
remote sensing  

Article

Precipitation Retrieval over the Tibetan Plateau from
the Geostationary Orbit—Part 1: Precipitation Area
Delineation with Elektro-L2 and Insat-3D

Christine Kolbe 1,* , Boris Thies 1 , Sebastian Egli 1 , Lukas Lehnert 2 , Hans Martin Schulz 1

and Jörg Bendix 1

1 Department of Geography, Laboratory for Climatology and Remote Sensing, Deutschhausstrasse 12,
Philipps-Universität Marburg, 35032 Marburg, Germany

2 Faculty of Geosciences, Department of Geography, Luisenstraße 37, Ludwig-Maximilians-Universität
München, 80333 München, Germany

* Correspondence: christine.kolbe@geo.uni-marburg.de; Tel.: +49-(0)6421-28-24270

Received: 6 September 2019; Accepted: 29 September 2019; Published: 2 October 2019
����������
�������

Abstract: The lack of long term and well distributed precipitation observations on the Tibetan
Plateau (TiP) with its complex terrain raises the need for other sources of precipitation data for this
area. Satellite-based precipitation retrievals can fill those data gaps. Before precipitation rates can be
retrieved from satellite imagery, the precipitating area needs to be classified properly. Here, we present
a feasibility study of a precipitation area delineation scheme for the TiP based on multispectral data
with data fusion from the geostationary orbit (GEO, Insat-3D and Elektro-L2) and a machine learning
approach (Random Forest, RF). The GEO data are used as predictors for the RF model, extensively
validated by independent GPM (Global Precipitation Measurement Mission) IMERG (Integrated
Multi-satellitE Retrievals for GPM) gauge calibrated microwave (MW) best-quality precipitation
estimates. To improve the RF model performance, we tested different optimization schemes. Here,
we find that (1) using more precipitating pixels and reducing the amount of non-precipitating
pixels during training greatly improved the classification results. The accuracy of the precipitation
area delineation also benefits from (2) changing the temporal resolution into smaller segments.
We particularly compared our results to the Infrared (IR) only precipitation product from GPM
IMERG and found a markedly improved performance of the new multispectral product (Heidke Skill
Score (HSS) of 0.19 (IR only) compared to 0.57 (new multispectral product)). Other studies with a
precipitation area delineation obtained a probability of detection (POD) of 0.61, whereas our POD
is comparable, with 0.56 on average. The new multispectral product performs best (worse) for
precipitation rates above the 90th percentile (below the 10th percentile). Our results point to a clear
strategy to improve the IMERG product in the absence of MW radiances.

Keywords: precipitation; delineation; GPM IMERG; machine learning; random forest

1. Introduction

The Tibetan Plateau (TiP) is known to be crucial (1) for the global atmospheric circulation with
special reference to the east Asian monsoon system and (2) for humans who depend on the water
supply by rivers originating in the high mountains of the TiP [1]. Particularly for (2), the exact
knowledge on the spatial extent and temporal development of precipitation is of utmost importance.
Unfortunately, precipitation on the TiP is not well observed. The high elevated plateau (ca. 4500 m a.s.l.
on average) with its complex terrain challenges the installation and maintenance of climate stations
and weather radars [2]. On the monthly and annual scale, many attempts have been made over the
last few decades to extrapolate the rain gauge networks with a coarse spatial resolution to produce
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area-wide rainfall information in a high spatial resolution (e.g., [3,4]). On the other hand, downscaling
reanalysis data [5,6] and specific model based hindcast approaches [7–9] provided a significant progress
in high resolution rainfall information for the plateau. Regarding real observations in very high
spatio-temporal resolution, satellite-based precipitation retrievals might help to properly understand
precipitation behaviour in space and time. TRMM-based (Tropical Rainfall Measuring Mission)
products are frequently used to characterize the spatio-temporal rainfall pattern of high Asia and the
TiP [10–13], which, however, showed some biases, particularly without taking additional factors such
as topography into account (e.g., [14]). In comparison to the polar or inclined orbiting satellite systems
(such as TRMM) which have a restricted temporal resolution, satellites from the geostationary orbit
(GEO) warrant a very high temporal resolution (15–30 min) that is superior to observe highly dynamic
precipitation events e.g., from convective storms. Many algorithms have been successfully developed
so far for GEO systems such as Geostationary Operational Environmental Satellite (GOES), Himawari
and Meteosat, in the last few years mainly based on machine learning [15–21]. Accuracies (Probability
of Detection, POD) up to 0.6 could be reached for a precipitation amount while better results are
achieved by solely classifying the precipitating areas [22]. The discrimination between liquid and solid
precipitation is not conducted in these studies. A basal setback for GEO applications over the TiP is the
fact that the satellite systems mentioned above hardly cover the plateau because of a low viewing angle.
For the more central GEO’s such as the Russian Elektro-L2 and the Indian Insat-3D system, hardly
any studies on precipitation retrieval over the TiP are conducted. Even the new Modified-IMSRA
(M-IMSRA) algorithm of the Indian Meteorological Department (IMD), combining precipitation area
delineation and rainfall retrieval, is mostly applied to the Indian subcontinent [23]. To combine the high
temporal resolution of GEO retrieval and the advantages of passive and active microwave radiances
for rainfall retrieval, several hybrid approaches were developed: CMORPH (Climate Prediction
Center MORPHing technique; [24]), PERSIANN (Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks; [25,26]) and TMPA (TRMM Multi-satellite Precipitation
Analysis [27,28]). Applied to the TiP, CMORPH was proven to over-/underestimate the frequency
of low/high precipitation [29]. CMORPH and TMPA were found superior to PERSIANN where all
retrievals showed more problems over the more arid regions of the TiP [30,31].

