 to the original image of shape 101× 101× 4 (Figure 5a).
This process is where we proposed to use our output generation block (Figure 5b) to improve the
image quality. Note that we used the leaky-ReLU function to activate these final operations.

Table A1. Structures and characteristics of models.

Model Structure Channels of Layers/
Feature Map Sizes

Recurrent
Operations

Number of
Variables

Number of
Parameters

ConvLSTM DME
64− 128− 128

map: 51− 26− 13 conv: k = [5, 5, 3] 50 9,383,760

ConvGRU DME
64− 128− 128

map: 51− 26− 13 conv: k = [5, 5, 3] 32 5,918,800

TrajGRU DME
64− 128− 128

map: 51− 26− 13

flow generation: k =
5, c = 32; warping:

L = [13, 13, 9]
61 5,452,572

PredRNN IME
64− 64− 64− 64

map: 51− 51− 51− 51
conv: k = [5, 5, 5, 5]

dilation: r = [1, 2, 2, 1] 39 4,648,464

PredRNN++ IME

64−GHU−64− 64− 64
(GHU: s = 64, k = 5)

map:
51− 51− 51− 51− 51

conv: k = [5, 5, 5, 5]
dilation: r = [1, 2, 2, 1] 50 7,106,192

Notations: k: kernel size ([ ] is an array of layers’ kernel sizes) ; c and L: number of channels and number
of neighbouring points, respectively, of the flow generation network in TrajGRU cells; s: number of
channels in GHU block; r: dilation rate.
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Appendix B. Data Sample and Predicted Examples

Input sequence Expected sequence

Data
sample

Predicted results of 
PredRNN using common 

output block

Predicted results of 
PredRNN using our 

proposed output block
(after 40 training epochs)

after 15 
training 
epochs

after 40 
training 
epochs

after 80 
training 
epochs

Figure A1. The data sample and original predicted results (by the PredRNN model trained with
LMSE+MAE+SSIM) used in Figures 7 and 9.
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