
remote sensing  

Article

Gaussian Process Graph-Based Discriminant
Analysis for Hyperspectral Images Classification

Xin Song 1, Xinwei Jiang 1 , Junbin Gao 2 and Zhihua Cai 1,*
1 School of Computer Science, China University of Geosciences, Wuhan 430074, China; echoxin@cug.edu.cn

(X.S.); ysjxw@hotmail.com (X.J.)
2 Discipline of Business Analytics, The University of Sydney Business School, The University of Sydney,

Sydney 2006, Australia; junbin.gao@sydney.edu.au
* Correspondence: zhcai@cug.edu.cn; Tel.: +86-189-8612-6879

Received: 21 August 2019; Accepted: 26 September 2019; Published: 30 September 2019
����������
�������

Abstract: Dimensionality Reduction (DR) models are highly useful for tackling Hyperspectral Images
(HSIs) classification tasks. They mainly address two issues: the curse of dimensionality with respect
to spectral features, and the limited number of labeled training samples. Among these DR techniques,
the Graph-Embedding Discriminant Analysis (GEDA) framework has demonstrated its effectiveness
for HSIs feature extraction. However, most of the existing GEDA-based DR methods largely rely on
manually tuning the parameters so as to obtain the optimal model, which proves to be troublesome
and inefficient. Motivated by the nonparametric Gaussian Process (GP) model, we propose a novel
supervised DR algorithm, namely Gaussian Process Graph-based Discriminate Analysis (GPGDA).
Our algorithm takes full advantage of the covariance matrix in GP to constructing the graph similarity
matrix in GEDA framework. In this way, more superior performance can be provided with the model
parameters tuned automatically. Experiments on three real HSIs datasets demonstrate that the
proposed GPGDA outperforms some classic and state-of-the-art DR methods.

Keywords: hyperspectral image; dimensionality reduction; discriminant analysis; graph embedding;
gaussian process

1. Introduction

Hyperspectral images (HSIs) contain considerable different reflections of electromagnetic waves
from visible light to near-infrared or even far-infrared [1,2]. This characteristic allows various ground
objects to be discriminated based on HSIs with abundant information. Because of it, HSIs are widely used
in astronomy [3], agriculture [4], biomedical imaging [5], geosciences [6] and military surveillance [7].
However, the abundant features in HSIs could lead to significant redundancy. When using traditional
classification algorithms to distinguish the class/object of each pixels in HSIs, the curse of dimensionality
or the so-called “Hughes Phenomenon” would occur [8]. Chang et al. found that up to 94% of
the spectral bands can be brushed aside without affecting the classification accuracy [9]. Therefore,
Dimensionality Reduction (DR), a pre-processing procedure which tries to discover low-dimensional
latent features from high-dimensional HSIs, plays a vital role in HSIs data analysis and classification.

In general, DR methods can be divided into two categories: feature selection and feature extraction.
The former attempts to select a small subset of bands from the original bands based on some
criteria, while the latter tries to find a low-dimensional subspace embedded in high-dimensional
observations [10]. As reviewed in [11], discovering optimal bands from large numbers of possible
feature combinations by feature selection methods could be suboptimal, so we only focus on feature
extraction based DR methods for HSIs instead of feature selection in this paper.
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A variety of feature extraction based DR models have been introduced for HSIs data analysis over
the past decades. They can be roughly divided into two categories: unsupervised and supervised DR
techniques. Unsupervised DR methods try to find low-dimensional representations that could preserve
the intrinsic structure of the high-dimensional observations without using labels, while supervised
methods make use of the available labels to find low-dimensional and discriminant features. The most
representative unsupervised DR algorithm could be Principal Component Analysis (PCA), which
tries to use the linear model to project the observed data into low-dimensional space with maximal
variances [12,13]. Based on PCA, various extensions have been proposed, such as Probabilistic PCA
(PPCA), Robust PCA (RPCA), Sparse PCA, Tensor PCA, etc. [11,14–18]. However, the aforementioned
algorithms belong to the linear DR methods. When dealing with nonlinear structures embedded into
the high-dimensional HSIs data, PCA and its linear extensions could be unable to provide satisfactory
performance. Therefore, many nonlinear DR methods have been introduced, among which manifold
learning based DR models have been widely employed in HSIs data analysis [19–21].

Representative manifold learning based DR algorithms include Isometric Mapping (ISOMAP) [20],
Locally Linear embedding (LLE) [19], Laplacian Eigenmaps (LE) [22], Local Tangent Space Alignment
(LTSA) [23], etc. The idea behind these algorithms is to assume that the data lie along a low-dimensional
manifold embedded in a high-dimensional Euclidean space, and to uncover this manifold structure [24]
with different criteria. For example, ISOMAP, an extension of Multi-dimensional Scaling (MDS) [25],
seeks a low-dimensional embedding that preserves geodesic distances of all the pairs of points. In LLE,
each sample is reconstructed by a linear combination of its neighbors and then the corresponding
low-dimensional representations that could preserve the linear reconstruction relationship in original
space are solved. LE utilizes a similarity graph to represent the neighbor relationships of pairwise
points in low-dimensional space. The local geometry via the tangent space is modeled in LTSA to
learn the low-dimensional embedding. However, most of the manifold learning models encounter the
so-called out-of-sample problem [26], which means it could be ineffective to find the low-dimensional
representation corresponding to a new testing sample. An effective solution to this problem is to add a
linear mapping that projects observed samples to low-dimensional subspace. For instance, Locality
Preserving Projections (LPP) [27], Neighborhood Preserving Embedding (NPE) [28] and Linear Local
Tangent Space Alignment (LLTSA) [29] are the linear extensions of LE, LLE and LTSA, respectively.
In [30], a Graph Embedding (GE) framework has been proposed to unify these manifold learning
methods on the basis of geometry theory. Recently, the representation-based algorithms have also
been introduced to the GE framework to construct various similarity graphs [31]. For example, Sparse
Representation (SR), Collaborative Representation (CR) and Low Rank Representation (LRR) [32] are
utilized to constitute the sparse graph (`1 graph), collaborative graph (`2 graph) and low-rank graph,
leading to Sparsity Preserving Projection (SPP) [33], Collaborative Representation based Projection
(CRP) [34] and Low Rank Preserving Projections (LRPP) [35], respectively.

Nevertheless, the aforementioned algorithms are all unsupervised DR models, which means
that extra labels available in HSIs data are not utilized. To take advantage of these label information,
the unsupervised DR models can be extended to the supervised versions, which could improve the
discriminative power of DR models [24]. In this line, Linear Discriminant Analysis (LDA), as the
most well-known supervised DR model, attempts to improve the class-separability by maximizing
the distance between heterogeneous samples and minimizing the distance between homogeneous
samples [36]. However, LDA can only extract up to c− 1 features with c being the number of label
classes. Thus, Nonparametric Weighted Feature Extraction (NWFE) was proposed to tackle this
problem by using the weighted mean to calculate the nonparametric scatter matrices which could obtain
more than c−dimension features [37]. Other related works including Regularized LDA (RLDA) [38],
Modified Fisher’s LDA (MFLDA) [39] and Supervised PPCA (SPPCA) [11,40] have been introduced
for supervised HSIs feature extraction.

Apparently, the above supervised linear DR models may fail to discover the nonlinear geometric
structure in HSIs data, resulting in unsatisfactory performance of DR models. Therefore, many
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supervised nonlinear DR methods have been introduced to find the complex geometric structure
embedded in high-dimensional data. For example, Local Fisher Discriminant Analysis (LFDA)
effectively combine the advantages of Fisher Discriminant Analysis (FDA) [41] and LPP by maximizing
the between-class separability and minimizing the within-class distance simultaneously [42,43]. Local
Discriminant Embedding (LDE) extends the concept of LDA to perform local discrimination [44,45].
Low-rank Discriminant Embedding (LRDE) learns the latent embedding space by maximizing the
empirical likelihood and preserving the geometric structure [46]. Other related techniques include
Discriminative Gaussian Process Latent Variable Model (DGPLVM) [47], Locally Weighted Discriminant
Analysis (LWDA) [48], Multi-Feature Manifold Discriminant Analysis (MFMDA) [49], etc. Similarly, the
representation based algorithms have also been introduced to supervised DR framework, such as Sparse
Graph-based Discriminate Analysis (SGDA) [50], Weighted Sparse Graph-based Discriminate Analysis
(WSGDA) [51], Collaborative Graph-based Discriminate Analysis (CGDA) [52], Laplacian regularized
CGDA (LapCGDA) [53], Discriminant Analysis with Graph Learning (DAGL) [54], Graph-based
Discriminant Analysis with Spectral Similarity (GDA-SS) [55], Local Geometric Structure Fisher Analysis
(LGSFA) [56], Sparse and Low-Rank Graph-based Discriminant Analysis (SLGDA) [57], Kernel CGDA
(KCGDA) [53], Laplacian Regularized Spatial-aware CGDA (LapSaCGDA) [58], etc. A good survey of
these discriminant analysis models can be found in [31].