The newest generation hybrid retrieval combining active and passive microwave (MW),
GEO-IR and ground data are the Integrated Multi-satellitE Retrievals for GPM (IMERG) from the
Global Precipitation Measurement mission (GPM) [28,32]. IMERG provides the microwave only
estimates, morphed precipitation estimates, infrared (IR) only precipitation and gauge calibrated MW
precipitation. The quality of the different products vary within IMERG. The radiative signatures
from MW sensors are able to see through clouds and have therefore a direct connection with
rainfall [28,33,34]. Hence, MW estimates provide accurate precipitation retrievals. IMERG intends
to use MW estimates whenever possible. Over snowy/icy surfaces, IR data are used because
passive microwave (PMW) data are not reliable. The MW estimates were cross calibrated between
all instruments with reference to the GPM imager GMI. The DPR (dual-frequency precipitation
radar) and the GMI from the GPM core instrument are combined to retrieve precipitation estimates
(GPM Combined Radar-Radiometer CORRA) [32,35]. However, MW precipitation estimates tend to
underestimate the number of rain events [14,28,36,37]. To improve the MW precipitation estimates,
IMERG provides MW precipitation, which is calibrated against gauge observations over land. It should
be stressed that the precipitation estimates derived from IR only are developed by just using one
single band (10.8 µm) from GEO satellites. These simple estimates suffer from the indirect relationship
between IR and precipitation and the use of only one spectral band which highlights the uncertainty of
this product. Tan et al. [28] analyzed the sources of error in IMERG and find that IR only precipitation
performs poorly and remarkably fails to identify rain events. They conclude that, due to the misses,
IR only issues an underestimation of precipitation. Tests on the TiP in comparison to TRMM products
showed that warm season and light rainfall were captured with higher accuracy but high altitude
(>4500 m) precipitation partly with slightly lower accuracy [38,39].
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In summary, there is still a large amount of uncertainty in precipitation retrieval even in the
newest generation products due to various reasons. One main problem seems to be the still insufficient
delineation of the precipitating areas in different regimes (dry, moist areas) and topographies, combined
with a very restricted use of GEO IR data in the hybrid products.

Thus, we generally focus on an improvement of precipitation retrieval by (i) the best GEO
selection for the TiP, (ii) combining the full spectral range of second generation GEO systems with
(iii) the powerful tools of machine learning technology (Random Forest, RF). In this paper, we develop
a precipitation methodology to delineate precipitating areas using a combination of Insat-3D and
Elektro-L2. We therefore present various tests to select the best model to delineate precipitating
areas on the TiP. RF models are trained by the high quality, gauge calibrated MW estimates from
IMERG [28,31]. The classification results are validated against independent GPM IMERG data not
used for model training.

2. Data and Methods

This section gives an overview of the data used in this study. Then we describe the processing
scheme of the precipitation area delineation. Furthermore, we provide information on the RF modeling
in general and on the concept of our modeling process. The study area comprises the region from
25◦N–45◦N and 65◦E–105◦E to cover the whole TiP, and we restrict our analyses only to areas which
belong to the TiP, located above 2500 m to exclude areas where the formation of precipitation differs
from the formation of precipitation on the TiP.

2.1. Data

The data used for optimizing the precipitation area delineation are described in the following
subsections. We chose the GEO satellites Insat-3D and Elektro-L2 due to their spatial resolution of
4 km and their central view on the TiP. The study period ranges from 5 March 2017 to 4 October 2017.

Figure 1 describes the data amount on a temporal and spatial scale which is available for training
and validation. The rainy season is June, July and August. The other months do not receive much
precipitation [8,40]. Since March, April and October lack lots of data, we decided to focus on May,
June, July, August and September, where much more data are available. The spatial data availability is
overall evenly distributed on the TiP; however, there are some areas which are frequently masked out
due to IMERG’s quality index. These areas are mostly covered with ice and snow.

2.1.1. Geostationary Satellite Products from Insat-3D and Elektro-L2

Detailed information about the satellite data from Insat-3D and Elektro-L2 can be found in Tables 1
and 2. The sun elevation angle from Insat-3D was used to calculate the sun azimuth angle.

The spatiotemporal resolution of the cloud mask provided by the Indian Space Research
Organization MOSDAC is 4 km and 30 min. The classification of the cloud mask uses radiances
from the 3.9 µm, 10.8 µm and 11.9 µm bands [41].
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Figure 1. Data availability of the least common data of Insat-3D, Elektro-L2 and GPM IMERG (with all
met conditions) for the half year of 2017 on a temporal (a) and spatial (b) scale relative to the number
of available scenes.

Table 1. Overview of used bands derived from Insat-3D and Elektro-L2. (MIR = Mid-Infrared; WV =
Water Vapor, TIR = Thermal Infrared).

Band Type Satellite Central Wavelength [µm] Spatial Resolution [km] Temporal Resolution [min]

MIR Insat-3D 3.9 4 30
WV Insat-3D 6.8 8 30
MIR Elektro-L2 8 4 30
TIR Elektro-L2 9.7 4 30
TIR Insat-3D 10.8 4 30
TIR Insat-3D 11.9 4 30
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Table 2. Overview of the GEO satellite data and the GPM (Global Precipitation Measurement Mission)
IMERG (Integrated Multi-satellitE Retrievals for GPM) precipitation products.

Categories Insat-3D Elektro-L2 GPM IMERG

Reference [41–43] [44] [32,45,46]
Launch date July 2013 December 2015 February 2014
Data availability January 2014 5 March 2017–4 October 2017 March 2014
Location 82.1◦E/0◦N 77.8◦E/0◦ N 60◦N–60◦S
Data level 1.5 1.5 3
Operated by MOSDAC Russ. Met. Service NASA

Roshhydromet &
Russ. Federal space agency
Roskosmos

Sensor multispectral optical multispectral scanning dual-frequency
radiometer imager imager-radiometer (MSU-GS) precipitation radar (DPR)

& 13-channel passive
microwave (PMW)
imager (GMI)

Products imager bands (0.65 µm, 1.65 µm, imager bands (0.57 µm, 0.72 µm, Observation time,
3.9 µm, 10.8 µm, 11.9 µm, 6.8 µm) 0.85 µm, 3.75 µm, 6.35 µm, 8 µm, Precipitation source,
latitude, longitude, satellite 8.7 µm, 9.7 µm, 10.7 µm, PrecipCal, IR only,
azimuth, & elevation, sun 11.85 µm), latitude, longitude Quality Index
azimuth & elevation,
Cloudmask (clear, cloudy,
probably clear, probably cloudy,
cold space)

2.1.2. Satellite Precipitation Product GPM (Global Precipitation Measurement Mission): IMERG
(Integrated Multi-satellitE Retrievals for GPM)

The GPM core satellite was launched in February 2014 and covers the area between 60◦N–60◦S.
The GPM Core Observatory satellite carries a dual-frequency precipitation radar (DPR) and a
13-channel passive microwave (PMW) imager (GMI) [32,45].

