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Abstract: Hyperspectral images are depictions of scenes represented across many bands of the
electromagnetic spectrum. The large size of these images as well as their unique structure requires
the need for specialized data compression algorithms. The redundancies found between consecutive
spectral components and within components themselves favor algorithms that exploit their particular
structure. One novel technique with applications to hyperspectral compression is the use of spectral
graph filterbanks such as the GraphBior transform, that leads to competitive results. Such existing
graph based filterbank transforms do not yield integer coefficients, making them appropriate only for
lossy image compression schemes. We propose here two integer-to-integer transforms that are used in
the biorthogonal graph filterbanks for the purpose of the lossless compression of hyperspectral scenes.
Firstly, by applying a Triangular Elementary Rectangular Matrix decomposition on GraphBior filters
and secondly by adding rounding operations to the spectral graph lifting filters. We examine the merit
of our contribution by testing its performance as a spatial transform on a corpus of hyperspectral
images; and share our findings through a report and analysis of our results.

Keywords: hyperspectral image coding; graph filterbanks; integer-to-integer transforms; graph
signal processing

1. Introduction

Hyperspectral images are representations of scenes across many bands of the electromagnetic
spectrum (otherwise called spectral components). These images have been used to classify areas of
a landscape [1], identify clouds [2] or seeds located on the Earth’s surface [3] and even forecast
geological events such as landslides [4]. Due to their large size, these images require the use
of efficient compression techniques in the form of specialized image transforms. The above
mentioned transforms can often be computationally costly but one could strive towards real-time
compression of remotely-sensed hyperspectral images, when processed accordingly through
on-ground, high-performance parallel computing facilities.

Transform-based lossy compression techniques used on hyperspectral images are commonly
related to one of two families. The first group of algorithms are based on the Discrete Wavelet
transform (DWT) [5–8]. On one hand the advantage of these transforms manifests through their
low computational complexity, though they are not adaptive to the input signal. On the other hand,
algorithms such as those in References [9–12] are based on the Karhunen-Loeve transform (KLT), which
is adaptive at the expense of a high computational complexity. Meanwhile the techniques used for the
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lossless compression of hyperspectral images are generally based on a predictive coding model [13,14]
though lossy predictive techniques [15] have the benefit of a lower computational complexity. Some
lossless predictive techniques [16,17] are implemented in the CCSDS-123.0-B-2 [18] standard that also
supports near-lossless compression and whose parameter tuning is explored in Reference [19].

This paper exploits a recently emerged family of wavelet transforms which are based on graph
signal processing, a field in which data structures are represented as signals lying on the nodes of
graphs while weighted graph edges denote the degree of similarity between nodes [20,21]. Graph
wavelet transforms are derived from the graph structures, which in turn, one can also construct from
images. Applying such transforms on hyperspectral images has been shown to lead to competitive
compression results [22].

The strength of graph wavelet transforms in the field of image compression stems from the
Graph Fourier Transform (GFT), an equivalent to the classical Fourier transform that is formed by the
eigenvectors of the graph Laplacian, a matrix constructed from the values of the weighted edges of
the graph. Just like the KLT, the GFT is an adaptive transform but instead of following a statistical
approach, it attempts to encode image structures that are embedded in the graph edges. Thus, an
important attribute of the GFT is related to its flexibility, since one can decide on the degree of accuracy
with which image structures are represented on the graph [23]. It has also been shown [24] that not only
does the GFT approximate the KLT for a piece-wise first-order autoregressive process but also that the
GFT optimally decorrelates images following a Gauss-Markov random field model [25]. Consequently,
graph wavelet transforms combine the GFT with a multiresolution analysis, resulting in a powerful
tool for image compression.

A brief review of graph wavelet transforms follows. One can organize these transforms into two
general groups—vertex domain and spectral domain designs. The former are based on spatial features
of the graph such as the degree of connectivity between nodes. These vertex domain designs, though,
lack spectral localization. While the energy of the resulting transformed signal is not concentrated
around central graph frequencies, the vertex domain designs are described by a perfect localization on
the vertex domain, meaning that one can define the number of nodes that will update the value of a
vertex after the transform. One specific vertex domain design is the lifting-based graph wavelets [26]
that use distinct groups of nodes to compute the update and detail wavelet coefficients.

Transforms that belong in the latter category of spectral designs exploit characteristics of the
graph spectrum (not to be confused with the spectrum of hyperspectral images) in the form of the
eigenvectors and the eigenvalues of the graph. One key feature of these designs is good spectral as
well as vertex domain localization. One of the first spectral graph wavelet transforms are the diffusion
wavelets [27] as well as the spectral graph wavelets [28]. While these spectral graph transforms are
over-complete (the number of wavelet coefficients surpass the number of signal samples), this problem
is solved by the two-channel graph wavelet filterbanks [29] that uses quadrature mirror filters (QMF)
on bipartite graphs. These filters are not compactly supported and produce transforms that are not
well localized on the vertex domain. The next iteration of such transforms are the biorthogonal graph
wavelet filterbanks (introducing the GraphBior transform) [30] which are compactly supported as
well as critically sampled. Since then several improvements and variations of the biorthogonal graph
filterbanks have been proposed by including spectral sampling [31] or by introducing the M-channel
graph wavelet filterbanks that can be implemented on large sparse graphs [32]. One of these variations
uses polyphase transform matrices [33], proposing graph lifting structures [34] in the spectral domain
for biorthogonal graph filterbanks.

