
remote sensing

Article

Multiple-Object-Tracking Algorithm Based on Dense
Trajectory Voting in Aerial Videos

Tao Yang 1,∗ , Dongdong Li 1, Yi Bai 1, Fangbing Zhang 1, Sen Li 1, Miao Wang 1,
Zhuoyue Zhang 1 and Jing Li 2

1 National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application
Technology, SAIIP, School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China;
1051196347@mail.nwpu.edu.cn (D.L.); seafire@mail.nwpu.edu.cn (Y.B.);
fangbing_zhang@mail.nwpu.edu.cn (F.Z.); frank804@mail.nwpu.edu.cn (S.L.);
mwang@mail.nwpu.edu.cn (M.W.); zhangzzy@mail.nwpu.edu.cn (Z.Z.)

2 School of Telecommunications Engineering, Xidian University, Xi’an 710071, China;
jinglixd@mail.xidian.edu.cn

* Correspondence: tyang@nwpu.edu.cn; Tel.: +86-150-0291-9079

Received: 20 August 2019; Accepted: 25 September 2019; Published: 29 September 2019
����������
�������

Abstract: In recent years, UAV technology has developed rapidly. Due to the mobility, low cost,
and variable monitoring altitude of UAVs, multiple-object detection and tracking in aerial videos
has become a research hotspot in the field of computer vision. However, due to camera motion,
small target size, target adhesion, and unpredictable target motion, it is still difficult to detect and
track targets of interest in aerial videos, especially in the case of a low frame rate where the target
position changes too much. In this paper, we propose a multiple-object-tracking algorithm based on
dense-trajectory voting in aerial videos. The method models the multiple-target-tracking problem
as a voting problem of the dense-optical-flow trajectory to the target ID, which can be applied
to aerial-surveillance scenes and is robust to low-frame-rate videos. More specifically, we first
built an aerial video dataset for vehicle targets, including a training dataset and a diverse test
dataset. Based on this, we trained the neural network model by using a deep-learning method
to detect vehicles in aerial videos. Thereafter, we calculated the dense optical flow in adjacent
frames, and generated effective dense-optical-flow trajectories in each detection bounding box
at the current time. When target IDs of optical-flow trajectories are known, the voting results
of the optical-flow trajectories in each detection bounding box are counted. Finally, similarity
between detection objects in adjacent frames was measured based on the voting results, and tracking
results were obtained by data association. In order to evaluate the performance of this algorithm,
we conducted experiments on self-built test datasets. A large number of experimental results showed
that the proposed algorithm could obtain good target-tracking results in various complex scenarios,
and performance was still robust at a low frame rate by changing the video frame rate. In addition,
we carried out qualitative and quantitative comparison experiments between the algorithm and three
state-of-the-art tracking algorithms, which further proved that this algorithm could not only obtain
good tracking results in aerial videos with a normal frame rate, but also had excellent performance
under low-frame-rate conditions.

Keywords: aerial video; multiple-target tracking; optical-flow-trajectory voting; low frame rate

1. Introduction

Due to their flexible flight, high efficiency, and low cost, unmanned aerial vehicles (UAVs) have
been widely used in military and civilian fields [1–3]. Therefore, how to extract effective information

Remote Sens. 2019, 11, 2278; doi:10.3390/rs11192278 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-5180-2316
https://orcid.org/0000-0002-9043-8633
http://dx.doi.org/10.3390/rs11192278
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/11/19/2278?type=check_update&version=2

Remote Sens. 2019, 11, 2278 2 of 23

from aerial videos has become an important issue in the field of computer vision [4]. As the key
technology of UAV surveillance systems, multiple-object tracking can obtain the trajectories, location,
and appearance of targets of interest in monitoring scenes, which is the basis of object recognition, scene
perception, behavior understanding, analysis and decision,and other types of advanced processing.
In recent years, the technology has rapidly developed and has been widely applied in many fields,
such as battlefield detection, border patrols, postdisaster relief, and public transportation [5–7].