GPM offers several data levels (Level 1–3). Level 3 data are gridded, accumulated multi-satellite
merged data sets such as IMERG where the GMI is the calibrator among various sensors from other
low earth orbiting (LEO) satellites.

GPM IMERG is available for three different latency periods depending on the user’s requirements
of application. An early (6 h, real-time applications), late (12 h, e.g., crop forecasting) and final
run (4 months, research purposes) can be assessed [28,32]. The final run recommended for research
purposes is used in this study [47].

2.1.3. Additional Data

A digital elevation model (DEM) from the Global 30 Arc-Second Elevation Data Set is used [48].
It is provided in a EPSG: 4326 projection (WGS 84) covering the whole globe. The data were adjusted
to the study area of the TiP (25◦N–45◦N, 65◦E–105◦E), and the same spatial resolution as GPM IMERG
of 0.1◦ was assigned using the nearest neighbor interpolation. Different topographical indices were
calculated like the topographic position index (TPI) [49], the terrain ruggedness index (TRI) [50] and
slope and aspect using the Grass module r.slope.aspect [51].

Furthermore, geostatistical texture features were computed. They are used as predictors for the
modeling. Geostatistical texture features characterize textures based on the relationship between the
similarity and distance of neighboring pixels. The IR bands from Elektro-L2 and Insat-3D served as
input for these calculations. The geostatistical texture features might be helpful to distinguish different
cloud types. We use the variogram (VAR), madogram (MAD), rodogram (ROD), cross variogram
(CV), and pseudo cross variogram (PCV), which were used in similar studies for the derivation
of atmospheric properties [52]. In addition, we calculated the band differences for each possible
combination. All predictors are listed in Table 3 (bands, band differences, geostatistical texture features
and ancillary data).
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Table 3. Overview of the predictors used for the RF feature selection and tuning.

Bands [µm] Band Differences Geostatistical Texture Features Ancillary Data

3.9 ∆ T 3.9–11.9 Variogram (VAR, all bands) Static
6.8 ∆ T 6.8–3.9 Madogram (MAD, all bands) Digital Elevation Model (DEM)
8 ∆ T 6.8–8 Rodogram (ROD, all bands) Topographic Position Index (TPI)
9.7 ∆ T 6.8–11.9 Cross Variogram (CV, all band comb.) Terrain Ruggedness Index (TRI)
10.8 ∆ T 8–3.9 Pseudo Cross Variogram (PCV, all band comb.) Slope
11.9 ∆ T 9.7–3.9 Aspect

∆ T 9.7–6.8 Tangential curvature
∆ T 9.7–8 Profile curvature
∆ T 10.8–6.8 Satellite Elevation Angle
∆ T 10.8–11.9 Satellite Azimuth Angle
∆ T 10.8–3.9 Partly static
∆ T 10.8–8 Solar Zenith Angle
∆ T 10.8–9.7 Sun Azimuth Angle

2.2. Processing Scheme of the Precipitation Area Delineation

We aim to identify precipitating areas (areas with and without precipitation) on the TiP based on
an RF machine learning approach using multispectral IR data from GEO satellites and (partly) static
variables as predictors (Figure 2). In a first step, we preprocessed the satellite data to get a uniform data
set regarding spatio-temporal resolution and data quality for the modeling. To this end, the GEO data
were first projected to a common reference system (EPSG: 4326; WGS84). The satellite data and GPM
IMERG were cropped to the research area (25◦N–45◦N, 65◦E–105◦E). The 4 km and 8 km resolutions
of the GEO satellite data were resized to match the IMERG resolution of 0.1◦ using nearest neighbor
interpolation. Since all data are available at 30 min resolution, no temporal aggregation was performed.

We employ a combination of Insat-3D and Elektro-L2 because, on the one hand, Elektro-L2
contains a variety of useful bands; however, these data are not operationally available. On the other
hand, Insat-3D is operationally available but lacks bands that are useful for cloud phase detection.
A combination of both satellites overcomes these issues and allows for a precipitation area delineation
for the common period (see Table 1 for details).

Not all the data were chosen for the modeling; therefore, data were masked out that (1) were not
assigned a “Quality Index for precipitationCal field” (precipitationQualityIndex) > 0.9 in order to use
only accurate “Multi-satellite precipitation estimate with gauge calibration” (precipitationCal) that is
based on MW based rainfall information [32,46,53], (2) were not assigned as cloudy in the Insat-3D
cloud mask and (3) where the difference between the Insat-3D scanning time differed more than 7 min
from the “Microwave satellite observation time” (HQobservationTime) of GPM IMERG to account for
close timing between the satellite overflight and the precipitation events observed in IMERG. Since no
visible (VIS) and near infrared (NIR) bands are used, no differentiation between daytime, nighttime
and twilight is applied. We used the “Multi-satellite precipitation estimate with gauge calibration”
(precipitationCal) from the final run of the IMERG product which is a combined product of different
satellite sensors. We used the “Quality Index for precipitationCal field” to extract only the most reliable
MW based rainfall information from the precipitationCal data [53]. In the next step, we used the
information of the "Microwave satellite observation time" (HQobservationTime) to calculate the time
difference between the Insat-3D scanning time and the time of overflight of the respective MW sensors.

The data set consists of (1) Insat-3D bands, the cloud mask, the scan time, sun and satellite
azimuth and elevation, (2) Elektro-L2 bands, and (3) the IMERG data that contains the MW gauge
calibrated precipitation, IR only precipitation, observation time, observation source, and quality index.
All of the data also contain latitude and longitude.

The preprocessed data set was then split into two subsets for training (80%) and validation (20%)
for each scene. The training data are used for the feature selection, model parameter tuning and
training described in the following. The feature selection and model parameter tuning are performed
for each month, whereas the training was performed for each balanced data set (see Figure 3 for details)
and temporal resolution separately. The feature selection results in a subset of most relevant features
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out of the initial feature space. The RF models are trained using the training data set and are then
applied to the validation data. The resulting precipitating area is validated against an IMERG’s gauge
calibrated MW precipitating area that was not used for training.
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Figure 2. Schematic view of the processing scheme of the precipitation area delineation.