Although the graph embedding based DR methods are effective for extracting discriminative
spectral features of HSIs data, these models are significantly affected by two factors: similarity
graphs and model parameters. The similarity graph is the key for all the graph embedding models,
while the performance of the models largely relies on the manual settings of model parameters,
which is time-consuming and inefficient. Motivated by the nonparametric Gaussian Process (GP)
model [59], we constitute the similarity graphs with GP in this paper. A Gaussian process is a type of
continuous stochastic process, which defines a probability distribution over functions. With various
covariance/kernel functions, GP can nonparametrically model complex and nonlinear mappings.
Furthermore, all parameters of covariance functions typically termed hyperparameters can be learned
automatically in GP. Inspired by the benefits of GP, we try to learn the similarity matrix in the
graph embedding framework with GP. Specifically, the learned covariance matrix in GP is considered
as the similarity graphs, giving rise to the Gaussian Process Graph based Discriminate Analysis
(GPGDA), which could learn more efficient similarity graphs and avoid manually tuning parameters
compared to existing algorithms. Experimental results on three HSIs datasets demonstrate that the
proposed GPGDA can effectively improve the classification accuracy without time-consuming model
parameters tuning.

The rest of the paper is organized as follows. In Section 2, we briefly review the related
works, including the Gaussian Process (GP), Graph-Embedding Discriminate Analysis framework.
The proposed Gaussian Process Graph-based Discriminate Analysis (GPGDA) is introduced in
Section 3. Then, three HSIs datasets are used to evaluate the effectiveness of the proposed GPGDA in
Section 4. Finally, a brief summary is given in Section 5.

2. Related Works

In this section, we briefly review the Gaussian Process and Graph-Embedding Discriminate
Analysis framework. For the sake of consistency, we make use of the following notations throughout
this paper: X = [x1, ..., xN ]

T ∈ RN×D are the original high-dimensional data with each sample
xn ∈ RD; Y = [y1, ..., yN ]

T ∈ RN×1 are the outputs where each sample yn ∈ R (real values for
regression tasks and discrete labels in {1, 2, ..., C} for classification tasks); Z = [z1, ..., zN ] ∈ Rd×N are
the projected low-dimensional data with dimension d� D and each zn corresponding to xn and yn.
For the sake of convenience, we further denote X as an D× N matrix, Y an N × 1 vector and Z an
d× N matrix.
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2.1. Gaussian Process

Gaussian Process is typically used in Gaussian Process Regression (GPR), where we assume
that each output sample yn is generated from the unknown function f with independent and
identically-distributed noise variables ε with distributionsN (0, σ2) , which is y = f (x)+ ε. A Gaussian
Process prior is placed over the latent function f , i.e., f ∼ N ( f |0, KXX), with the covariance matrix
defined by the positive-semidefinite kernel function KXX = k(X, X|θ). θ are the parameters of
kernel function and typically termed as hyperparameters. The choice of kernel function and its
hyperparameters settings determine the behavior of GP, which are fairly significant. With Bayesian
theorem, the latent function f can be marginalized analytically P(Y|X, θ) = N (Y|0, KXX + σ2 I).
Generally, the parameter σ2 of Gaussian noise can be easily merged into the covariance function with
KY = KXX + σ2 I. Thus, the hyperparameters of kernel function can be optimized by maximizing the
log marginal likelihood

log P(Y|X, θ) = −1
2

YTK−1
Y Y− 1

2
log |KY| −

n
2

log 2π. (1)

Considering a testing data point {(x∗, y∗)} , the prediction distribution for a new test point x∗

can be calculated as follows

f ∗|x∗, X, Y ∼N (Kx∗X(KXX + σ2I)−1Y, Kx∗x∗ − Kx∗X(KXX + σ2I)−1KXx∗) (2)

where Ks are the matrices of the covariance/kernel function values at the corresponding points X
and/or x∗.

For the classification task with discrete outputs, active functions such as the sigmoid function
τ(x) = 1/(1 + exp(−x)) as the likelihood model in p(yn = 1|xn) = τ( f (xn)) are typically introduced
in Gaussian Process Classification (GPC) for binary classification. When making prediction, the
predictive distributions over the f ∗ = f (x∗) and y∗ for a new test point x∗ are

p( f ∗|x∗, X, Y) =
∫

p( f ∗|x∗, X, f )p( f |X, Y)d f

p(y∗ = 1|x∗, X, Y) =
∫

p(y∗| f ∗)p( f ∗|x∗, X, Y)d f ∗. (3)

It is worth noting that the two integrals become analytically intractable due to the non-Gaussianity
of the logistic function τ( f (xn)), making it impossible to get the exact posterior in GPC. In such case,
approximation techniques such as Laplace Approximation (LA), Expectation Propagation (EP), etc. are
adopted to acquire the approximated GP posterior and conduct model optimization.

2.2. Graph-Embedding Discriminant Analysis

Many DR approaches have been proposed recently for HSIs feature extraction and classification,
among which the Graph-Embedding Discriminant Analysis methods have shown promising
performance [31]. Typically, Graph-Embedding Discriminant Analysis (GEDA) models try to find the
projection matrix P in the mapping function zn = PTxn by preserving the similarities of samples in the
original observation space. The objective function of GEDA can be denoted by

P̃ = argmin
P

∑
i 6=j
‖zi − zj‖Wij = argmin

P
∑
i 6=j
‖PTxi − PTxj‖Wij (4)

= argmin
P

trace(PTXLXT P), s.t. PTXLpXT P = I,

where the similarity matrix W is an undirected intrinsic graph with each element Wij describing the
similarity between samples xi and xj, L = T−W is the Laplacian matrix of graph W, T is the diagonal
matrix with Tii = ∑N

j=1 Wij and Lp is the constraint matrix defined to find a non-trivial solution of the
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objective function. Typically, Lp is the diagonal matrix T for scale normalization and may also be the
Laplacian matrix of penalty graph Wp. The intrinsic graph W characterizes intraclass compactness
while the penalty graph Wp describes interclass separability. By simply re-formulating the objective
function, we can obtain

P̃ = argmin
P

|PTXLXT P|
|PTXLpXT P| . (5)

When Lp is the Laplacian matrix of penalty graph Wp, Equation (5) is named as Marginal Fisher
Analysis (MFA) [60]. The solution of Equation (5) can be easily obtained by solving the generalized
eigenvalue decomposition problem

XLXT P = λXLpXT P, (6)

where P ∈ RD×d is constructed by the eigenvectors corresponding to the d smallest eigenvalues. As we
can see from the above formulations, the most significant step of GEDA is to build an intrinsic graph.

A popular approach that estimate the similarity between samples xi and xj is the heat kernel,
which is utilized in unsupervised LPP

Wij = e−
‖xi−xj‖

2

r , (7)

where r > 0 denotes the local scaling of data samples. Different from unsupervised LPP that estimates
the similarities of all the vertices, supervised discriminant analysis methods build the affinity matrix
with label information, which will further improve the discriminative power. Thus, the similarity
matrix W typically becomes a block-diagonal matrix

W1

W2

. . .
WC

 , (8)

where {W l}C
l=1 is the affinity matrix of size nl × nl only from the lth class.

Recently, representation based algorithms have been introduced to construct the within-class
similarity matrix. For example, the sparse representation coefficients (`1 norm) is used to construct
the similarity matrix W l = [wl

1; wl
2; . . . ; wl

nl
] ∈ Rnl×nl in SGDA [50] (nl is the number of training data

from the lth class). To reduce the computational complexity of SGDA, the collaborative representation
(`2 norm) instead of sparse representation is used in CGDA [52]. Similarly, SLGDA [57], LapCGDA [53]
and LapSaCGDA [58] were developed recently with different objective functions to construct the
similarity matrices as follows,

SGDA : argminwl
n
‖xl

n − Xl
nwl

n‖2
2 + α‖wl

n‖1,
CGDA : argminwl

n
‖xl

n − Xl
nwl

n‖2
2 + α‖wl

n‖2,
SLGDA : argminW l ‖Xl − XlW l‖2

2 + α‖W l‖∗ + β‖W l‖1,

LapCGDA : argminwl
n
‖xl

n − Xl
nwl

n‖2
2 + α‖wl

n‖2 + βwl
n

T Hnwl
n,

LapSaCGDA : argminwl
n
‖xl

n − Xl
nwl

n‖2
2 + α‖Γwl

n‖2
2 + β‖diag(sn)wl

n‖2
2 + γwl

n
T Hnwl

n,

(9)

where xl
n is a training sample from lth class, Xl denotes all training samples from lth class, Xl

n is Xl

excluding xn, ‖ · ‖∗ in SLGDA indicates the nuclear norm, Hn in LapCGDA and LapSaCGDA is the
Laplacian matrix constructed by Equation (7), and Γ and s are similarly defined by Γii = ‖xl

n − xl
i‖2 and

sn = [dist((pn, qn), (pi, qi))]
t with the pixel coordinate (pi, qi) for samples in lth class (i = 1, 2, · · · , nl),

respectively.
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3. The Proposed Method

To effectively learn the similarity graphs without time-consuming parameters tuning in the
Graph-Embedding Discriminant Analysis (GEDA) framework, the Gaussian Process Graph based
Discriminant Analysis (GPGDA) method is proposed to address it. The GPGDA method makes use of
the nonparametric and nonlinear GP model to learn the similarity/affinity matrix adaptively.