One major issue of the filters developed for biorthogonal graph filterbanks, regarding image
compression, is that they are only suited for lossy compression schemes. This drawback originates
from the fact that the graph wavelet coefficients arising from these transforms are not integer. Thus a
necessary quantization step is required rendering such compression schemes lossy. Furthermore,
the use of spectral graph transforms for the compression of hyperspectral images spawns further
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difficulties—a huge amount of side information is required, due to the necessity to transmit the graph
structure to the decoder.

In this paper, we provide transforms that allow us to construct a lossy-to-lossless compression
scheme for hyperspectral images, using biorthogonal graph filterbanks. We developed two integer
graph-transforms, both suitable for the biorthogonal graph filterbanks.

Our first approach is to modify the filtering process of GraphBior so that the resulting analysis
wavelet coefficients are integer. We solve this problem by computing the Triangular Elementary
Rectangular Matrix (TERM) [35] decomposition of the spectral GraphBior filter. At first glance this
solutions seems promising but due to the high complexity of the TERM factorization process and
the large size of the GraphBior filters, one could argue otherwise. Thus we partition each GraphBior
filter in tiles and compute the TERM factorization of each tile in parallel. This process dramatically
decreases the time complexity of the TERM factorization of GraphBior.

Our second integer spectral graph transform is achieved by introducing rounding operations
within the spectral graph lifting structures proposed in Reference [34]. Hence, we transform it into an
integer-to-integer graph wavelet transform.

Using our proposed transforms mentioned above, we design a lossy-to-lossless extension to
the scheme developed for the lossy compression of hyperspectral images through GraphBior in
Reference [22]. The compression scheme published in Reference [22] tackles the issue of transmitting
the graph structure to the decoder by assembling consecutive hyperspectral components into packets
called band groups.

In this paper we evaluate and analyze the performance of our lossy-to-lossless compression
scheme on a variety of hyperspectral images. We then explore the use of our graph transforms
for hyperspectral images. Additional, we explore the effect that different parameters have on our
compression scheme. Such parameters are the size of the tiles as well as the size of band groups.
Experimental results are provided comparing the performance of the proposed techniques for several
images from the CCSDS MHDC corpus of hyperspectral images [36].

This paper is structured as follows. First, in Section 2, we present a brief overview of graph signal
processing and biorthogonal graph filterbanks. Then, the derivation of the TERM decomposition
of the GraphBior transform, the introduction of the integer spectral graph lifting transform, as well
as the adopted coding strategy are discussed in Section 3. In Section 4 we detail the setting of our
experiments and showcase our results. Our conclusions are stated in Section 5.

2. Graphs and Biorthogonal Graph Wavelets

This section provides a brief introduction on graph signal processing and GraphBior. A graph
G = (V, E) is composed by a set of nodes V that are linked to each other by a set of edges E. There is a
large variety of graphs, each with its own special properties. One relevant example is the bipartite
graph, whose nodes can be arranged in 2 subsets such that there are no edges connecting nodes of the
same subset. In other words, one needs only two colors in order to color the nodes of the graph in a
way that no two nodes of the same color are connected through an edge. Two examples of bipartite
graphs can be seen in Figure 1b,c.

The edges of a graph can be weighted, in a way that nodes can be connected strongly or weakly
by a non discrete measure. The adjacency matrix A ∈ R|V|×|V|, of a graph, is the symmetric matrix that
describes the strength of all the possible connections between all nodes of a graph. We establish matrix
A in such a way that any of its elements located in row i and column j is a real number aij ∈ [0, 1]
representing the weight of the edge between node i and j. The stronger the connection between two
nodes, the higher the value of the weight, with the value 1 describing an edge of the highest strength.
Conversely, weaker connections are represented by lower adjacency values such that a weight value
equal to 0 represents a non existing edge between nodes. Using the Adjacency matrix one can compute
the normalized Laplacian matrix that is defined as L̃ = I − D−1/2 AD−1/2, where D is the diagonal
degree matrix whose ith element is equal to the sum of the elements of A situated on its ith row.
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In graph signal processing the normalized Laplacian matrix is of vital importance since it embeds
within its structure the spectral information of the graph. Due to its symmetric nature, the eigenvectors
of L̃ create a complete orthogonal basis that can describe any vector in R|V| as a linear combination
of its basis. Additionally the eigenvalues of L̃ are known as the spectrum of the graph and portray a
notion of frequency.

We can also assign a real value to each node of the graph such that node i has a value of fi. A graph
signal f ∈ R|V| is expressed mathematically as a vector and represents the collective values of the
nodes. A graph signal of low frequency is expected to vary slowly, meaning that strongly connected
nodes will support very similar graph signal values, while a high frequency signal is expected to assign
very dissimilar values to strongly connected nodes. In other words a low frequency signal reflects the
natural connectivity characteristics of the nodes of the graph whereas a high frequency signal goes
against the connectivities imposed by the values of the graph edges.