A major part of RF model training is to find the best performing procedure for modeling the
precipitating area (Figure 3). First, we aim to find the best temporal resolution for model training
which might be monthly, weekly, daily or scene based. In addition, we test whether we need to
change the balance of the precipitating (which are rare) and non-precipitating pixels (which are usually
frequent). Instead of training the model with all cloudy pixels, which include an enormous amount of
non-precipitating pixels, we test the model performance with different training sets: all precipitation
pixels and (i) the same (ratio of 1:1), (ii) double (ratio1:2) or (iii) triple (ratio of 1:3) amount of
cloud-covered, non-precipitation pixels for training. This procedure should help the individual models
to learn how to differentiate between cloud areas with and without precipitation. In a last optimizing
step, we add static variables as predictors (see Table 3 for details) to the model process. Therefore,
we perform another feature selection and a new model parameter tuning, which both contains the
static predictors and trains the model using the best temporal resolution and the best ratio for the
precipitating pixels.
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Figure 3. Workflow of the selection of the best model. See Section 2.4 for a detailed description.

2.3. RF Model Training and Validation

2.3.1. General Concept of Random Forests

The RF technique, which was first proposed by Breiman [54], is an ensemble decision tree
algorithm for classification and regression and is constantly used for various studies on meteorological
remote sensing [15,16,20,52,55]. The algorithm is able to fit numerous classification and regression
trees to data and to combine the model predictions according to the trees in the forest. Bootstrap
samples from 2/3 of the training data set with replacement are selected and, for each bootstrap, subsets
are used to grow decision trees. A set of trees are more accurate and reliable compared to a single
tree. Each tree votes for one specific class. The final decision is made by choosing the class with the
highest amount of votes. The out-of-bag (OOB) error is calculated based on the 2/3 of the training data.
The RF model is applied to the remaining 1/3 of the OOB data. The OOB score is used to classify the
error rate and is the measure for the internal validation of the RF model [15]. The calculation of the
OOB score is explained in detail in Breiman [56]. The RF model also provides feature importances
which are useful to identify the most important predictors. The RF models are prediction algorithms
and can efficiently run on big data. The RF models map nonlinear relationships well [54]. The Python
Scikit-learn package was used to implement the RF method for the current study [57].

2.3.2. Random Forest Classification

IMERG’s gauge calibrated MW precipitation serves as the training reference for RF modeling. In a
first step, a recursive backward feature elimination was applied to reduce the number of predictors
and to find the best performing feature subset for the classification to improve the performance of the
RF model [58]. About 70 predictors are initially used for the feature selection.

An RF classification was used for the feature selection for each month by aggregating all training
scenes. From this data set, 10% are randomly selected, whereas we set the condition that 20% of the
randomly selected data must be rainy pixels and the RF classification is run 50 times to account for
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stable results. The OOB score and the feature importance resulting from the classification are saved.
The least important feature is deleted from the feature list and a new model is fit using the reduced
feature space. The procedure of deleting the least important feature and saving the feature importances
is repeated until only one feature is left in the classification. Finally, a mean feature importance for
each feature was calculated and the predictors were ranked based on the order of their elimination.

The feature selection which precisely determines the predictors relevant for the detection
of precipitating areas was performed on a monthly scale to account for seasonality. In the end,
31 predictors on average for the whole data set remain which are further used as predictor variables in
the tuning and training of the RF model (see Figure 4).
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Figure 4. Average feature importance and standard deviations relative to the most important feature
of the feature space. Feature importance was calculated for a subset of all available scenes from the
training data set using all non-static predictors. The error bars were calculated based on one standard
deviation of each predictor.

In order to find the optimal number of trees in the forest and the optimal number of features to
consider when looking for the best split, these parameters of the RF models were tuned. The tuning was
performed by randomly selecting 10% of the training data set, whereas 20% of the randomly selected
data needed to be rainy pixels and repeating the model tuning 50 times for both model parameters to
ensure stable results. The number of features for the best split that were tested range from 2 to 10 by 2
(2 ,4, 6, 8, 10) and the number of trees in the forest range from 100 to 400 by 30 (100, 130, 160, 190, 220,
250, 280, 310, 340, 370, 400). In order to save calculation time and power, tuning was performed (1) on
a monthly scale and (2) with fixed ranges of the model tuning parameters. The number of features for
the best split varies between 4 and 10 and the number of trees varies between 370 and 400.

The final RF classification models are trained using the optimal predictors and the optimal tuning
parameters derived above. As training data a random subset of 80% of the data of each scene are used.
The training subset is comprised by the remaining 20%. Please note that only data which fulfilled the
conditions are used for training and validation (see Section 2.2 and Figure 2).

We first test all different temporal resolutions with all different versions of the balanced data
set regarding the ratio of precipitating and non-precipitating pixels. For all of these tests, we use the
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results from the feature selection and model parameter tuning. The best temporal resolution with
the best version of the balanced data set is used to test whether static predictors have an effect on the
quality of the modeling. Therefore, another feature selection and model tuning which comprise the
static predictors is performed (see Figure 2 and Table 3).

2.3.3. Validation of the Random Forest Models

The RF models were validated against IMERG’s gauge calibrated MW precipitation from which
the categorical scores (TP, TN, FN, FP; for abbreviations see Table 4) are obtained. The following
validation measures are used to evaluate the model performance: POD, POFD, FAR, HSS and PC
(for abbreviations see Table 5). The POD describes the proportion of correctly classified rainy pixels,
whereas the POFD illustrates the percentage of non-precipitating pixels which were incorrectly
classified as rainy by the model. The FAR describes the proportion of incorrectly rainy classified
pixels. The HSS evaluates the overall performance of the model. The PC accounts for the proportion
between correctly classified rainy and non-rainy pixels with regard to all pixels (correctly and not
correctly classified pixels). Since we aim to improve the IR only precipitation from GPM IMERG,
we compare our classification results based on multispectral data to the IR only precipitation product.
Table 4 gives an overview of the confusion matrix which is used for the calculation of the validation
measures (see Table 5).

Table 4. Confusion matrix used to calculate the validation measures for the precipitation area
delineation [59,60].

Observation

Model estimation

Precipitation No Precipitation

Precipitation True Positives (TP) False Positives (FP)
No precipitation False Negatives (FN) True Negatives (TN)

Table 5. Categorical validation measures with equation, range of values and optimal value [59,60].