The flowchart of the proposed GPGDA method is shown in Figure 1. Firstly, the HSIs data will
be divided into training and testing dataset randomly. Then, we try to construct the block-diagonal
similarity matrix. Inspired by CGDA, we make use of GPR to model training samples from each class.
To be specific, when we handle the training data from lth class, their labels are manually set to be 1
while the rest of the training data are labeled to be 0 conversely, which implicitly enforces interclass
separability when learning the similarity graphs of each class. Thus, the learned similarity matrix
should be more efficient than those from CGDA, KCGDA and other related algorithms. Subsequently,
the similarity matrices of all classes are reassembled into the block-diagonal matrix, resulting a
complete similarity matrix in the GEDA framework. Finally, the projection matrix can be acquired
by solving the generalized eigenvalue decomposition problem and the dimension-reduced testing
data can be obtained accordingly. To further measure the proposed method, the dimension-reduced
training and testing data will be fed to different classifiers to get the prediction results.

Figure 1. Flowchart of the proposed GPGDA method for HSIs feature extraction and classification.

From Section 2.1, we can learn that the convariance/kernel function is vital to GP since the
corresponding kernel matrix measures the similarities between all pairs of samples. In view of this,
kernel matrix in GP can be used to represent the similarity graph in GEDA framework. Because we
want the intrinsic graph reflecting class-label information, it will be eventually expressed in the form
of block-diagonal structure as in Equation (8). Here, we straightforwardly make use of GPR rather
than GPC to model the high-dimensional training data with discrete labels, because time-consuming
approximation methods in GPC could increase the model complexity. In addition, GPR is enough to
model the class-specific training data.

Given a dataset D = {(xi, yi)}N
i=1, in which xi is a high-dimensional HSI sample and yi is the

corresponding label. First, to efficiently learn the similar matrix, we set the label of training samples
from lth class to be 1 while the rest are 0. The new binary labels can be denoted by T = {ti}N

i=1(ti ⊂
{0, 1}). Then, let us model the mapping from xi to ti with nonlinear GPR,

P(T|X, θ) = N (T|0, KT) (10)



Remote Sens. 2019, 11, 2288 7 of 21

The optimal hyperparameters θ of specific kernel function can be automatically estimated by
optimizing the GPR objective function in Equation (1) with gradients based optimization algorithms.
With the optimal hyperparameters, we could obtain the corresponding kernel matrix as follows,

KT = K(Xl , X′|θ), (11)

where Xl = {xl
n}

nl
n=1 are the training samples from lth class with the number of the class-specific data

nl , and x′ denotes training data from other categories.
At this moment, we only care about training samples from lth class, which have been labeled to

be 1, so we choose the nl × nl block from the kernel matrix, which corresponds to the samples from lth
class in order to form the similarity matrix W l . Once we have repeatedly obtained all the class-specific
similarity matrix W l(l = 1, . . . , C) by GPR, the block-diagonal matrix W in Equation (8) can be simply
constructed

W = diag(W1, W2, ..., WC) with W l =


k(xl

1, xl
1) · · · k(xl

1, xl
nl
)

...
. . .

...
k(xl

nl
, xl

1) · · · k(xl
nl

, xl
nl
)

 (12)

Finally, based on the GEDA framework, it is easy to solve the optimal projection matrix P by
solving the eigenvalue decomposition in Equation (6).

The complete GPGDA algorithm is outlined in Algorithm 1. To boost the performance of the
models, we preprocess the HSIs data by a simple average filtering initially.

Algorithm 1 GPGDA for HSIs dimensionality reduction and classification.

Input: High-dimensional training samples X ∈ RD×N , training ground truth y ∈ RN , pre-fixed latent

dimensionality d, and testing pixels X∗ ∈ RD×M, testing ground truth y∗ ∈ RM.
Output: s = {Acc, P}.

1: Preprocess all the training and testing data by average filtering;
2: Estimate the hyperparameters’ set θ of kernel function by Equation (1);
3: Evaluate the similarity matrix W by Equation (11) and Equation (12);
4: Evaluate the optimal projection matrix P by solving the eigenvalue decomposition in Equation (6);
5: Evaluate low-dimensional features for all the training and testing data by zn = PTxn;
6: Perform KNN/SVM in low-dimensional feature space and return classification accuracy Acc;
7: return s

As for the model complexity, since only small-scale training data are considered, we do not make
use of the approximation methods such as Fully Independent Training Conditional (FITC) model [59]
for GPR. Therefore, the time complexity of the proposed GPGDA is O(Cnl

3) where C is the number
of the discrete classes and nl is the maximum number of samples in each class. By comparison,
other discriminant analysis based methods such as CGDA and LapCGDA are with O(Cnl

3) as well
because there are matrix inversion operation. Thus, the proposed GPGDA does not increase the model
complexity theoretically.

4. Experiments

We validated the effectiveness of the proposed GPGDA for HSI feature extraction and classification
by comparing with SPPCA, NWFE, DGPLVM, SLGDA, LapCGDA, KCGDA and LGSFA on three
typical HSIs datasets. In addition, the traditional Support Vector Machine (SVM) and Convolutional
Neural Network (CNN) [61] were applied in the original high-dimensional spectral feature space
for comparison. K-Nearest Neighbors (KNN) with Euclidean distance and SVM with Radial Basis
Function (RBF) kernel were adopted as classifiers in the learned low-dimensional space to verify
all the DR models in terms of the classification Overall Accuracy (OA), the classification Average
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Accuracy (AA) and the Kappa Coefficient (KC). The parameter K in KNN was set to 5. The optimal
parameters of kernel in SVM were selected by grid searching within a given set {10−6, 10−5, . . . , 104}.
The architecture of CNNs for each dataset is shown in Table 1 based on the experiments settings in [61].
For a fair comparison, all the data were preprocessed by average filtering with a 7× 7 spatial window,
which is a simple and efficient method for smoothing HSIs. Experiments to verify the effect of different
window sizes were also conducted; please refer to the Supplementary Materials for details.

Firstly, the most suitable kernel in GPGDA was chosen from 18 kernels in the fast Gaussian process
latent variable model toolbox (FGPLVM) (http://inverseprobability.com/fgplvm/index.html). The
corresponding hyperparameters of each kernel can be learned automatically in the proposed GPGDA.
The regularization parameters such as α, β for DGPLVM, SLGDA, LapCGDA and KCGDA were
selected by the grid search with a given set {10−6, 10−5, . . . , 104}. Table 2 displays the best parameter
values for the above four DR models. Then, after obtaining the optimal kernel and its corresponding
hyperparameters, we compared and chose the best dimensionality of each DR model in the range
of 1–30 in terms of the classification accuracy based on SVM in the projected low-dimensional space.
Finally, we further compared all the DR models on the selected optimal dimension when different
numbers of training data were chosen. All the experiments were repeated ten times and the average
results are reported with standard deviation (STD). All methods were tested on MATLAB R2017a
using an Intel Xeon CPU with 2.50 GHz and 64G memory PC with Linux platform.

Table 1. Architecture of the CNN.

No. Convolution Batch Normalization Rectified Linear Unit Pooling Stride Dropout

1 1× 1× 32 YES YES 2× 2 2 NO
2 5× 5× 48 YES YES 2× 2 2 50%
3 4× 4× 64 NO YES 2× 2 2 50%

Table 2. Optimal parameters settings for DGPLVM, SLGDA, LapCGDA and KCGDA on three HSI datasets.

IndianPines PaviaU Salinas

Model α β α β α β

DGPLVM 1 — 100 — 100 —
SLGDA 100 1 10 10 10 10

LapCGDA 0.01 100 0.1 100 0.01 1
KCGDA 0.1 — 0.0001 — 100 —

4.1. Data Description

Three popular HSIs datasets were selected in our experiments (http://www.ehu.es/ccwintco/
index.php/Hyperspectral_Remote_Sensing_Scenes).

The Indian Pines scene (IndianPines) was captured by Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor over Northwest Indiana in 1992, which contains 145 × 145 pixels
and 200 spectral reflectance bands after discarding 24 bands affected by water absorption. Sixteen
ground truth classes are discriminated in this dataset, and the False Color Composition (FCC) and
Ground Truth (GT) are shown in Figure 2.

http://inverseprobability.com/fgplvm/index.html
http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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Figure 2. The false color composition and ground truth of Indian Pines data with numbers of samples
for each class in brackets.