The GraphBior transform, just as classical wavelet filterbanks, filters in the analysis step a signal
into low pass and high pass signals that are later downsampled in order to decrease the number of
graph wavelet coefficients. In order to guarantee reversibility of the transform, GraphBior exploits
a particular characteristic of the spectrum of bipartite graphs (called spectral folding) [30]. Thus an
arbitrary graph first needs to be decomposed into a series of bipartite subgraphs. These subgraphs
share the same set of nodes as the original graph but their sets of edges do not intersect. The GraphBior
filterbanks then makes use of these graphs by creating low and high pass filters.

(a) General graph (b) First bipartite component (c) Second bipartite component

Figure 1. A graph (a) is decomposed into bipartite components (b) and (c). Node colors are the result
of the graph coloring process, required for the graph bipartition.

3. Lossy-to-Lossless Graph Wavelet Filterbanks

Our work in this paper strives towards a lossy-to-lossless extension of Reference [22] for the
compression of hyperspectral images using the GraphBior filterbanks. In this following section
we go through the compression scheme that is employed, which follows the one introduced in
Reference [22]. Then we propose an integer-to-integer version of the GraphBior filters, by applying
a TERM decomposition, as well as tiling to decrease the time complexity of the TERM factorization.
Additionally, we propose a second integer-to-integer graph transform suited for the biorthogonal
graph filterbanks by modifying the spectral graph lifting structures in Reference [34].

3.1. Compression Scheme

Our compression scheme consists of 3 modules—one whose purpose is to calculate the
biorthogonal graph filterbank transform, an encoder and a decoder.

The first module is where a single hyperspectral component is used for the construction of
a biorthogonal graph filterbank transform and follows the scheme introduced in Reference [22].
The component is first mapped into a graph, then decomposed into a series of bipartite graphs which
will finally be used to create the graph transform. We design a graph G by representing the pixels of
a component as graph nodes and connect neighboring nodes with vertical, horizontal and diagonal
edges resulting in a 8-regular graph just as the one shown in Figure 1a. Edges between two connected
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nodes are strong if the luminance values of these two pixels are similar and low when they are not.

Specifically a graph edge aij is calculated through the Gaussian kernel aij = e−
( fi− f j)

2

σ where fi and
f j are the values of pixels i and j and σ is a scaling factor. Once the graph G = (V, E) has been
constructed, it is decomposed into a series of n bipartite subgraphs Bi = (Vi, Ei) with i = 1, . . . , n.
The bipartition should be done in a way where each bipartite subgraph has the same vertex set as the
original graph, whereas the edges of E are distributed among the subgraphs Bi in such a way that no
single edge of the original graph is present in more than one bipartite subgraphs. Thus, the union of all
the sets of edges from all the bipartite graphs is equal to the set of edges of the original graph. In other
words, Vi = V, ∪iEi = E and Ei ∩ Ej = ∅ for i 6= j. To decompose a graph into a series of bipartite
subgraphs, we utilize Harary’s decomposition [37]. Other decomposition techniques are found in
References [38–40]. In the case of the 8-regular graph, shown in Figure 1a, the bipartition resulting
from Harary’s algorithm is very intuitive and is not computationally intensive. By discarding all
diagonal edges from the graph in Figure 1a, we construct the first bipartite graph, shown in Figure 1b
and by discarding all horizontal and vertical edges from Figure 1a, we construct the second bipartite
graph, shown in Figure 1c. Hence, an 8-regular graph G, constructed out of a single component, is
decomposed into two bipartite graphs that are utilized for the computation of a biorthogonal graph
filterbank transform, just as shown in Figure 2.

It is necessary, for the reversibility of the transform, that the encoder and the decoder have both
access to the same graph structure. This ensures that both modules construct the analysis and synthesis
filters out of the same graph. The first module is designed in a way that circumvents the transmission
of the graph structure to the decoder without the need of side information. This is done by only using
decoded components for the calculation of the graph wavelet transforms. Specifically, components
are bundled into packets of consecutive components called band groups. Each band group should
preferably consist of the same number, ω, of components. Once the decoder has decompressed a band
group we extract the last of its components. Using that component we create the graph G and thus the
graph wavelet transform. This process can be executed in the decoder and the encoder simultaneously.
Once the graph wavelet transform has been learned, it is then applied to the next band group, in
the analysis step within the encoder as well as in the synthesis step at the decoder. A schematic
representing the computation and usage of the graph filterbank transform is depicted in Figure 3a.