Validation Measure Equation Range Optimal Value

Probability of Detection POD = TP
TP+FN [0, 1] 1

Probability of False Detection POFD = FP
FP+TN [0, 1] 0

False Alarm Ratio FAR = FP
TP+FP [0, 1] 0

Heidke Skill Score HSS = TP∗TN−FP∗FN
[(TP+FN)∗(FN+TN)+(TP+FP)∗(FP+TN)]/2 [−∞, 1] 1

Percentage Correct PC = (TP+TN)
(TP+FN+FP+TN)

[0, 1] 1

2.4. Random Forest Model Optimization

2.4.1. Selection of the Best Model

This chapter summarizes the tests which were performed to select the best model for the
precipitation area delineation with regard to the validation measures. To do so, we chose eight
days from each available month (May, June, July, August, September) to test the differences of the
models. These test days from each month were selected according to observed precipitation events in
the IMERG data.

It is known that the TiP is a semi-arid region where 60–70% of the precipitation on the TiP occur
in the summer months (June, July, August) [8,40]. The model therefore faces challenges in learning to
differentiate between precipitating and non-precipitating data due to the low amount of rainy pixels.
We assume that selecting completely random data for training leads to an underrepresentation of the
rainy class. Reducing the amount of non-precipitating pixels compared to rainy pixels is known to
be helpful for the model to better capture the precipitating areas (refer to [21,61]). We tested the (i)
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unbalanced, (ii) same (ratio of 1:1), (iii) double (ratio1:2) or (iiii) triple (ratio of 1:3) amount of pixels
for training.

It is important to account for the seasonality of precipitation since the rainfall amount in May
differs a lot from the amount in July where precipitation is influenced by the monsoon. Therefore,
we tested the temporal resolution of the RF models on a monthly, weekly, daily and scene based
resolution. Monthly or weekly trained models might be useful to gain more rainy data and therefore
helping the model to learn when precipitation occurs which we expect to be most helpful in rather
dry months like May or September. Daily or scene based trained models might be more precise than
weekly or monthly trained models because they only capture the precipitation signals from a specific
day or scene.

The relation between terrain and precipitation is well known [13,14]. We assume to enhance our
precipitation area delineation by adding static predictors to the RF training (see Table 3 for details).
For example, Yamamoto et al. [62] and Kidd et al. [63] showed that altitude has an impact on the
performance of rainfall detection in Nepal. Their results prove that static predictors enhance the
detection of rainfall areas. In addition, other studies found the use of static predictors like the DEM
helpful [61]. For this purpose, we performed a separate feature selection on a monthly basis with the
best temporal resolution to include the static predictors (Table 3).

2.5. Comparison to IMERG’s IR Only Precipitation Estimate

We used six multispectral bands from two GEO satellites with reference to the gauge calibrated
MW precipitation estimates from IMERG to detect the precipitating areas on the TiP. The results of
the presented precipitation area delineation were compared with the IR only precipitation product
from IMERG which only uses the 10.8 µm band for precipitation retrieval. We assume that the use of
multispectral satellite data outperforms IMERG’s single band precipitation product.

3. Results

3.1. Results of the Selection of the Best Model

The feature selection and tuning were performed on a monthly basis, whereas the training was
performed on a monthly, weekly, daily and scene based resolution. All of these temporal variations
were also tested using a different amount of non-rainy pixels (unbalanced, ratio of 1:1, ratio1:2 and ratio
of 1:3).

The results from the model training on a monthly and unbalanced selected pixel basis revealed
the following model performance. The POD was very high ranging from 0.76–0.83 for the five test
weeks and the POFD was very low at around 0.08. However, the FAR was very high (0.76 on average).
The HSS was especially low in the less rainy seasons like May and September with values 0.15–0.25
and higher in the rainy months like June, July and August (0.37 on average). The PC was overall very
high at 0.93 since most rainy pixels are recognized correctly by the model.

The POD was for all temporal resolutions stable and ranged from 0.73–0.87 with an unbalanced
choice of pixels regarding all test weeks. When using the ratio of 1:1, the POD dropped for all temporal
resolutions because this ratio highly overestimates the true distribution of rainfall data. The POD
ranged between 0.22–0.41. We tested the ratio1:2 which resulted in a higher POD compared the ratio
of 1:1 and a lower POD than the unbalanced choice (0.33–0.52). Training the RF models with a ratio of
1:3 led to a moderate POD of 0.40–0.61 for all temporal resolutions. The POFD was overall low for all
tests ranging between 0.01–0.08.

The FAR decreased in all test weeks with increasing temporal resolution (e.g., from a monthly to
weekly resolution) using the unbalanced option when training the RF model. Using the unbalanced
choice of pixels, however, led to enormous high FAR up to 0.9. The FAR dropped rapidly when the
models were trained using the ratio of 1:1. Modeling with the ratio of 1:1 led to an improvement of the
FAR on all time scales which could be reduced down to 0.11. The FAR increased for all temporal scales
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when the models were trained using the ratio1:2 and ratio of 1:3. However, the POD in both cases was
higher compared to the POD of the ratio of 1:1 at all temporal scales.

The HSS displays the overall performance of the model. The HSS increased when the temporal
resolution decreased. This is due to the decreasing FAR with decreasing temporal resolution.
The highest HSS was found when training the model on a scene basis. Regarding the amount of
rainy pixels for training, we find that the HSS was highest when trained with the ratio of 1:3.

The PC was lowest for all temporal resolutions when the model is trained with a ratio of 1:1
(0.79–0.86). It increased for all test weeks with a ratio of 1:2 and reached very good results when the
model is either trained unbalanced or with a ratio of 1:3 (up to 0.93). The PC in the unbalanced ratio
was very high due to the many correctly negative classified pixels.

To summarize, we find that training the models on a scene basis together with the ratio of 1:3
performs best. This means that we choose all rainy pixels and the triple amount of non-rainy pixels
for each scene separately. We also find that the results improve with increasing temporal resolution
(see Figure 5).
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Figure 5. Receiver Operating Characteristics (ROC) diagram comparing the probability of detection
(POD) with the false alarm ration (FAR) based on the mean prediction samples of all test weeks in 2017.
The colors / shape indicate the different temporal resolutions/different balanced data sets.