The University of Pavia scene (PaviaU) was gathered by Reflective Optics System Imaging
Spectrometer (ROSIS-3) sensor over the University of Pavia, Italy in 2002. There are 610× 340 valid
pixels with 103 spectral bands after removing some samples of the original scene containing no
information. Nine ground truth classes are considered in this dataset, and the false color composition
and ground truth are shown in Figure 3.

Figure 3. The false color composition and ground truth of University of Pavia data with numbers of
samples for each class in brackets.

The Salinas Scene (Salinas) was collected by AVIRIS sensor over Salinas Valley, California in 1998,
which consists of 512× 217 pixels with 224 spectral bands. Similar to Indian Pines scene, 20 water
absorption and atmospheric effects bands are discarded, then the number of spectral bands becomes
204. Sixteen ground truth classes are labeled in this dataset, and the false color composition and
ground truth are shown in Figure 4.

Figure 4. The false color composition and ground truth of Salinas data with numbers of samples for
each class in brackets.
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4.2. Sensitivity Analysis for Kernel

In this section, we mainly analyze the impact of all the 18 kernels in terms of OAs, because the type
of kernel is the only thing that has to be manually selected in our proposed model. We randomly chose
30 samples from each class as training data and the remainder were testing data with the number of
reduced dimensionality being 30. Table 3 demonstrates the OAs based on the proposed GPGDA with
different kernels on three HSIs datasets, where we can see that many kernels (up to 10 kernels on each
dataset) could provide satisfactory results in terms of OAs in bold. Thus, choosing the best kernel
function is not a big problem for our model. For the Indian Pines, University of Pavia and Salinas
scenes, we have recommended ten kernels for each dataset with respect to the following experimental
results. As for other HSI datasets that have not been studied in this paper, the kernels “dexp” and
“lin” in the proposed GPGDA can be firstly considered as they could provide high accuracy for all the
three datasets.

Table 3. Classification accuracy based on the proposed GPGDA with 18 kernels on Indian Pines,
University of Pavia and Salinas datasets.

IndianPines PaviaU Salinas

Kernel KNN SVM KNN SVM KNN SVM

rbf 78.23 ± 1.99 89.66 ± 0.55 83.48 ± 1.42 93.98 ± 0.36 91.94 ± 1.14 94.97 ± 0.35
mlp 83.73 ± 2.97 89.18 ± 1.99 85.87 ± 1.22 93.68 ± 0.59 91.09 ± 1.54 94.62 ± 0.98
poly 83.27 ± 0.94 91.70 ± 0.69 84.07 ± 6.17 89.71 ± 2.52 92.55 ± 0.78 94.91 ± 0.72
lin 84.01 ± 0.60 91.32 ± 0.82 86.61 ± 1.83 93.84 ± 0.75 92.21 ± 0.51 95.06 ± 0.40
rbfard 79.13 ± 3.17 89.10 ± 0.97 81.26 ± 3.43 93.32 ± 0.87 90.41 ± 0.49 94.66 ± 0.33
mlpard 84.63 ± 1.83 90.54 ± 0.59 85.57 ± 1.74 93.67 ± 0.57 91.27 ± 1.52 94.49 ± 1.12
polyard 83.38 ± 1.71 91.51 ± 0.67 81.35 ± 7.84 87.57 ± 6.58 92.56 ± 0.75 94.96 ± 0.68
linard 85.15 ± 0.70 91.17 ± 1.00 87.29 ± 1.56 93.77 ± 0.54 92.28 ± 0.58 95.13 ± 0.48
matern32 79.95 ± 1.51 89.53 ± 0.73 75.65 ± 20.74 82.82 ± 23.13 92.37 ± 1.58 95.30 ± 0.56
matern52 80.60 ± 1.87 90.34 ± 0.50 81.47 ± 2.67 92.79 ± 0.75 92.80 ± 1.06 95.32 ± 0.25
rbfard2 79.95 ± 0.58 90.27 ± 0.62 77.34 ± 4.65 91.20 ± 0.99 92.87 ± 1.19 95.58 ± 0.06
sqexp 81.28 ± 2.62 90.19 ± 0.94 82.80 ± 3.13 93.20 ± 1.00 92.76 ± 1.00 95.39 ± 0.51
tensor 63.19 ± 2.05 85.54 ± 0.34 67.01 ± 0.86 90.96 ± 1.94 87.36 ± 0.57 93.22 ± 0.81
dexp 83.34 ± 1.42 91.71 ± 0.58 87.97 ± 1.41 93.88 ± 0.60 91.82 ± 1.86 95.18 ± 1.06
exp 64.03 ± 1.99 85.84 ± 0.32 67.57 ± 0.83 91.05 ± 1.87 87.52 ± 0.62 93.24 ± 0.83
gaussian 78.23 ± 1.99 89.66 ± 0.55 83.48 ± 1.42 93.98 ± 0.36 91.94 ± 1.14 94.97 ± 0.35
gg 78.48 ± 2.10 89.60 ± 0.60 82.85 ± 2.04 93.43 ± 1.09 92.43 ± 1.48 95.11 ± 0.37
gibbs 80.96 ± 2.48 90.24 ± 1.41 83.89 ± 3.70 93.41 ± 0.67 93.01 ± 0.80 95.36 ± 0.54

4.3. Experiments on the Indian Pines Data

Initially, an optimal kernel was selected for the proposed GPGDA based on the KNN and SVM
classification results. The corresponding hyperparameters of each kernel could be learned via empirical
Bayesian approach according to the training data. In this experiment, 30 samples were randomly
chosen from each class as training data. When the number of training data in a certain category was
less than 30, then 60% samples were chosen. For the fair comparison, the remaining data were split
into the verification set (50%) and test set (50%). The optimal number of reduced dimensionality are
chosen based on the verification set, and the reported results in Figure 5 are based on the test set.

As can be seen in Figure 5a,b, KNN and SVM based classification results from the proposed
GPGDA with ten kernel functions are depicted. Here, we do not show all the results from 18 kernel
functions because it could be chaos to plot 18 curves simultaneously. We only demonstrate ten kernels
of poly, lin, mlpard, polyard, linard, matern52, rbfard2, sqexp, dexp and gibbs [59], which have better
classification results than others. Although there are some differences for the ten kernels in terms of
the KNN classification results, the classification results from SVM are similar, which means each one
out of the ten kernels can be used efficiently. Since the ultimate goal of dimensionality reduction is
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classification, we only select the appropriate kernel based on SVM results, which are usually higher
than KNN results. According to Figure 5b, kernel dexp is selected for the following experiments.
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Figure 5. Classification accuracy w.r.t. different kernels and different dimensionality of the projection
space on Indian Pines data: (a) KNN classification results of GPGDA based on different kernels;
(b) SVM classification results of GPGDA based on different kernels, and (c) SVM classification results
of all the DR methods based on different dimensions.

After setting the optimal kernel for GPGDA, we further conducted experiments to choose the
best dimensionality of the projection space in terms of the OAs based on SVM. The optimal number of
dimensionality of the projection space was selected from the range of 1–30. For the sake of fairness,
the optimal regularization parameters in other DR models to be compared were set beforehand, as
shown in the Table 2. It can be viewed in Figure 5c that, the optimal number of dimensionality for
each DR model in Indian pines data is 30. It is also worth noting that, the OA of GPGDA surpasses
other DR models on most dimensions, meaning that the learned low-dimensional features are very
discriminatory. Table 4 illustrates the average classification accuracy of each class, the AAs, OAs, and
KCs, as well as their STDs of eight DR models when dimensionality is 30 and classifier is SVM. Table 4
shows that the proposed GPGDA outperforms traditional CNN, SVM and other models in terms of
the AA, OA and KC. Accordingly, Figure 6 tells us that classification maps from the proposed methods
are more accurate than other contrastive approaches.

Table 4. Classification results of CNN and different dimensionality reduction methods based on SVM
on the Indian Pines data.