The next module is the encoder, whose first operation upon receiving an image is to partition
all but the first component into band groups. The first component is then compressed in a lossless
manner by a spatial DWT and transmitted to the decoder. Thus the first component can be used to
create the biorthogonal graph filterbank transform for the first band group. Remaining components
are partitioned in band groups and encoded sequentially. The next step involves an optional RKLT
or DWT transform across the spectral direction of the band group. This step is followed by the
application of a spatial graph wavelet transform and the resulting graph wavelet coefficients are
then quantized and coded by a plain entropy encoder. Accordingly, the module of the decoder is
composed by an entropy decoder, a dequantizer, the synthesis process of the biorthogonal graph
filterbank and the optional inverse spectral transform. The encoder and decoder modules are depicted
in Figure 3b. By introducing our integer-to-integer filters for the biorthogonal graph filterbank we
obtain a lossy-to-lossless compression scheme using graph wavelets.

It is important to note that this manuscripts aims to study graph wavelet transforms when
applied spatially to hyperspectral images. For that reason, we have followed a minimalist approach to
designing our overall compression scheme. By avoiding complex quantization or entropy encoding
stages, with complex overall interactions, we focus our efforts to the proposed graph transforms and to
measure their performance with less interference. While a more complex integration of post-transform
encoder parts would be possible, due to the adaptive nature of the biorthogonal graph filterbanks, it is
expected that these transforms perform competitively, regardless of the probabilistic characteristics of
the pre-transform data. For theoretical result on transform performance, readers can see Reference [25],
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where it is proven that the GFT optimally decorrelates images following a Gauss-Markov random
field model.

Compute graph filterbank
transform out of bipartite
graphs G1 and G2 

Construct 8-regular graph G from 
component using vertical, 
horizontal and diagonal edges

Component selected for the
computation of a biorthogonal
graph filterbank transform  

Decompose graph G into 
bipartite graphs G1 and G2 by 
applying Harary’s algorithm

G1 G2

Figure 2. Construction of the bipartite graphs out of a selected component leading to the calculation of
a graph filterbank transform.

Compute graph
wavelet transform 

Create graph Decompressed band group
N-1 of size ω

Decoder

Encoder
Band group N
of size ω

Select last component

Graph wavelet computation

(a) Computation of graph wavelet filterbank transform

Band group
of size ω

Spectral transform
(optional)

Spatial transform Quantization Entropy coding

Entropy 
decoding

DequantizationInverse spatial transform
Inverse spectral transform
(optional)

Decoded band group
of size ω

Encoder

Decoder

(b) Compression scheme
Figure 3. Schematics of the compression scheme used.

3.2. TERM factorization of GraphBior

In order for the proposed graph compression scheme, based on the biorthogonal graph filterbanks,
to develop a lossless behavior we require an appropriate transform. Specifically, an integer-to-integer
spectral graph wavelet transform. One of our solutions is to apply the TERM factorization process and
the computational scheme introduced in Reference [35] on the GraphBior transform matrix.

However, one cannot decompose any arbitrary square transform matrix through TERM.
The necessary condition in order to apply such a factorization dictates that the determinant of the
transform should be strictly equal to 1. By design the GraphBior transform is reversible, which means
that the determinant of the GraphBior analysis filter Ta ∈ R|V|×|V| is equal to an arbitrary non zero
real number d.

We scale the elements of Ta by d−1/|V|, without the loss of graph spectral information, to force
its determinant to 1. Therefore we create a new matrix T′a = Ta · d−1/|V| whose determinant is equal
to 1 and can follow the decomposition and computational scheme of Reference [35]. Applying the
TERM factorization to the transform T′a and by following the computation scheme introduced in
Reference [35] we manage to create an integer-to-integer variation of the GraphBior transform. We
shall abbreviate our proposed TERM GraphBior transform as IGB (integer GraphBior).
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This factorization procedure raises the concern for certain drawbacks, specifically if we consider
the large size of the GraphBior transform matrix. These square nonsingular matrices have as
many rows (or columns) as the total number of pixels in each hyperspectral component. Due
to its cubical computational complexity, the factorization of a GraphBior transform for an entire
component, through TERM, is computationally intensive. As a first measure we use low order
polynomials to compute the GraphBior filters. For that reason we use the GraphBior(1,1) rather than
the better performing GraphBior(5,5) transform, since the former produces a sparser transform matrix.
Additionally we split each component that is used to create the transform into smaller square tiles in
an effort to accelerate the factorization process.