Multiple-object-tracking in aerial videos technology faces the same problem as target-tracking
tasks in other common videos, such as target adhesion, shadows, and complex environments. At the
same time, the sudden change of target motion caused by fast UAV motion or a low frame rate,
small target sizes, and target scale changes also pose great challenges to tracking technology in aerial
videos [8–11], as shown in Figure 1. To solve these problems, many tracking algorithms have been
proposed [12–14]. Existing multiple-target-tracking methods in aerial videos can generally be divided
into two categories: generative- and discriminative-tracking methods.

Figure 1. Aerial images captured from our Unmanned Aerial Vehicle (UAV) system, including a variety
of complex scenes posing various challenges for target tracking: (a) adhesion occurring between two adjacent
cars, (b) massive vehicles on side of the road, (c) complex background, (d) many tree shadows, (e) small
target size and similar target appearance, (f) large changes in target size and complicated target movement.

(1) Generative-tracking method. This method is also called the template method. First, the target
is expressed as a specific template, such as a graph or function obtained by geometric-shape fitting.
Then, the region that best matches the target template of the previous frame is found in the current
frame by the exhaustive method. Finally, the target template is updated with the target information
of the current frame. For example, by combining the vehicle-behavior model with the road network,
vehicle tracking is performed using the probability-map-matching method in [15], which is suitable
for long-term monitoring videos. Szottka et al. [16] proposed a vehicle-specific motion model that
integrates shape and color information, and tracks vehicles through a single particle filter. The method
solves the data-association problem by finding the largest weighted match in the bipartite graph, and
improves tracking performance by the trajectory of the example position bias. Another novel approach
is presented in [17]; the method transfers the successful Gaussian mixture model framework from building
a background model of a stationary scene to building a background motion model of a moving scene. Such
methods are highly adaptable, but their disadvantages lie in that it is difficult for them to effectively model
the target, and consume a lot of time, making it difficult for them to be in real time.

(2) Discriminative-tracking method. The method, also known as tracking-by-detection method,
refers to the binary classification problem of foreground targets and background by training the
corresponding feature extractor. Generally, the discriminative-tracking method has better performance
than the generative-tracking method due to learning background information. Abdulla et al. [18]
proposed a tracking model based on target color features and depth information. Object size was
clustered by point-cloud information obtained by the UAV, and a target-verification filter was designed

Remote Sens. 2019, 11, 2278 3 of 23

to match the target and avoid false positive objects. Chen et al. [19] put forward an efficient hierarchical
framework based on tracking confidence, and a tracker based on the Fast Compressive Tracker
(FCT). The proposed framework appropriately handled tracklet generation, progressive trajectory
construction, and tracklet drifting and fragmentation, so that the unstable detection problem in aerial
videos could be solved. Yin et al. [20] proposed a dual-classifier-based tracking method in which the
D-classifier used linear SVM to detect targets offline, and a T-classifier used state-based structured SVM
to track targets online. Their combination can have an excellent tracking effect, but it cannot process in
real time. SORT [21] assumes that the object has linear moving speed. Then, it propagates the state
of the tracking object to subsequent frames using Kalman filtering, and correlates objects of adjacent
frames. Moreover, SORT manages the creation and destruction of object identities by setting their age.
SORT has a good tracking effect for objects moving at a uniform speed and in a straight line, but it is
not suitable for objects whose speed and direction change. DeepSort [22,23] simultaneously applies
target-motion information and surface-feature information for data correlation on the basis of SORT,
and uses a convolutional neural network (CNN) to train on a large-scale pedestrian dataset, which
makes tracking results more accurate and increases the robustness of the algorithm. Bochinski [24]
propose a simple intersection-over-union (IOU) tracker without using image information that associates
detection with the highest IOU to the last detection in the previous frame if a certain threshold is met.
This algorithm works well at high frame rate, but it is easy to lose targets at low frame rate which
has large object deformation. Zhou [25] put forward a graph-cut based detection approach which
can extract a specified road region accurately, and a fast homography-based road-tracking scheme is
developed to automatically track road areas. In short, this kind of algorithm is very popular because
of its good effect and fast speed, but most of these algorithms are based on the continuity hypothesis
of the target state, that is, it is assumed that the motion and appearance of the target object change
little between successive image frames. Therefore, when the frame rate of ariel video is low due to
the bandwidth limitation of data transmission or the simultaneous transmission of multiple videos,
the motion displacement and shape change of the target may be large, resulting in a greatly reduced
tracking effect of the algorithm.