Class
Samples DR Models

Train Test CNN SVM SPPCA NWFE DGPLVM SLGDA LapCGDA KCGDA LGSFA GPGDA

1 28 18 61.5 ± 14.5 54.1 ± 9.7 57.7 ± 16.7 65.8 ± 11.4 87.3 ± 11.7 93.0 ± 6.1 71.4 ± 14.8 65.9 ± 13.1 80.1 ± 13.7 83.8 ± 12.9
2 30 1398 91.1 ± 4.2 86.3 ± 5.2 77.9 ± 3.5 87.3 ± 4.1 86.4 ± 3.5 87.1 ± 4.8 90.8 ± 4.1 87.4 ± 4.4 89.6 ± 3.4 92.5 ± 3.8
3 30 800 81.0 ± 7.3 75.4 ± 5.5 82.1 ± 6.0 81.7 ± 4.8 84.1 ± 5.5 84.2 ± 3.4 82.9 ± 5.9 81.0 ± 3.6 81.1 ± 4.5 88.5 ± 4.3
4 30 207 87.0 ± 8.9 69.4 ± 7.2 75.7 ± 7.6 75.3 ± 7.3 81.6 ± 6.0 83.0 ± 9.0 81.4 ± 8.5 78.3 ± 8.5 85.5 ± 6.1 84.9 ± 8.1
5 30 453 95.4 ± 4.4 86.6 ± 8.1 83.5 ± 6.3 89.1 ± 6.5 92.7 ± 5.4 88.0 ± 7.9 91.5 ± 5.1 90.8 ± 5.8 95.1 ± 3.9 95.8 ± 3.0
6 30 700 87.3 ± 5.3 94.8 ± 2.9 98.3 ± 1.3 97.2 ± 1.9 98.0 ± 1.0 96.8 ± 1.3 98.6 ± 1.0 97.9 ± 1.2 97.1 ± 1.4 98.9 ± 0.9
7 17 11 80.7 ± 16.5 47.3 ± 22.6 61.5 ± 15.8 64.0 ± 32.8 82.9 ± 19.5 90.2 ± 8.5 72.1 ± 28.9 62.7 ± 31.4 84.6 ± 19.2 85.1 ± 18.4
8 30 448 94.9 ± 4.1 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 99.6 ± 0.7 98.6 ± 4.3 100.0 ± 0.0 100.0 ± 0.0 99.8 ± 0.4 100.0 ± 0.1
9 12 8 47.8 ± 26.7 12.5 ± 2.5 48.7 ± 22.4 17.1 ± 4.6 61.1 ± 18.3 60.6 ± 22.7 38.0 ± 11.3 26.7 ± 8.2 34.5 ± 19.1 62.0 ± 13.4

10 30 942 84.1 ± 5.2 76.6 ± 5.5 75.1 ± 5.4 77.5 ± 6.5 77.8 ± 4.6 81.5 ± 6.8 78.1 ± 4.4 76.5 ± 5.5 80.8 ± 6.1 79.3 ± 5.2
11 30 2425 93.7 ± 2.9 92.5 ± 1.6 91.6 ± 2.6 94.0 ± 2.3 92.0 ± 3.0 93.8 ± 2.9 94.2 ± 1.9 92.8 ± 2.1 94.7 ± 1.3 94.8 ± 1.3
12 30 563 81.5 ± 5.7 78.6 ± 3.0 60.0 ± 5.1 81.6 ± 6.2 74.2 ± 7.0 84.2 ± 4.6 82.1 ± 5.5 81.0 ± 3.5 83.9 ± 5.9 83.9 ± 6.9
13 30 175 93.5 ± 5.7 94.1 ± 3.4 99.2 ± 1.3 98.2 ± 1.3 99.3 ± 1.5 98.4 ± 2.8 99.3 ± 1.0 99.0 ± 1.7 96.6 ± 2.6 99.6 ± 0.7
14 30 1235 97.1 ± 2.0 99.1 ± 0.5 98.6 ± 0.5 99.0 ± 0.8 98.6 ± 0.5 99.1 ± 0.7 98.9 ± 1.0 99.1 ± 0.7 98.9 ± 0.6 98.6 ± 0.6
15 30 356 66.0 ± 13.4 76.9 ± 3.7 74.6 ± 6.9 84.0 ± 4.4 83.5 ± 6.6 86.6 ± 4.5 85.4 ± 5.6 83.2 ± 6.3 89.7 ± 2.9 85.9 ± 5.5
16 30 63 74.3 ± 10.9 82.8 ± 8.0 89.2 ± 6.4 85.6 ± 8.3 89.3 ± 7.1 85.2 ± 10.4 86.6 ± 9.9 87.7 ± 8.2 79.1 ± 8.8 86.5 ± 8.7

AA(%) 82.2 ± 3.0 76.7 ± 1.7 79.6 ± 2.4 81.1 ± 2.6 86.8 ± 2.1 88.1 ± 2.6 84.5 ± 2.7 81.9 ± 2.8 85.7 ± 2.3 88.8 ± 1.9
OA(%) 89.2 ± 0.9 86.0 ± 1.0 83.5 ± 1.7 87.6 ± 1.6 88.5 ± 1.4 89.4 ± 1.3 89.4 ± 1.4 87.9 ± 1.2 89.8 ± 1.2 91.7 ± 0.6
KC 0.87 ± 0.01 0.77 ± 0.02 0.80 ± 0.02 0.81 ± 0.03 0.87 ± 0.02 0.88 ± 0.03 0.84 ± 0.03 0.82 ± 0.03 0.86 ± 0.02 0.89 ± 0.01
Runtime (in seconds) 38.41 1.31 0.17 18.18 848.85 24.42 2.48 3.18 4.35 112.32
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 6. Classification maps of CNN and different DR models based on SVM on the Indian Pines
data: (a) Training GT; (b) Testing GT; (c) CNN (OA = 89.1%); (d) SVM (OA = 86.0%); (e) SPPCA
(OA = 83.5%); (f) NWFE (OA = 87.6%); (g) DGPLVM(OA = 88.5%); (h) SLGDA (OA = 89.4%);
(i) LapCGDA (OA = 89.4%); (j) KCGDA (OA = 87.9%); (k) LGSFA (OA = 89.8%); and (l) GPGDA
(OA = 91.7%).

Finally, to verify the discriminating power of the proposed method even further, more classification
experiments were conducted when different numbers of training data were randomly chosen:
10–60 samples were randomly chosen from each class, and the remainder were testing samples. For those
classes with less samples, no more than 60% samples were randomly chosen. Table 5 shows that the OAs,
AAs and KCs improve as the number of training samples increases for all methods. In addition, when
classifier is KNN, LGSFA outperforms other DR models, followed by GPGDA. It is because LGSFA
takes the intraclass neighbor reconstruction relationship of each training pixels into consideration,
thus enhancing the class-separability of projected low-dimensional testing data. However, the local
geometric structure is not utilized in GPGDA, thus it could be added in our future works. As for SVM
classification accuracy, GPGDA demonstrates better OAs compared to other DR techniques. In general,
the proposed GPGDA is capable of obtaining more discriminating features.

Table 5. Classification results with different amounts of training data on the Indian pines data (OA ± STD (%)).

Classifier DR Model nl = 10 nl = 20 nl = 30 nl = 40 nl = 50 nl = 60

NN

SPPCA 54.26 ± 2.73 66.04 ± 1.42 70.77 ± 1.30 76.35 ± 1.30 78.98 ± 1.43 81.18 ± 0.89
NWFE 62.62 ± 2.14 69.50 ± 1.75 74.89 ± 1.57 77.93 ± 1.55 79.88 ± 0.84 81.30 ± 1.06
DGPLVM 68.09 ± 1.85 74.75 ± 2.14 78.40 ± 1.97 81.97 ± 1.50 84.86 ± 0.97 87.92 ± 1.16
SLGDA 67.66 ± 1.49 76.75 ± 1.33 80.89 ± 1.88 84.59 ± 1.37 86.45 ± 1.06 88.28 ± 0.98
LapCGDA 62.28 ± 31.48 67.31 ± 23.68 78.85 ± 1.79 81.09 ± 1.35 82.89 ± 1.22 83.90 ± 1.44
KCGDA 57.35 ± 2.77 68.10 ± 1.86 72.79 ± 2.44 76.41 ± 2.04 79.33 ± 1.51 81.17 ± 1.09
LGSFA 74.08 ± 1.86 84.34 ± 1.62 90.12 ± 1.28 92.63 ± 1.17 93.88 ± 0.99 95.15 ± 0.75
GPGDA 66.78 ± 2.22 77.26 ± 2.09 82.50 ± 1.68 85.43 ± 1.63 88.09 ± 1.51 90.09 ± 0.86

SVM

SPPCA 71.80 ± 1.71 79.26 ± 1.51 83.53 ± 1.68 85.89 ± 1.12 87.80 ± 0.91 89.30 ± 0.73
NWFE 76.50 ± 1.01 83.35 ± 1.49 87.62 ± 1.62 89.90 ± 0.82 91.33 ± 1.08 92.37 ± 0.83
DGPLVM 76.70 ± 1.49 84.77 ± 1.03 88.52 ± 1.41 91.58 ± 0.75 93.10 ± 0.42 94.55 ± 0.46
SLGDA 77.11 ± 1.29 85.17 ± 1.39 88.96 ± 0.93 91.23 ± 0.94 92.71 ± 0.65 94.17 ± 0.62
LapCGDA 66.39 ± 37.19 77.18 ± 26.91 89.44 ± 1.36 91.04 ± 0.92 92.50 ± 1.06 93.61 ± 0.77
KCGDA 74.74 ± 1.49 83.34 ± 1.04 87.85 ± 1.16 90.05 ± 0.88 91.89 ± 0.65 92.69 ± 0.60
LGSFA 74.17 ± 1.94 84.05 ± 1.94 89.75 ± 1.16 92.59 ± 1.15 93.97 ± 0.94 95.37 ± 0.50
GPGDA 79.87 ± 1.36 87.15 ± 1.21 91.71 ± 0.58 93.37 ± 0.68 94.80 ± 0.47 95.52 ± 0.34
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4.4. Experiments on the University of Pavia Data

To further demonstrate the effectiveness of the proposed algorithms, we chose the University of
Pavia data to conduct experiments. Similarly, we firstly selected the optimal kernel and learned their
corresponding hyperparameters for the proposed GPGDA. In this experiment, 30 training samples
were randomly picked from each class while the remaining data were split into the verification set
(50%) and test set (50%). The optimal number of reduced dimensionality was picked based on the
verification set, and the reported results in Figure 7 are based on the test set.
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Figure 7. Classification accuracy w.r.t. different kernels and different dimensionality of the projection
space on University of Pavia data: (a) KNN classification results of GPGDA based on different kernels;
(b) SVM classification results of GPGDA based on different kernels; and (c) SVM classification results
of all the DR methods based on different dimensions.