3.3. Tiling

In order to alleviate the time complexity from the TERM factorization, we developed a divide and
conquer method. We initially split the component that is used to derive the graph wavelet transform
into multiple small square tiles. From each tile, we compute its corresponding GraphBior transform to
which we apply the TERM factorization. For the selection of a suitable tile size, in this subsection we
study the effect on the performance of our compression scheme with respect to the tile size. Therefore we
have experimented with IGB on our compression scheme, with no spectral transforms and using 3
different tile sizes (8 by 8, 16 by 16 and 32 by 32 square tile sizes). We tested the performance of IGB
on the hyperspectral images, listed in Table 1, that contain several hyperspectral scenes available at the
CCSDS website [36]. In Table 2 we display the entropy, in bits per pixels per component (bpppc), at
which IGB becomes lossless, while using ω = 2. We observe that the entropy where the IGB transform
becomes lossless decreases as the tile size increases. This first observation encourages us to use a larger
tiles for the lossless case. The results from Figure 4 lead to the same conclusions when testing the lossy
performance of IGB. Specifically, in Figure 4 we display the performances of IGB when using tiles of
8 by 8 and 16 by 16 pixels, relative to using larger tiles of 32 by 32 pixels. Larger tile sizes are not included
in our experiments as we are limited by the high computational complexity of the TERM decomposition.
In Figure 5 we have repeated the same experiment on other hyperspectral images. Regarding the two
AVIRIS images, due to their much larger spectral size, we have not experimented with the largest tile
option as we have done with the Landsat image. The experimental conclusions also agree with our
intuitive interpretation of the graph biorthogonal filterbanks since when using larger tiles, the graph can
exploit spatial redundancies on a bigger area of each component. This is because the graph edges that
connect adjacent nodes that belong to different tiles are not utilized. Since the number of discarded edges
rises as the tiles becomes smaller so does the performance of IGB deteriorate. Therefore it is beneficial to
keep the sizes of the tiles as large as possible but small enough to allow a fast TERM factorization. Luckily
this solution can be parallelized since we could process every tile of every component of the same group
at the same time.

Table 1. The hyperspectral images with their dimensions used in our experiments.

Name Instrument Calibrated Across-Track Along-Track Spectral Dimension

Yellowstone sc. 0 cal. AVIRIS Yes 512 512 224
Yellowstone sc. 0 raw AVIRIS No 512 512 224

Lake Monona Hyperion Yes 512 256 242
Mt. St. Helens Hyperion Yes 512 256 242

Agriculture Landsat No 512 512 6
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Table 2. Rates at which integer GraphBior (IGB) achieves a lossless compression using ω = 2 for
various tile sizes and multiple images. Units are in bpppc.

Image
IGB

Tiles of 8 by 8 Tiles of 16 by 16 Tiles of 32 by 32

Yellowstone sc. 0 cal. 7.14 6.95 -
Yellowstone sc. 0 raw 9.15 9.02 -

Lake Monona 6.40 6.31 6.26
Mt. St. Helens 6.78 6.68 6.63

Agriculture 4.39 4.27 4.21

0 1 2 3 4 5

Rate [bpppc]

-1.5

-1

-0.5

0

Mt. St. Helens

8 by 8 tiles

16 by 16 tiles

32 by 32 tiles

Figure 4. Relative rate-distortion plots for IGB, using ω = 2, when varying the tile size. Results are
relative to those of the largest tile size.

3.4. Integer-to-Integer Spectral Graph Lifting

The main disadvantage of the IGB arises from the computational complexity of the TERM
factorization step. As we have seen in the previous section although the tiling strategy reduces the
time complexity for the TERM factorization, the performance of our compression scheme decreases in
relation to the size of the tiles. For that reason we introduce a second integer-to-integer graph filterbank
transform using the spectral graph lifting filters [34].

These filters are arranged into Type 1 and 2 polyphase transform matrices (PTM) which have
an upper and lower triangular structure respectively. The final transform matrix is calculated
by multiplying alternatively Type 1 PTMs with Type 2 PTMs. One can notice that both types of
PTMs are unit triangular rectangular matrices, which means that by following the TERM filtering
process we can modify the spectral graph lifting filters into integer-to-integer transforms. Due to
their particular structure, by introducing rounding operations after applying each PTM matrix
multiplication, the transform becomes integer and reversible. We experiment with the integer-to-integer
spectral graph lifting using the quad kernel (ISGLQ) and the integer-to-integer spectral graph lifting
using the dual kernel (ISGLD) designs [41].

It should be noted that the computational complexity of this transform is comparable to the one
of the GraphBior transform and can be easily computed from an entire component without the need of
tiling operations. Specifically the computational complexity of the costlier ISGLQ is comparable to
the one of GraphBior(5,5) since the former requires a computation of a 10th and 13th degree matrix
polynomial, whereas the latter one of 10th and one of 11th. This means that by implementing the
filtering process with Chebyshev polynomials [28] one can use the same order M to approximate
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similarly well the GraphBior(5,5) as well as the ISGLQ filters resulting in a computational complexity
of O(M|E|) per filter, where E is the set of edges of the graph. By performing the appropriate
modifications, our proposed ISGLQ compresses and decompresses the calibrated AVIRIS image from
Table 1 in 4.5 min, whereas the IGB required more than 1 h to successfully perform the same action on
a computer using an Intel Core i7-7700HQ CPU and 16GB of RAM.

0 1 2 3 4 5 6

Rate [bpppc]

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Yellowstone sc. 0 cal

8 by 8 tiles

16 by 16 tiles

0 1 2 3 4 5 6 7 8

Rate [bpppc]

-1

-0.8

-0.6

-0.4

-0.2

0

Yellowstone sc. 0 raw

8 by 8 tiles

16 by 16 tiles

0 1 2 3 4 5

Rate [bpppc]

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2
Lake Monona

8 by 8 tiles

16 by 16 tiles

32 by 32 tiles

0 0.5 1 1.5 2 2.5 3 3.5

Rate [bpppc]

-3

-2.5

-2

-1.5

-1

-0.5

0

Agriculture

8 by 8 tiles

16 by 16 tiles

32 by 32 tiles

Figure 5. Relative rate-distortion plots for IGB, using ω = 2, when varying the tile size, for multiple
images. Results are relative to those of the largest tile.