Although other studies improved their model performance by the use of static predictors,
we found that there is hardly any difference when training the model using static predictors on a
scene basis with a ratio of 1:3 (see Figure 2 and Table 3). In order to test the effect of static predictors,
we performed a separate feature selection and a separate RF parameter tuning on a monthly basis
(see Table 6 for the comparison).
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Table 6. Comparison of scene based trained models with a ratio of 1:3 without and with the use of
static predictors (SP).

Validation May June July August September

No SP With SP No SP With SP No SP With SP No SP With SP No SP With SP
POD 0.47 0.41 0.57 0.55 0.59 0.59 0.61 0.55 0.57 0.48

POFD 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.03 0.02 0.02
FAR 0.29 0.30 0.26 0.24 0.26 0.25 0.26 0.24 0.23 0.25
HSS 0.49 0.44 0.59 0.58 0.59 0.60 0.60 0.57 0.60 0.53
PC 0.92 0.92 0.93 0.92 0.92 0.93 0.93 0.93 0.94 0.92

Figure 6 displays the validation scores for the precipitation area delineation for 5–12 July 2017.
There are some differences in the POD, FAR and HSS, but hardly any differences in the POFD and PC.
The HSS is highest when the POD is high and the FAR low.
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Figure 6. Performance of the precipitation area delineation for eight days (5–12 July 2017) as boxplots.
The validation scores are calculated for each validation scene of these eight days. The boxes display
the 25th, 50th and 75th percentiles. Whiskers indicate extreme data up to 1.5 times of the interquartile
range. Outliers are marked as crosses. The width of the boxes is relative to the available number of
validation scenes.
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Figure 7 states that low precipitation rates (<10th percentile) are prone to errors with a relatively
low POD and a high FAR, whereas high precipitation rates (>90th percentile) display a very POD
(ca. 0.9), and a low FAR (ca. 0.2). The POD and HSS increase with increasing precipitation rates,
whereas the FAR decreases with increasing precipitation rates.

A reason for that might be that clouds with low precipitation amounts do not differ much from
non-precipitating clouds in terms of their top temperatures in the different channels. By contrast,
the top cloud temperatures from clouds that lead to high amounts of precipitation can be distinguished
more easily from the non-precipitating clouds because of the significant temperature differences.
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Figure 7. Performance of the new precipitation area delineation for July 2017 as boxplots for low,
medium and high precipitation amounts according to percentiles. The boxes display the 25th, 50th and
75th percentiles. Whiskers indicate extreme data up to 1.5 times of the interquartile range. Outliers are
marked as crosses. The width of the boxes is relative to the available number of validation scenes.

3.2. Results of the Comparison between the New Precipitation Area Delineation and IMERG’s IR
Only Precipitation

The best model was compared to the IR only product which uses only one spectral band for
precipitation retrieval (see Table 7). Compared to IMERG’s IR only, the new precipitation delineation
based on Elektro-L2 and Insat-3D displayed a higher POD (0.4–0.59) than IR only (0.24 on average)
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which highly underestimates precipitation events. The POFD of IR only is comparably low. The FAR
is extremely high (between 0.43–0.99) compared to the new precipitation delineation. The HSS and
partly the PC of IR only produce lower values (HSS at 0.19 and PC at 0.84 on average for all months),
which stresses the improvement of the new multispectral delineation.

Table 7. Comparison of the new precipitation area delineation (PAD) and IMERG’s IR only precipitation
for the test weeks (May, June, July, August, September 2017).

Validation May June July August September

PAD IR only PAD IR only PAD IR only PAD IR only PAD IR only
POD 0.40 0.07 0.58 0.29 0.59 0.28 0.55 0.28 0.50 0.26

POFD 0.03 0.07 0.03 0.06 0.04 0.06 0.03 0.06 0.02 0.05
FAR 0.35 0.99 0.24 0.55 0.27 0.43 0.26 0.51 0.25 0.52
HSS 0.43 0.002 0.59 0.22 0.60 0.25 0.56 0.23 0.54 0.23
PC 0.92 0.92 0.93 0.81 0.93 0.74 0.93 0.83 0.93 0.84

Figure 8 shows an example of a scene from 7 July 2017 at 4:00 p.m. UTC. Grey represents the MW
swath where the gauge calibrated MW precipitation is available and no clouds occur. The white areas
are masked out due to a low quality index below 0.9 which indicates that these areas could not be filled
with gauge calibrated MW precipitation and therefore are probably snow or ice covered. The white
areas cannot be used for training and validation. The colours yellow (TN), red (FN), blue (FP) and
green (TP) indicate the verification measures. The left graphic depicts the performance of the new
precipitation area delineation based on the gauge calibrated MW precipitation from IMERG.

The graphic on the right shows the differences in the IR only and gauge calibrated MW
precipitation product for 7 July 2017 at 4:00 p.m. UTC on the TiP as an example. It indicates that IR
only does not capture the precipitating areas which occur in the gauge calibrated MW precipitation
product (FN) and also produces some False Positives (FP) where no precipitation occurred.

Our findings show that our model performs better than IR only precipitation compared to
IMERG’s gauge calibrated MW precipitation.
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Figure 8. Comparison of the performance of the new precipitation area delineation (left) with IMERG’s
IR only, both with reference to IMERG’s gauge calibrated MW precipitation on July 7th 2017 on 4:00 p.m.
UTC. These estimates are available for the grey MW swath marked area. Snow covered areas do not
fulfill the quality index from IMERG.

Figure 9 distinguishes the modeling performance of IR only in low (<10th percentile), medium
(between > 10th and < 90th percentile) and high (>90th percentile) precipitation rates. It reveals that
high precipitation rates are easier to detect compared to low precipitation rates by IR only. The POFD
is comparably low and the FAR decreases with high precipitation rates. The HSS increases with the
increase in precipitation. The PC decreases in comparison from high to low precipitation rates.
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Figure 9. Performance of the precipitation area delineation using IR only precipitation for July 2017
as boxplots for low, medium and high precipitation rates according to percentiles. The boxes display
the 25th, 50th and 75th percentiles. Whiskers indicate extreme data up to 1.5 times of the interquartile
range. Outliers are marked as crosses. The width of the boxes is relative to the available number of
validation scenes.

4. Discussion

In this study we present the first rain area delineation on the TiP based on GEO satellite data
which are fully validated across space and time.

Due to the missing IMERG independent gauge and weather radar network on the TiP, the variety
of validation data are restricted. We therefore use the gauge calibrated MW precipitation from IMERG
which was excluded from the feature selection, tuning and training processes to gain independent
precipitation data.