According to Figure 7a,b, OAs based on KNN and SVM from the proposed GPGDA with ten
kernel functions are illustrated. Considering the display effects, only ten well-performing kernels (rbf,
mlp, lin, rgfard, mlpard, linard, dexp, gaussian, gg and gibbs) are shown. Similarly, there are some
differences for the ten kernels in terms of the OAs based on KNN, but the classification results from
SVM are almost coincidence with each other. Thus, choosing arbitrary kernel from these ten kernel
functions would have little impact on the SVM classification results, indicating that selecting the best
kernel function is not a troublesome problem for our model. In view of the fact that the OAs of dexp
are the highest in both Figure 7a,b, we chose kernel dexp for the next experiments.

Once the optimal kernel for GPGDA was chosen, we chose the best dimensionality of the
projection space in terms of the SVM results acquired in the low-dimensional space. All the experiments
were conducted on low dimensions from 1 to 30. To be fair, the optimal regularization parameters
in other contrastive DR models were determined via parameter sensitivity experiments, as shown
in Table 2. Figure 7c shows that the proposed GPGDA is superior to other DR models in almost all
the low-dimensional projection space. Moreover, the optimal number of dimensionality for each DR
model in University of Pavia data is 30. Table 6 displays the AAs, OAs, KCs and detailed classification
accuracy for each class based on SVM when dimensionality is 30. In Table 6 we can see that GPGDA
excels traditional CNN, SVM and other DR algorithms in terms of AA, OA and KC. Accordingly, the
classification maps in Figure 8 give us a similar conclusion.

Finally, based on the optimal projection dimensionality, we further compared the discriminating
power of the eight DR approaches by randomly selecting different number of pixels as training data.
Here, 10–60 training samples were randomly chosen from each class, and the remainder were testing
samples. Table 7 shows that the OAs, AAs and KCs rise as the number of training samples increases
for all methods. Specifically, LGSFA demonstrates comparative OAs based on KNN than the proposed
GPGDA while GPGDA surpasses LGSFA and other methods in terms of the SVM classification results.
This illustrates that GPGDA exceeds LGSFA, which preserves local geometric structure, in extracting
discriminative features for HSIs data.
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Table 6. Classification results of CNN and different DR methods based on SVM on the University of
Pavia data.

Class
Samples DR Models

Train Test CNN SVM SPPCA NWFE DGPLVM SLGDA LapCGDA KCGDA LGSFA GPGDA

1 30 6601 97.1 ± 2.2 92.2 ± 1.9 93.7 ± 2.5 93.0 ± 1.7 94.2 ± 1.1 92.8 ± 3.3 93.5 ± 1.6 92.7 ± 1.7 91.6 ± 1.9 94.3 ± 2.1
2 30 18619 96.1 ± 1.6 98.2 ± 0.7 97.9 ± 0.8 98.4 ± 0.6 98.1 ± 0.6 98.3 ± 0.5 98.7 ± 0.5 98.1 ± 1.0 97.4 ± 0.8 98.6 ± 0.4
3 30 2069 76.3 ± 9.3 84.5 ± 6.3 80.1 ± 7.9 85.1 ± 5.0 81.4 ± 8.2 81.8 ± 6.5 86.5 ± 5.0 85.1 ± 6.4 74.6 ± 6.0 86.5 ± 3.6
4 30 3034 97.3 ± 1.2 84.0 ± 7.7 90.1 ± 8.4 84.0 ± 9.9 85.3 ± 8.6 88.6 ± 4.5 86.6 ± 7.0 84.9 ± 7.4 93.1 ± 5.0 93.5 ± 1.3
5 30 1315 99.5 ± 0.5 98.7 ± 1.4 99.8 ± 0.2 99.8 ± 0.2 99.8 ± 0.1 98.9 ± 2.9 99.2 ± 1.9 99.3 ± 1.0 99.9 ± 0.1 98.7 ± 2.4
6 30 4999 76.7 ± 9.2 84.2 ± 4.4 82.5 ± 2.7 87.3 ± 4.4 88.9 ± 3.9 86.3 ± 5.0 87.5 ± 4.2 85.0 ± 4.8 84.4 ± 4.8 88.9 ± 5.1
7 30 1300 79.8 ± 8.4 79.2 ± 5.5 92.0 ± 6.2 82.1 ± 5.6 76.2 ± 2.2 83.5 ± 7.9 83.4 ± 6.7 80.0 ± 3.8 92.7 ± 4.9 87.6 ± 5.2
8 30 3652 89.8 ± 4.5 81.6 ± 3.5 84.4 ± 3.9 82.9 ± 4.3 82.7 ± 2.9 83.6 ± 3.2 84.6 ± 3.0 81.6 ± 3.4 78.9 ± 3.6 84.2 ± 3.2
9 30 917 95.5 ± 4.5 90.5 ± 5.5 87.0 ± 1.8 90.1 ± 5.7 88.8 ± 5.9 87.2 ± 7.4 89.0 ± 5.2 91.3 ± 5.3 92.1 ± 4.1 90.7 ± 4.1

AA(%) 89.8 ± 0.9 88.1 ± 1.1 89.7 ± 0.8 89.2 ± 0.8 88.4 ± 1.0 89.0 ± 1.7 89.9 ± 1.3 88.7 ± 0.8 89.4 ± 1.3 91.5 ± 0.6
OA(%) 90.4 ± 1.3 91.2 ± 0.9 92.5 ± 1.0 91.3 ± 1.18 92.6 ± 0.8 91.4 ± 1.5 91.8 ± 1.2 92.4 ± 0.8 91.2 ± 1.0 93.9 ± 0.6
KC 0.90 ± 0.01 0.88 ± 0.01 0.90 ± 0.01 0.89 ± 0.01 0.88 ± 0.01 0.89 ± 0.02 0.90 ± 0.01 0.89 ± 0.01 0.89 ± 0.01 0.91 ± 0.01
Runtime (in seconds) 23.61 1.82 0.22 3.45 483.93 19.37 1.4 0.9 1.81 62.82

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 8. Classification maps of CNN and different DR models based on SVM on the University of
Pavia data: (a) Training GT; (b) Testing GT; (c) CNN (OA = 90.4%); (d) SVM (OA = 91.2%); (e) SPPCA
(OA = 92.5%); (f) NWFE (OA = 91.3%); (g) DGPLVM (OA = 92.6%); (h) SLGDA (OA = 91.4%);
(i) LapCGDA (OA = 91.8%); (j) KCGDA (OA = 92.4%); (k) LGSFA (OA = 91.2%); and (l) GPGDA
(OA = 93.9%).
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Table 7. Classification results with different amounts of training data on the University of Pavia data
(OA ± STD (%)).