In this paper, we propose a multiple-target-tracking algorithm based on dense-optical-flow
trajectories voting in aerial videos. Since optical-flow estimation is still effective when the target
motion is large, the performance of the algorithm is not greatly affected in an aerial video with a low
frame rate, and it is robust to shape and appearance changes of the target. The main contributions are
as follows:

• First of all, we proposed a novel multiple-target-tracking algorithm which is based on
dense-optical-flow-trajectory voting. The algorithm models the multiple-target-tracking problem
as a voting problem of the dense-optical-flow trajectory to the target ID. In the method, we first
generated the optical-flow trajectories of the target and performed ID voting on the optical-flow
trajectories of each target. Then, voting results were used to measure the similarity of objects in
adjacent frames, and tracking results were obtained by data association. Since the optical-flow
trajectory of the target could accurately reflect the position change of the target with time,
regardless of the appearance, shape, and size of the target, the algorithm could enhance tracking
performance in the aerial video, even at a low frame rate.

• Second, we built a training dataset and a test dataset for deep-learning vehicle-detection in
aerial videos. The training dataset contained many self-captured aerial images, and we used the
LabelImg tool to label vehicle targets in these aerial images. The test dataset was collected by our
UAV system and included four kinds of surveillance scenarios and multiple video frame rates.
The UAV system was composed of DJI-MATRICE 100 and a monocular point-gray camera. Due to
the different UAV shooting angles and heights, vehicle sizes in the images are various, and the
background is complex. Based on this, we could generate the network model of the deep-learning
algorithm and obtain good vehicle-detection results, which is the basis of multiple-target tracking.

Remote Sens. 2019, 11, 2278 4 of 23

• Finally, we conducted a large number of experiments on the test dataset to prove the effectiveness
and robustness of the algorithm. The experiment results on aerial video with various
environments and different frame rates show that our algorithm could obtain effective and robust
tracking results in various complex environments, and the tracking effect was still robust when
there were problems such as target adhesion, low frame rate, and small target size. In addition,
we carried out qualitative and quantitative comparison experiments with three state-of-art
tracking algorithms, which further proved that this algorithm could not only obtain good tracking
results in aerial videos, but also had excellent performance under low frame rate conditions.

2. Proposed Method

A framework of the proposed multiple-target-tracking algorithm based on dense-trajectory
voting is shown in Figure 2. The framework can be divided into three parts, target detection,
dense-optical-flow-trajectory generation and voting, and data association based on dense-trajectory
voting, which are described in the following sections. In the first part, we trained the neural-network
model and utilized deep-learning detection algorithm YOLOv3 [26] to obtain the detection bounding
box of the vehicle. The method extracted multiple features of images in different scales, then predicted
detection bounding boxes and probabilities for each one and fused them to get the final detection
result. In the second part, dense-optical-flow-trajectory generation and voting, we first used the
GPU-accelerated Gunnar Faneback algorithm to process adjacent frames and obtain the optical flow
of each pixel in the current frame. Since we were only interested in the optical-flow trajectories of
the targets, effective optical-flow trajectories in the current frame could be generated by combining
the detection bounding box. On this basis, according to the target ID of these optical flow trajectories
in Frame t, ID voting and statistics are carried out for each target in Frame t + 1 in the process of
optical flow trajectory voting. In the third part, we used the voting results to measure the similarity of
objects in adjacent frames and generate the data-association matrix. Then, we adopted the Hungarian
algorithm [27] to assign the ID of these targets and obtain the tracking results.

2.1. Target Detection

In this part, we outline how we used deep-learning-based detection algorithm YOLOv3 to obtain
target position in an aerial image, as shown in the first part of Figure 2. From the input images in
Figure 2, we can see that the target scale is small because of the high flying altitude of the drone, and the
background is complex. YOLOv2 [28] does not work well for small targets detection, and compared
with it, predictions acros scale strategy is added to YOLOv3 algorithm to greatly improve the detection
effect of small targets. Compared with FasterRCNN [29] and SSD [30], it not only achieved a good
detection effect, but also had the highest speed.