4. Experimental Results

In this section we describe the setting of our experiments and analyze our results. We provide
several comparisons testing the performance of our compression scheme using our proposed
transforms, in both progressive lossy-to-lossless and lossless settings. We should note that regarding
the rate computations, we compute the average of the entropies of each compressed component
instead of using any particular entropy encoder to discard any bias introduced by an entropy encoder
fine-tuned for a specific transform. All experiments have been performed using a prototype encoder
implementation in Matlab R2017b. Initially we experiment solely on spatial transforms. We compare
our proposed transforms against the GraphBior transform, with and without dividing the components
into tiles as well as the reversible 5/3 integer wavelet transform (DWT). All GraphBior transforms
are using the maximally flat GraphBior(1,1) filters. The spectral graph lifting designs are using
the maximum flatness dual (with the B7,3 Parametric-Bernstein-Polynomial for ISGLD) and quad
(with the B3,1 Parametric-Bernstein-Polynomial for ISGLQ) kernel designs without normalization
parameters [41]. We provide further comparisons between the spatial transforms by including spectral
transforms such as the Reversible Karhunen Loeve Transform (RKLT) [42] and the DWT.
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We have repeated our experiments on crops of the Aviris Yellowstone scene 00, the Hyperion
images Lake Monona and Mt. St. Helens and the Landsat Agriculture image. The dimensions of the
cropped images that have been used are displayed in Table 1. More precisely, we have discarded the
last rows and columns of each component for both Aviris as well as the Landsat scenes. Regarding the
Hyperion images we have discarded the last columns and the first 1350 and 760 rows for Lake Monona
and Mt. St. Helens respectively.

Next we explore the version of the compression scheme where we include a spectral transform
on each band group before applying the spatial transform. The graph transforms are always
computed from the luminance values of components and not the spectrally transformed results.
We experiment with the Reversible Karhunen Loeve Transform (RKLT) [42] and DWT as spectral
transforms. The spatial transforms compared in this experiment are the proposed IGB, the tiled
GraphBior, the DWT, the ISGLQ and ISGLD. In this final experiment, we also include a comparison of
our overall compression scheme with the CCSDS-123.0-B-2 standard, tuned according to Reference [19].

4.1. Parameter Variations

We first study the effect that different values of ω have on IGB, without taking into account
spectral transforms. To search for the most beneficial choices of ω to IGB we use tiles of large size.

In Figure 6 the relative rate-distortion plot displays the decrease of performance when larger
values of ω are compared against the smallest ω = 2. One can clearly conclude that it is beneficial
to choose smaller values of the parameter ω when no spectral transform is used. We repeat the
experiment with several other hyperspectral images and display the results in Figure 7. Specifically,
it is for ω = 2 that tends to lead to optimal results in all cases. This result agrees with our expectations
since components closer in the spectral dimension tend to have high correlation. Thus, the component
that has been used to create the IGB transform will capture sometimes more accurately the spatial
redundancies of its neighboring component rather than of one located further away in the spectral
dimension. Though this can lead to detrimental results for low ω values, when high quantization
occurs. As we can see from Figures 6 and 7c,d at low rates, larger parameters ω outperform lower ones.

0 1 2 3 4 5

Rate [bpppc]

-0.4

-0.3

-0.2

-0.1

0

0.1

Mt. St. Helens

Figure 6. Relative rate-distortion plot for IGB using tiles of 16 by 16 when varying ω. The reference
curve coincides with tuning the parameter ω = 2.

This could be explained by high quantization, when the surviving features preserved in a
decompressed component are general enough to construct a graph that represents sufficiently well a
larger number of components. Furthermore, the smaller the parameter ω, the higher the probability
of outlier components (ones that do not share high correlation with neighboring components such
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as dead bands) to be used for the graph creation, which may result in poor reconstruction results of
components of an entire band group.

From Table 3 we also observe that the entropy where the compression scheme using the IGB
transform becomes lossless, increases with ω. This explains why at high rates, higher ω values
can be seen to sometimes perform better. This is also noticeable in classical reversible integer
wavelet transforms. Their rate distortion curves tend to plateau close to the bitrate at which they
achieve a reversible compression. As a result, sometimes, they are surpassed by the distortion curves
corresponding to methods that become reversible at higher bitrates (since they still continue to grow
with a higher gradient).

Table 3. Rates at which IGB achieves a lossless compression for different values of ω. The tiles size
is set to 16 by 16. The spectral size of the hyperspectral image should be a multiple of ω, resulting in
empty cells. Units are in bpppc.