Classifier DR Model nl = 10 nl = 20 nl = 30 nl = 40 nl = 50 nl = 60

NN

SPPCA 63.69 ± 2.03 69.58 ± 1.79 73.73 ± 2.60 76.67 ± 3.27 79.91 ± 2.13 81.53 ± 2.57
NWFE 63.59 ± 3.10 69.18 ± 3.34 73.53 ± 2.16 75.87 ± 2.55 79.51 ± 2.58 80.93 ± 2.25
DGPLVM 69.98 ± 2.87 77.98 ± 3.07 82.93 ± 2.91 85.61 ± 1.62 87.63 ± 1.68 88.96 ± 1.11
SLGDA 65.96 ± 4.16 78.56 ± 7.05 83.93 ± 2.98 86.45 ± 1.32 88.57 ± 1.98 88.73 ± 2.36
LapCGDA 66.75 ± 5.45 71.74 ± 4.98 74.72 ± 3.36 78.65 ± 3.75 82.26 ± 3.03 84.16 ± 1.87
KCGDA 58.76 ± 3.43 68.53 ± 2.49 72.91 ± 2.45 76.80 ± 2.22 80.48 ± 2.49 82.55 ± 2.01
LGSFA 63.65 ± 4.59 81.80 ± 3.68 88.11 ± 1.13 89.57 ± 1.32 92.05 ± 1.26 92.98 ± 0.99
GPGDA 65.03 ± 4.41 79.46 ± 2.16 87.97 ± 1.83 89.31 ± 2.17 91.95 ± 1.40 93.42 ± 0.47

SVM

SPPCA 85.34 ± 3.71 90.39 ± 2.46 92.51 ± 1.01 93.33 ± 1.06 93.96 ± 1.00 94.60 ± 0.75
NWFE 85.06 ± 2.81 89.65 ± 1.94 91.30 ± 1.18 92.55 ± 1.04 93.56 ± 0.56 94.24 ± 0.75
DGPLVM 84.24 ± 3.63 90.16 ± 1.21 92.63 ± 0.76 93.58 ± 0.71 94.67 ± 0.62 95.58 ± 0.59
SLGDA 84.72 ± 3.03 89.03 ± 2.32 91.39 ± 1.53 92.19 ± 1.37 93.55 ± 1.10 93.65 ± 0.71
LapCGDA 85.26 ± 2.81 90.47 ± 1.78 91.80 ± 1.24 92.94 ± 0.91 94.11 ± 0.44 94.84 ± 0.49
KCGDA 83.53 ± 4.34 90.08 ± 2.13 92.40 ± 0.79 93.16 ± 0.86 94.10 ± 0.64 94.73 ± 0.60
LGSFA 78.18 ± 3.57 85.76 ± 2.09 91.15 ± 1.04 92.84 ± 1.18 94.12 ± 0.86 95.32 ± 0.34
GPGDA 87.78 ± 1.14 91.71 ± 0.28 93.88 ± 0.60 93.88 ± 1.45 95.52 ± 0.62 95.98 ± 0.52

4.5. Experiments on the Salinas Data

Another challenging HSI data is the Salinas data. As we did before, we firstly chose the optimal
kernel for the proposed GPGDA, in which the hyperparameters can be automatically learned via
empirical Bayesian approach. Thirty training samples were randomly picked from each class in this
experiment, while the remaining data were split into the verification set (50%) and test set (50%).
The optimal number of reduced dimensionality and the reported results in Figure 7 are based on the
verification set and the test set, respectively.

Figure 9a,b shows the KNN and SVM classification accuracy of the proposed GPGDA, respectively.
For the sake of simplicity, ten better-performing kernels of all the kernels are demonstrated: lin, polyard,
linard, matern32, matern52, rbfard2, sqexp, dexp, gg and gibbs. As in the experiments results for
Indian Pines and University of Pavia datasets, slight differences are shown in Figure 9a,b, indicating
that any of the ten kernels can be used efficiently. Since the SVM classification result of rbfard2 is
slightly higher than others, kernel rbfard2 is finally picked.
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Figure 9. Classification accuracy w.r.t. different kernels and different dimensionality of the projection
space on Salinas data: (a) KNN classification results of GPGDA based on different kernels; (b) SVM
classification results of GPGDA based on different kernels; and (c) SVM classification results of all the
DR methods based on different dimensions.

Having chosen the optimal kernel for GPGDA, the best dimensionality of the projection space
can be obtained, as shown in Figure 9c, which describes the results based on SVM performed in the
low-dimensional projection space. All the experiments were conducted on low-dimensional space
in a range from 1 to 30. To make it fair, the best regularization parameters in other DR models were
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confirmed in advance. The optimal parameter values of other DR models on Salinas dataset are
displayed in Table 2. Once again, the optimal number of dimensionality for all the DR models in
Salinas data is 30. Table 8 displays the outperformance of GPGDA in terms of OA and KC. Accordingly,
Figure 10 demonstrates that the classification map of GPGDA is more accurate than other methods.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 10. Classification maps of different DR models based on SVM on the Salinas data: (a) Training
GT; (b) Testing GT; (c) CNN (OA = 84.2%); (d) SVM (OA = 93.2%); (e) SPPCA (OA = 94.7%);
(f) NWFE (OA = 94.0%); (g) DGPLVM(OA = 94.1%); (h) SLGDA (OA = 94.1%); (i) LapCGDA (OA = 94.2%);
(j) KCGDA (OA = 94.1%); (k) LGSFA (OA = 94.2%); and (l) GPGDA (OA = 95.6%).

Finally, based on the optimal projection dimensionality, we also conduct experiments when
different amounts of training data were selected. In addition, 10–60 samples were randomly picked
from all the labeled data, and the rest of data were the testing data. Table 9 displays that the OAs,
AAs and KCs keep an upward tendency as the number of training samples increases for all methods.
Moreover, the OAs of GPGDA based on SVM are higher than other DR models, while LGSFA is
superior to GPGDA in terms of KNN classification results because of the preserving local geometric
structure. Generally, the experimental results in Table 9 corroborate the discriminating power of the
proposed GPGDA.



Remote Sens. 2019, 11, 2288 17 of 21

Table 8. Classification results of CNN and different DR methods based on SVM on the Salinas data.

Class
Samples DR Models

Train Test CNN SVM SPPCA NWFE DGPLVM SLGDA LapCGDA KCGDA LGSFA GPGDA

1 30 1979 91.2 ± 5.5 99.0 ± 1.4 99.7 ± 0.9 99.5 ± 1.2 99.8 ± 0.4 100.0 ± 0.0 99.9 ± 0.3 99.8 ± 0.6 100.0 ± 0.0 99.9 ± 0.1
2 30 3696 99.8 ± 0.5 99.2 ± 1.0 100.0 ± 0.0 99.3 ± 0.9 99.6 ± 0.3 99.7 ± 0.3 99.6 ± 0.6 99.6 ± 0.6 99.9 ± 0.2 99.7 ± 0.4
3 30 1946 99.6 ± 0.6 95.6 ± 1.8 98.6 ± 0.8 96.9 ± 2.6 99.9 ± 0.2 99.6 ± 0.5 98.0 ± 1.2 97.2 ± 1.1 99.2 ± 1.3 99.0 ± 0.8
4 30 1364 93.2 ± 3.1 94.1 ± 2.6 96.5 ± 1.8 97.6 ± 1.2 97.3 ± 1.6 97.8 ± 0.8 95.7 ± 2.2 96.7 ± 1.5 97.1 ± 1.4 98.1 ± 1.6
5 30 2648 98.6 ± 1.6 98.0 ± 0.7 98.9 ± 0.6 98.0 ± 0.9 98.7 ± 0.6 99.3 ± 0.4 98.8 ± 0.6 98.7 ± 0.7 99.2 ± 0.5 99.0 ± 0.3
6 30 3929 99.4 ± 0.9 100.0 ± 0.0 100.0 ± 0.0 99.7 ± 1.1 99.9 ± 0.1 99.9 ± 0.2 100.0 ± 0.0 100.0 ± 0.0 99.9 ± 0.4 100.0 ± 0.0
7 30 3549 98.9 ± 2.2 98.4 ± 0.9 99.5 ± 0.7 99.1 ± 1.0 99.8 ± 0.3 99.7 ± 0.5 99.1 ± 0.9 99.1 ± 0.9 100.0 ± 0.0 99.5 ± 0.7
8 30 11241 84.7 ± 10.4 90.1 ± 2.7 90.9 ± 1.9 91.6 ± 1.8 90.8 ± 2.2 91.7 ± 1.8 91.4 ± 1.9 91.9 ± 2.4 86.9 ± 2.6 93.9 ± 1.8
9 30 6173 99.7 ± 0.4 99.5 ± 0.4 99.4 ± 0.1 99.4 ± 0.3 99.6 ± 0.1 99.6 ± 0.1 99.6 ± 0.3 99.4 ± 0.4 99.6 ± 0.2 99.3 ± 0.5