As shown in Figure 3, target detection is divided into the network-model-training and
online-target-detection stages. Since the weights provided by the official YOLOv3 website are not
good for the detection of small-sized vehicles in airborne videos, we needed to use self-built datasets
to train new network-model weights for vehicle detection in aerial images. First, we used our UAV
system to collect a large number of aerial images, including a variety of traffic scenes, some of which
are shown in Figure 3. The UAV system is composed of a DJI-MATRICE 100 and a monocular point
gray camera. Aiming at vehicle targets in aerial images, we utilized LabelImg [31] to generate 5000
annotation files of aerial images; the labeled aerial images are shown in Figure 3. Due to the different
UAV shooting angles and heights, vehicle appearance and sizee in these images are various and the
background is complex, so that the model they train can have good generalization for new aerial
videos. In addition, we supplemented the training dataset with public dataset UA-DETRAC [32].
The dataset had 10,900 images that were captured by a fixed surveillance camera with a high erection
height. The vehicle size in these images was medium, similar to aerial images taken by UAVs at
low altitude. Based on this training dataset, we chose a YOLOv3 network model for training. The
network model included YOLOv3-608, YOLOv3-416, and YOLOv3-302. These models had 106 network

Remote Sens. 2019, 11, 2278 5 of 23

layers, but normalized size and speed were different in image processing. Considering the speed and
detection effect, we chose to train the YOLOv3-608 network model and obtain the weights. In the
process of training, we used a batch size of 64, 0.9 momentum, and 0.0005 decay. The batch size
represented the number of sample per batch, which depends on GPU memory. Momentum in the
optimization method can affect the speed of gradient descent. Decay is the parameter of weight
attenuation that can prevent overfitting. Moreover, we set the initial learning rate, the step of gradient
decent, as 0.01, which could rapidly reduce los. Then we changed the learning rate to 0.001 to precisely
obtain optimized network-model weights.

Predict

Scale1

Scale2

Scale3 Predict

Predict

Fusion

Detection Results

Targets detection

Frame t

Frame t+1

GPU-accelerated Guannar Faneback

Multiple object tracking based on Dense trajectory voting

Dense optical flow trajectory generation

Detection bounding box

Trcaking Results

Hungarian

Optical flow trajectory Voting

Voting results

Target similarity (i and j)

 Data association

Data association

 matrix

Target association

 results

Effective

 optical

 flow

trajectory

Input images

YOLOv3

 Frame t+1

Target1 ID 6

Voting

Target i ID j
 Frame t

Figure 2. Overview of proposed multiple-object-tracking algorithm based on dense-trajectory voting
in aerial videos. The algorithm mainly consists of two sections, target detection and object tracking
based on dense-trajectory voting. Object tracking includes dense-optical-flow-trajectory generation
and voting, and data association based on dense-trajectory voting.

After network-model-training, we could perform online vehicle detection in aerial videos. In this
process, YOLOv3 regarded the detection problem as a regression problem, and its network architecture
adopted hopping connection between non-adjacent layers, and fusion multi-scale features by sampling
so that it can get satisfied detection results, including small-sized things. First of all, YOLOv3
normalized resolution of input images to 608× 608, since we choose YOLOv3-608 network. Then,
YOLOv3 performed down-sampling on the image with a step size of 32, and extracts features to
obtain a feature map with 19 × 19 resolution. Next, two up-samplings are carried out to obtain
feature maps of 38× 38 and 76× 76 respectively, with steps of 16 and 8 relative to the original image.
After up-sampling, the receptive field of the convolution layer became smaller and more sensitive to
small-sized images. At last, YOLOv3 fused the feature maps of specific scale to get many detection
bounding boxes. To filter multiple detection bounding boxes, we used NMS [33] algorithm to leave
the most likely one as the final test result.