Image
IGB

ω = 2 ω = 3 ω = 8 ω = 11 ω = 14 ω = 16 ω = 22

Yellowstone sc. 0 cal. 6.95 7.00 7.06 7.14
Yellowstone sc. 0 raw 9.02 9.06 9.14 9.15

Lake Monona 6.31 6.36 6.37
Mt. St. Helens 6.68 6.75 6.75

Agriculture 4.27 4.39

0 1 2 3 4 5 6

Rate [bpppc]

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

(a) Yellowstone sc. 0 cal

0 1 2 3 4 5 6 7 8

Rate [bpppc]

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

(b) Yellowstone sc. 0 raw

0 1 2 3 4 5

Rate [bpppc]

-0.35

-0.3

-0.25

-0.2
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-0.1

-0.05

0

0.05

(c) Lake Monona

0 0.5 1 1.5 2 2.5 3 3.5
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-1
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-0.6
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0
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0.4

0.6

0.8

(d) Agriculture

Figure 7. Relative rate-distortion plots for IGB using tiles of 16 by 16 when varying the parameter ω

for multiple images. Results are relative to those of smallest value of ω.
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4.2. Spatial Transformations

Adopting our previous findings regarding the parameter ω as well as the size of the tiles,
we compare our proposed reversible transforms against the DWT and the GraphBior with and without
using tiles. All transforms are applied spatially whereas spectral transforms are not included in the
subsequent experiments. It should be noted that all spatial transforms are tested using the compression
scheme introduced in Section 3.

For this experiment, the rate-distortion plot, as well as the relative rate-distortion plot using the
DWT transform as reference can be observed in Figure 8a,b respectively. From the rate-distortion plots
of Figure 8 we observe that the ISGLQ performs the best for low and medium rates, whereas GraphBior
provides the best results for high rates. It is important to mention, though, that in most cases IGB
slightly outperforms the DWT as well as the ISGLD at low rates. Moreover, although in general, tiled
GraphBior outperforms IGB, at low rates, both perform similarly. This same behavior is also observed
between classical discrete wavelet transforms and their reversible counterparts. Given the previous
observation and since the results of IGB improve as the tile size increases, one could speculate that a
IGB that does not use any tiles would perform similarly to GraphBior for low rates. This experiment
has been repeated on different hyperspectral scenes and the results can be observed in Figure 9.

In Table 4 we can see the rates at which the IGB, DWT, ISGLQ and ISGLD achieve a lossless
compression. We also observe that in most cases the entropy where IGB achieves a lossless compression
is the lowest.

0 1 2 3 4 5 6

Rate [bpppc]

0

1

2

3

4

5

6

Yellowstone sc. 0 cal

(a) Relative rate-distortion plot with
respect to DWT.

0 1 2 3 4 5 6

Rate [bpppc]

20
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S
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R
 [
d
B

]

Yellowstone sc. 0 cal

(b) Rate-distortion plot.

IGB

GraphBior

Tiled GraphBior

DWT

ISGL
D

ISGL
Q

Figure 8. Comparison of spatial transforms. Tiles of 16 by 16 and ω = 2 were used.

Table 4. Rates at which each integer transform achieves a lossless compression. No spectral transform
is used. The parameter ω is set to 2. The IGB transform uses tiles of 16 by 16 for the Yellowstone images
and 32 by 32 for Lake Monona, Mt. St. Helens and Agriculture. Units are in bpppc.

Image
Transform

IGB DWT ISGLD ISGLQ

Yellowstone sc. 0 cal. 6.95 7.29 7.44 7.11
Yellowstone sc. 0 raw 9.02 9.32 9.47 9.19

Lake Monona 6.26 6.23 6.50 6.28
Mt. St. Helens 6.63 6.57 6.93 6.67

Agriculture 4.21 4.37 4.67 4.37
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Figure 9. Relative rate-distortion plots comparing spatial transforms using ω = 2 for multiple images.
Results are relative to DWT. The tiles sizes are 16 by 16 for the Yellowstone sc. 0 raw image and 32 by
32 for the rest.

4.3. Spectral and Spatial Transformations

Our comparisons on strictly spatial transforms are ensued by experiments that include the
DWT and the RKLT as spectral transforms, in the compression scheme mentioned in Section 3.
Succeeding the spectral transform, we then compare our proposed reversible transforms against the
DWT and the tiled GraphBior applied in the spatial dimension of the hyperspectral images. Our overall
compression scheme including classical spectral and graph spatial transforms is also compared against
the CCSDS-123.0-B-2 standard.

In Figure 10a,b we present the rate-distortion plot as well as the relative rate-distortion plot.
The results are relative to applying a spectral RKLT along the entire hyperspectral image, followed by
a spatial DWT.

Regarding the comparison between the transforms used in our compression scheme, we observe
that a spectral RKLT followed by the proposed ISGLQ or ISGLD transforms perform the best.
Several additional comparisons are done on multiple hyperspectral images and from our results
in Figure 11 we observe that the spectral RKLT and the spatial ISGLQ systematically outperforms the
spectral RKLT and spatial DWT, mostly at medium to high rates. The spectral RKLT and spatial ISGLD,
also, usually surpasses the reference method but provides less important results when compared to
using the spatial ISGLQ instead. On the other hand the spectral RKLT and the spatial IGB is almost
always providing worse results when compared to the spectral RKLT and the spatial DWT.