10 30 3248 92.5 ± 5.1 89.7 ± 5.2 95.0 ± 2.6 92.0 ± 4.6 93.5 ± 2.8 90.2 ± 7.9 93.3 ± 2.9 92.2 ± 4.6 95.4 ± 2.0 92.2 ± 5.7
11 30 1038 95.4 ± 4.6 92.4 ± 2.6 98.2 ± 1.6 97.0 ± 3.8 99.0 ± 2.6 98.9 ± 1.8 97.8 ± 2.3 97.7 ± 2.9 99.9 ± 0.2 99.2 ± 1.1
12 30 1897 99.0 ± 1.8 95.8 ± 1.8 96.6 ± 4.8 96.8 ± 2.0 96.7 ± 4.8 98.5 ± 1.3 97.7 ± 1.9 97.2 ± 1.6 99.8 ± 0.3 98.3 ± 1.4
13 30 886 93.8 ± 7.0 94.9 ± 4.5 96.7 ± 2.9 97.8 ± 2.6 94.7 ± 4.9 96.8 ± 3.1 97.6 ± 3.2 97.5 ± 2.6 99.2 ± 1.3 99.0 ± 0.9
14 30 1040 95.2 ± 6.2 88.4 ± 7.5 95.9 ± 3.4 96.1 ± 2.0 95.5 ± 5.3 97.6 ± 2.3 97.5 ± 1.9 95.8 ± 4.1 99.1 ± 0.8 98.2 ± 1.0
15 30 7238 49.2 ± 10.4 81.8 ± 2.2 81.2 ± 4.8 82.9 ± 2.9 80.3 ± 4.0 81.7 ± 3.9 83.2 ± 2.7 82.6 ± 2.9 80.1 ± 2.8 85.5 ± 2.8
16 30 1777 99.2 ± 1.7 92.9 ± 6.5 96.2 ± 6.8 93.7 ± 7.2 95.0 ± 5.0 96.8 ± 3.8 94.4 ± 3.5 94.1 ± 7.3 99.9 ± 0.2 95.2 ± 7.5

AA(%) 93.1 ± 1.8 94.4 ± 0.8 96.5 ± 0.4 96.1 ± 0.5 96.2 ± 0.6 96.8 ± 0.6 96.5 ± 0.3 96.2 ± 0.5 97.2 ± 0.3 97.0 ± 0.4
OA(%) 84.2 ± 1.6 93.2 ± 0.6 94.7 ± 0.3 94.0 ± 0.6 94.1 ± 0.8 94.1 ± 0.8 94.2 ± 0.8 94.1 ± 0.5 94.2 ± 0.6 95.6 ± 0.1
KC 0.83 ± 0.02 0.94 ± 0.01 0.96 ± 0.00 0.96 ± 0.00 0.96 ± 0.01 0.97 ± 0.01 0.96 ± 0.00 0.96 ± 0.00 0.97 ± 0.00 0.97 ± 0.00
Runtime (in seconds) 41.24 2.05 0.41 20.87 985.72 25.37 2.28 3.39 4.77 233.12

Table 9. Classification results with different amounts of training data on the Salinas data (OA ± STD (%)).

Classifier DR Model nl = 10 nl = 20 nl = 30 nl = 40 nl = 50 nl = 60

NN

SPPCA 86.34 ± 3.67 89.47 ± 5.90 91.09 ± 4.45 92.08 ± 3.35 91.71 ± 3.34 92.74 ± 2.03
NWFE 86.14 ± 2.13 88.57 ± 1.81 90.49 ± 0.74 91.08 ± 0.61 91.61 ± 0.32 92.24 ± 0.58
DGPLVM 86.65 ± 1.86 89.25 ± 1.56 90.16 ± 0.89 91.94 ± 0.58 92.50 ± 0.62 92.98 ± 0.51
SLGDA 85.45 ± 1.84 89.53 ± 1.85 91.60 ± 0.94 92.70 ± 0.62 93.05 ± 0.93 93.67 ± 0.71
LapCGDA 86.34 ± 1.94 88.39 ± 2.25 91.02 ± 0.98 91.76 ± 1.10 91.83 ± 1.18 92.71 ± 1.48
KCGDA 82.97 ± 1.56 86.60 ± 1.37 89.25 ± 0.62 90.16 ± 0.83 91.12 ± 0.63 91.94 ± 0.39
LGSFA 90.33 ± 2.28 92.56 ± 1.53 94.33 ± 0.49 95.16 ± 0.55 95.34 ± 0.51 95.76 ± 0.51
GPGDA 85.20 ± 2.05 89.83 ± 2.54 92.86 ± 1.20 93.56 ± 0.47 93.86 ± 0.72 94.52 ± 0.30

SVM

SPPCA 90.02 ± 1.18 92.92 ± 0.96 94.70 ± 0.34 95.06 ± 0.53 95.45 ± 0.37 95.91 ± 0.37
NWFE 90.81 ± 0.74 92.85 ± 1.01 93.99 ± 0.56 94.62 ± 0.56 94.91 ± 0.46 95.31 ± 0.67
DGPLVM 90.61 ± 1.41 93.01 ± 1.02 94.12 ± 0.83 95.45 ± 0.54 95.74 ± 0.42 96.13 ± 0.32
SLGDA 90.72 ± 1.24 92.90 ± 1.25 94.13 ± 0.78 95.25 ± 0.60 95.64 ± 0.45 96.02 ± 0.34
LapCGDA 91.30 ± 1.34 92.66 ± 1.25 94.15 ± 0.79 94.98 ± 0.87 95.43 ± 0.91 95.65 ± 0.91
KCGDA 90.61 ± 1.32 92.79 ± 1.02 94.07 ± 0.54 94.85 ± 0.42 95.23 ± 0.48 95.60 ± 0.39
LGSFA 91.49 ± 1.46 92.46 ± 1.37 94.17 ± 0.64 95.06 ± 0.56 95.48 ± 0.54 96.08 ± 0.43
GPGDA 90.83 ± 2.18 93.23 ± 1.04 95.58 ± 0.06 96.07 ± 0.20 96.36 ± 0.37 96.77 ± 0.40

5. Discussion

Based on above experimental results, we can provide the following discussions.

(i) The proposed GPGDA outperforms SPPCA, NWFE, DGPLVM, SLGDA, LapCGDA, KCGDA
and LGSFA in terms of OA, AA and KC based on SVM. As for the KNN classification results,
LGSFA always takes the first place, but GPGDA is superior to other methods such as DGPLVM,
SLGDA, and LapCGDA. The explanation could be that, although the learned similarity graph
from GPGDA is more representative than that from other models, LGSFA preserves the
intraclass neighbor reconstruction relationship in the objection function which considers the
local manifolds. However, compared to other DR models of which regularization parameters
needs be to be manually tuned via parameters sensitivity experiments, the only parameters of
kernels in GPGDA can be learned automatically by gradients based optimization algorithms.
Furthermore, the procedure of dividing the multi-class data into two classes enforces interclass
separability when learning the kernel matrix from training data of each class.

(ii) It is clear that KCGDA is a kernel based discriminant analysis method which combines the
advantages of kernel and GEDA framework. However, it is quite difficult to set the optimal
kernel parameters for KCGDA. Sometimes, KCGDA is even inferior to conventional CGDA
because of the unsuitable parameters. DGPLVM is a GP based supervised DR model, but, unlike
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GPGDA, DGPLVM still has regularization parameters to be tuned. Thus, parameter sensitivity
experiments should be carried out. By contrast, the proposed GPGDA outperforms the two
models in terms of classification accuracy and automatic parameters tuning.

(iii) The time complexity of GPGDA is O(Cnl
3), which is the same with other discriminant analysis

based methods such as CGDA and LapCGDA. However, traditional discriminant analysis
based methods are able to reach the close-form solutions straightforwardly, while the GPR in
the proposed GPGDA is often optimized by gradients based optimization algorithms, which
could be more time-consuming. Nevertheless, when the number of training samples is small,
which is the case in HSIs classification, the training time can be short. In Tables 4, 6 and 8,
we report the running times of extracting the dimensionality reduced features with different
algorithms on three HSIs datasets. It should be noted that, although the proposed GPGDA
needs more running times than most contrastive DR models, the hyperparameters of GPGDA
can be automatically learned, indicating that the time consumption for parameter sensitivity
experiments with respect to other DR models can be saved significantly. Furthermore, if parallel
computation is adopted to calculate the class-specific similarity matrix, the experiment time will
be further greatly reduced.

(iv) Deep Learning based methods such as Convolutional Neural Networks (CNN) can take spatial
information into account while extracting spectral information from HSIs. Its performance can
be sensitive to the depths and widths of the deep network. However, more layers means more
parameters that needs to be learned. Due to the large number of learnable parameters, sufficient
training samples are needed in CNNs to avoid the overfitting problem. Unfortunately, the lack
of labeled training samples is a common bottleneck in HSI classification tasks, which could
decrease the performance of CNN. By contrast, the only thing we need to select is the type of
kernel in the proposed nonparametric model GPGDA, which could significantly outperform
CNN especially in the small sample size scenario.

6. Conclusions

This paper introduces a novel supervised DR technique GPGDA for HSIs data based on the GEDA
framework. The proposed GPGDA utilizes the kernel function in GP to calculate all the within-class
matrices, and then constructs the block-diagonal intrinsic graph in the GEDA framework. Once we get
the intrinsic graph, the optimal projection matrix can be evaluated based on the GEDA framework. To
proves this, various experimental results illustrate that discriminative information for classification
can be effectively extracted by the proposed DR methods. Our future work would focus on how to
introduce the local geometric manifold structure of HSIs data into our GPGDA algorithm.
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