Before modeling, we defined conditions for the selection of the data (see Section 2.3 RF model
training and validation). When checking the data, we found pixels in the gauge calibrated MW
precipitation of IMERG which are flagged as rainy but are not marked as cloudy in the Insat-3D cloud
mask. Since they do not fulfill the condition of being cloudy in the cloud mask, they are excluded from
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training and validation. Some of these pixels were classified as probably cloudy in the cloud mask of
Insat-3D. However, we decided to use only those pixels which were clearly classified as cloudy.

We also note that many pixels in all seasons, but especially in May and September, are frequently
masked out due to IMERG’s quality index, which, in these cases, is below 0.9. The snow and ice
covered areas are not used for precipitation retrieval. The IMERG algorithm adds IR information when
MW is not able to produce reliable estimates due to the high reflectance of snow and ice. The IR reduces
the quality of the precipitation estimates, which are then excluded from training and validation.

Due to computational effort, we performed the feature selection and RF parameter tuning only
once; however, the results might change when performing a feature selection for all of the different
settings of the models.

There are several possibilities for the failure of the precipitation area delineation. We find that
the detection of high precipitation amounts (above 90th percentile) is quite well captured by the
new precipitation delineation, whereas low precipitation (below 10th percentile) performs poorly.
The medium range of precipitation (between 10th and 90th percentile) is better (worse) captured (1)
than precipitation below (above) the 10th (90th) percentile and (2) in the rainy season. Our results
indicate that low precipitation rates are hard to capture using GEO satellite data. The difference of
the brightness temperatures between precipitating and non-precipitating pixels, especially for low
precipitation rates, is not inconsistent and leads to false results. In addition, a high FAR indicates that
the model is not able to sufficiently differ between precipitation and no precipitation. High precipitation
rates are especially important regarding disaster management and water availability for humans.

Adding static predictors did not change our results. We assume that, due to the rather coarse
monthly basis, the feature selection did not include many of the static predictors, which, therefore,
did not change the results much.

Our study shows that precipitation area delineation works best in the rainy months (July, August).
We found quite a poor performance for the rather dry months May and September. The precipitating
areas in June are captured with intermediate accuracy.

We tested four different temporal resolutions and found that scene based trained models
performed best. Coarse temporal resolutions like monthly trained models instead lead to worse
results. Daily and weekly trained models performed at an intermediate level, with a better tendency of
daily models to capture precipitation. Furthermore, we tested four different balancing methods when
training the model. We found that there are differences in the performance when changing the balance
of rainy and non-rainy pixels. Both tests changed the results which indicates that the data input highly
affects the prediction outcome. Depending on the modeling approach, the training data should be
selected carefully.

We use IMERG’s gauge calibrated MW precipitation for training and validation because it is the
most reliable satellite precipitation product within IMERG [28]. However, it is restricted to those areas
where MW is available. The gaps, where MW is not available, are filled in IMERG with IR based on
one single band from GEO satellites. The indirect relation between IR and precipitation leads to an
underestimation of precipitation. However, the IR is more frequently available compared to the MW
precipitation. IMERG’s IR only product is not able to capture precipitation precisely.

We showed that our precipitation area delineation outperforms the IR only precipitation from
IMERG. This is due to the very low POD (missing precipitation) and the very high FAR in the IR
only product. We therefore conclude that multispectral IR information enhances the precipitation
area classification results. Figure 10 displays the distribution of the validation measures covering
the available data in 2017 (Figure 10a–d). There is hardly any pattern visible for TP, FP and FN,
but the TN are found to mostly occur in the south of the TiP. The western part of the TiP contains
frequently masked out areas covered with snow and ice leading to data gaps in all verification measures.
The gauge calibrated MW precipitation totals (Figure 10e) and the frequency of gauge calibrated MW
precipitation (Figure 10f) capture the dry western and some northern parts of the TiP, whereas the
south and southeast are moist and influenced by (1) orographic effects and (2) the monsoon.



Remote Sens. 2019, 11, 2302 18 of 24

45°

40°

35°

30°

25°

a) TP b) TN

45°

40°

35°

30°

25°

c) FP d) FN

65° 70° 75° 80° 85° 90° 95° 100° 105°

45°

40°

35°

30°

25°

e) Gauge calibrated MW precipitation totals

65° 70° 75° 80° 85° 90° 95° 100° 105°

f) Frequency of gauge calibrated MW precipitation

0

0.2

0.4

0.6

0.8

1

Fr
e
q
u
e
n
cy

0

0.2

0.4

0.6

0.8

1

Fr
e
q
u
e
n
cy

0

0.2

0.4

0.6

0.8

1

Fr
e
q
u
e
n
cy

0

0.2

0.4

0.6

0.8

1

Fr
e
q
u
e
n
cy

0

400

800

1200

1600

2000

P
re
ci
p
it
a
ti
o
n
 [
m
m
]

0

2

4

6

8

10

Fr
e
q
u
e
n
cy

Figure 10. Distribution of mean validation measures over the Tibetan Plateau (TiP) for 2017 (a–d) with
the precipitation totals (e) and frequency of gauge calibrated MW precipitation for 2017 (f).

Other studies also focus on the classification of precipitating areas. To this end, the Meteosat
Second Generation (MSG) Spinning Enhanced Visible and InfraRed Imager (SEVIRI) data with its
resolution of 3 km and 15 min or the Himawari-8 with its 2 km and 15 min resolution are used several
times for various areas [15–21]. Thies et al. [17] discriminate raining from non-raining cloud areas
over Germany using MSG SEVIRI with reference to a German Weather radar product and found for
night-time a POD of 0.6, a POFD of 0.2 and a FAR of 0.5. They also find comparable results for daytime.
In their study about precipitation process and rainfall intensity differentiation, Thies et al. [18] use the
detection of the precipitation areas together with the precipitation process to assign the precipitation
rates. The POD varies between 0.1–0.7, whereas the POFD varies between 0–0.6, the FAR is between
0.3–0.9 and the HSS does not exceed 0.2. Kühnlein et al. [16] derive precipitation estimates from
MSG SEVIRI using RF and find a POD of 0.5, POFD of 0.15, FAR of 0.5 and HSS of 0.2–0.5 for their
classification of precipitating areas in Germany. Mapping rainfall over southern Africa using MSG
SEVIRI lead to a validation aggregation of 1 h to a POD of 0.6, a low POFD of 0.18, but a high FAR of
0.8 and a low HSS of 0.18 [20].