Our conclusions from the comparison of the spatial transforms done in Section 4.2 are also evident
in our current experiment. Regardless of the spectral transform, the spatial IGB coincides with the
spatial tiled GraphBior for low entropy values. When we apply DWT as a spectral transform, out of
the spatial transforms, the ISGLQ performs the best followed mostly by the DWT and the ISGLD.
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From Table 5, we observe that mostly the spectral RKLT and the spatial DWT achieve a lossless
compression at lower rates. Only in the case of the Hyperion images (Lake Monona and Mt. St. Helens)
the spectral RKLT followed by the spatial ISGLQ performs better.

When comparing the compression efficiency of the latest CCSDS-123.0-B-2 standard against our
overall proposed compression scheme, we observe the usual pattern where transform-based methods
tend to perform better at lower rates while the CCSDS standard yields better results at mid to high
rates. In Figures 10 and 11, a spectral RKLT followed by a spatial DWT often outperforms CCSDS
for low rates. Furthermore, CCSDS results are also improved by the proposed compression scheme
using a spectral RKLT and a spatial ISGLQ for low-rate results in Figure 11a,b. In the mid to high rate
regions, the CCSDS standard clearly outperforms all transform-based methods. In addition, for pure
lossless compression, the CCSDS standard consistently achieves best results (Table 5). It should be
noted though that the CCSDS standard is a highly refined method, whereas the proposed compression
scheme here presented is mainly designed to compare the graph transforms. Thus, it lacks many of the
techniques that the CCSDS standard incorporates, such as quantization enhancements, noise tolerance
or entropy encoding with adaptive statistics.

0 1 2 3 4 5

Rate [bpppc]

-4

-2

0

2

4

6

8
Lake Monona

(a) Relative rate-distortion plot with respect to
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0 1 2 3 4 5 6

Rate [bpppc]

30

35

40

45

50

55

60

65

S
N

R
 [

d
B

]

Lake Monona

(b) Rate-distortion plot
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DWT + ISGL
D

RKLT + ISGL
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Q

RKLT + ISGL
Q

CCSDS

Figure 10. Comparison of spectral + spatial transforms. Tiles of 16 by 16 and ω = 11 was used.
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Table 5. Rates at which each of the integer transforms achieves a lossless compression. RKLT and
DWT are used as spectral transforms. For the methods that use tiles, their size has been set to 16 by 16.
The Yellowstone images are evaluated at ω = 8, the Lake Monona and Mt. St. Helens are evaluated at
ω = 11 and the Agriculture image is evaluated at ω = 3. For each column, the spectral transform is
mentioned first followed by the spatial transform (spectral transform + spatial transform). Units are
in bpppc.

Image
Transforms

CCSDS
DWT + IGB RKLT + IGB DWT + DWT DWT + ISGLD DWT + ISGLQ RKLT + DWT RKLT + ISGLD RKLT + ISGLQ

Yellowstone sc. 0 cal. 5.03 4.41 4.73 5.36 5.05 3.74 4.65 4.36 4.04
Yellowstone sc. 0 raw 7.17 6.47 6.97 7.54 7.25 5.93 6.72 6.44 6.19

Lake Monona 6.69 6.19 6.56 6.89 6.66 6.35 6.34 6.13 6.10
Mt. St. Helens 7.06 6.52 6.90 7.32 7.05 6.58 6.71 6.47 6.37

Agriculture 4.21 3.96 3.96 4.63 4.34 3.68 4.37 4.08 3.62
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(c) Mt. St. Helens
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Q
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Figure 11. Relative rate-distortion plots comparing spectral + spatial transforms for multiple images.
Results are relative to the spectral RKLT followed by the spatial DWT. Tiles of 16 by 16 were used.
The parameter ω is set to 8 for Yellowstone sc. 0 cal., to 11 for Mt. St. Helens and to 3 for Agriculture.

5. Conclusions

In this paper we study the suitability of graph transforms for lossy-to-lossless hyperspectral
compression. The adopted compression scheme organizes the components into packets, called band
groups and transforms each one of them through graph wavelet filterbanks. We introduce two spatial,
integer-to-integer, biorthogonal graph filterbank transforms. The first transform is calculated by
applying a TERM factorization on the GraphBior filterbank, whereas the second one is designed
by modifying the spectral graph lifting transform [34]. The high computational complexity of the
TERM decomposition is addressed and is solved through processing the GraphBior transform in tiles.
Our theoretical interpretations as well as our experimental results show that it is advantageous to use
larger tiles and give us valuable insight about the choice of sizes of band groups. Our experiments
without spectral transformations suggest that it is preferable to use small band groups, while our
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integer-to-integer transforms outperform the DWT in the lossy regime. Further-more we show that
one of our integer transforms performs similarly to the DWT for the case of lossless compression.
Additional experimental results including spectral transforms on each bandgroup show that our
proposition improves on the results obtained by using the spectral RKLT along all the spectral
dimension of the hyperspectral image followed by the spatial DWT in the lossy setting, as well
as, in some cases, at the lossless one.
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