Precipitating clouds were classified using IR from Himawari-8 where an enormous high POD
of 0.98 and a high HSS of 0.2–0.8 is found, whereas the FAR does not exceed 0.01 [22]. Min et al. [21]
estimate summertime precipitation from Himawari-8 and determine a POD of 0.58, a FAR between
0.27–0.41 and a HSS of 0.53. The TiP is especially challenging for satellite based precipitation retrieval
techniques. This is due to the high elevation that causes low surface temperatures. These low surface
temperatures hardly differ from the temperature of the clouds. This is problematic for the IR based
techniques. On the other side, the high elevation and the semi-arid conditions are problematic for PMW
sensors, since they often detect the ground signal in these cases which leads to misinterpretations in
the retrieval algorithms. The same holds true for snow and ice covered areas which are very common
on the TiP. Even if we use the best available data source within the IMERG product by choosing the
MW based precipitation information as a reference for our technique, one has to keep in mind that this
rainfall information should not be considered as the “truth” because of the described uncertainties.
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GPM rainfall estimates are evaluated against gauge networks by Tan et al. [64] and their evaluation
results in a POD of 0.7, FAR of 0.3-0.8 and a HSS of 0.3-0.7, whereas the data were evaluated on a
precipitation threshold of 0.2 mm/hr. Everything below 0.2 mm/hr is not considered as precipitation
because they state that small precipitation rates cannot be captured by satellites.

Table 8 summarizes the validation metrics of other studies compared to our results.

Table 8. Comparison of the validation measures of the new precipitation area delineation (PAD)
compared to other studies.

Validation PAD Thies et al., Thies et al., Kühnlein Meyer et al., Thus, & Shin Min et al.,
Measures 2008a 2008b et al., 2014 2017a 2018 2019

POD 0.52 0.6 0.1–0.7 0.5 0.6 0.98 0.58
POFD 0.03 0.2 0–0.6 0.15 0.18
FAR 0.27 0.5 0.3–0.9 0.5 0.8 0.01 0.27–0.41
HSS 0.54 >0.2 0.2–0.5 0.18 0.2–0.8 0.53
PC 0.92

We use two GEO satellites to retrieve the precipitating area over the TiP. Future enhanced GEO
systems from the Elektro-L series with a variety of spectral bands which can be operationally used
will enhance the retrieval of precipitation over the TiP. In addition, possible minimal spatial offsets
when superimposing the three different satellite products (Elektro-L2, Insat-3D, GPM IMERG) might
be reduced. In addition, other studies indicate this issue [55,65].

The gauge calibrated MW precipitation combines imager and sounder which were all calibrated
to the GPM core instrument (GMI). However, there are differences in the performance of precipitation
detection in each sensor and especially in the differentiation between imager and sounder. There are
two imagers (GMI, AMSR) and three sounders (ATMS, MHS, SSMIS) available in the V05B IMERG
version. A sounder might perform worse than an imager, which then leads to a false classification [28].
The microwave humidity sounder (MHS) is known to strongly overestimate low rain rates and
underestimate moderate intensities [28,36]. The MHS and the advanced temperature and moisture
sounder (ATMS) are less accurate than the conical-scanning sensors like the GMI [66]. Since we would
lose too much data when removing the sounder, we keep all data.

5. Conclusions

The lack of reliable precipitation data enhances the need for satellite-based precipitation retrievals
for this region. Thus far, no precipitation retrieval especially for the TiP is available in a high
spatio-temporal resolution. The aim of the study is to model the precipitation area delineation on
the TiP using multispectral data from two GEO satellites (Insat-3D, Elektro-L2) with a machine
learning approach (RF) based on the best quality gauge calibrated MW precipitation from IMERG.
We showed that the precipitation area detection can be improved by (1) changing the ratio of the
precipitating or non-precipitating data during training, and (2) by changing the temporal resolution
to scene based trained models. Adding static predictors in the training process did not improve the
precipitation area detection due to the coarse temporal resolution of the feature selection. We found
a strong improvement of our multispectral precipitation area delineation compared to IMERG’s
single band IR only precipitation estimate with reference to the gauge calibrated MW precipitation.
Our multispectral approach overcomes the main weakness of IMERG’s IR only precipitation product,
which underestimates precipitation [28].
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Abbreviations

The following abbreviations are used in this manuscript:

AMSR Advanced Microwave Scanning Radiometer
ATMS Advanced Technology Microwave Sounder
CMORPH Climate Prediction Centre MORPHing technique
CORRA GPM Combined Radar-Radiometer
CV Cross Variogram
DEM Digital Elevation Model
DPR Dual-frequency Precipitation Radar
FAR False Alarm Ratio
FN False Negatives
FP False Positives
GEO Geostationary
GMI GPM Microwave Imager
GOES Geostationary Operational Environmental Satellite
GPM Global Precipitation Measurement Mission
HSS Heidke Skill Score
IMERG Integrated Multi-satellitE Retrievals for GPM
IMSRA Indian National Satellite System (INSAT) Multispectral Rainfall Algorithm
IMD Indian Meteorological Department
IR Infrared
IR only Infrared only precipitation product
LEO Low Earth Orbiting
MAD Madogram
MHS Microwave Humidity Sounder
MOSDAC Meteorological and Oceanographic Satellite Data Archival Centre
MW Microwave
PERSIANN Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
OOB score Out Of Bag score
PAD Precipitation area delineation
PC Percentage Correct
PCV Pseudo Cross Variogram
POD Probability of Detection
POFD Probability of False Detection
PMW Passive Microwave
PR Precipitation Radar
PrecipCal Multi-satellite precipitation estimate with gauge calibration
RF Random Forest
ROD Rodogram
SP Static Predictors
SSMIS Special Sensor Microwave Imager/Sounder
TMI TRMM Microwave Imager
TMPA TRMM Multisatellite Precipitation Analysis
TRMM Tropical Rainfall Measuring Mission
TiP Tibetan Plateau
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TN True Negatives
TPI Topographic Position Index
TRI Terrain Ruggedness Index
TP True Positives
VAR Variogram
VIS Visible
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