Briefly, we train the YOLOv3 network model by establishing the training dataset of vehicle targets
in aerial images. This model could quickly obtain good target-detection results in aerial videos, which
is very important for multiple-object tracking.

Remote Sens. 2019, 11, 2278 6 of 23

LabelImg

Aerial images captured by our UAV system Aerial training image for vehicles

Training parameters

Batch size: 64

Momentum: 0.9

Decay: 0.0005

Learning rate: 0.01->0.001

Online targets detection

Network model training

Dataset UA-DETRAC

Network model

 weights
Training dataset

Scale1 Scale2 Scale3

Input

Stride:32

Resolution:19*19

Stride:16

Resolution:38*38Resolution:608*608

Stride:8

Resolution:76*76

Predict

Detection Results

Down

sample

Up

sample

Up

sample

Fusion

Figure 3. Target-detection process, including offline network-model training and online target
detection. In network-model training, the original aerial image was labeled by labelImage, and a
training dataset for vehicle target was established. Based on this dataset, we chose a YOLOv3 network
model for training. In online target detection, we can obtain a series of target-detection bounding boxes
by using training network-model weights.

2.2. Dense-Optical-Flow-Trajectory Generation and Voting

After target detection, we could obtain detection bounding boxes of the target in the current
frame. Then, we needed to determine the ID number of these targets. The optical-flow trajectories
of the target could accurately reflect the position change of the target and were still effective when
the camera moved. Considering that the optical-flow trajectories of the same target should overlap
completely at different times, we used this characteristic of optical-flow trajectories to achieve target
tracking in the algorithm.

In this part, we first used the GPU-accelerated Gunnar Farneback algorithm [34] to obtain the
optical flow of each pixel in adjacent frames, and combine the detection results to generate effective
optical-flow trajectories for each target; dense-optical-flow-trajectory generation is shown in Figure 4.
Suppose there are Frames t and t + 1. The Farneback method is a dense-optical-flow algorithm based
on gradient. In order to calculate optical flow of all the pixels of Frame t + 1, the algorithm interpolates
between easily traceable pixels to generalize to those whose motion is unclear. More precisely, the first
step is to calculate the image pyramid. The method observes the image from different scales and
calculates the next layer from the information obtained from the previous layer. The advantage is that
we could solve the aperture problem, and combine local and overall information. In the second step,
each layer of the image pyramid is processed by the algorithm, and the optical-flow field of the image

Remote Sens. 2019, 11, 2278 7 of 23

is smoothed by Gaussian blur. Image I(x, y) is modeled by a quadratic polynomial approximately,
as follows:

I(x, y) ∼
[

x
y

]T

A

[
x
y

]
+ bT

[
x
y

]
+ c = r1 + r2x + r3y + r4x2 + r5y2 + r6xy (1)

where x and y represent abscissa and ordinate in the image-coordinate system, A is a symmetric
matrix, b is a vector, and c is a scalar. ri are coefficients obtained from normalized convolution
and Equation (1). The algorithm converts the image to the space where the basis function is
(1, x, y, x2, y2, xy). We assumed At(x, y), bt(x, y), ct(x, y) is a polynomial coefficient matrix in frame
t. Then,

(x̃, ỹ) = (x, y) + d̃(x, y)

A(x, y) =
At(x, y) + At+1(x̃, ỹ)

2

∆b(x, y) = −1
2
(bt+1(x̃, ỹ)− bt(x, y)) + A(x, y)d̃(x, y)

(2)

where d̃(x, y) is the initial displacement field rounded to integer values, and (x̃, ỹ) represents the
position predicted in next frame. After that, we set S(x, y) as the scaling matrix, and

G(x, y) = S(x, y)T A(x, y)T A(x, y)S(x, y)

h(x, y) = S(x, y)T A(x, y)T∆b(x, y)
(3)

Detection bounding box

(Mask)
Image sequence

YOLOv3

Effective optical flow trajectories Frame t+1 Frame t

F1
F2

F3

F4

F5

F6

F1

F2
F3

F4

F5

F6

ID1

ID3
ID2

Target3：{F5,F6}

3

00

0
2

1

0
1
2

Frame t

Frame t+1

Dense optical flow Image pyramid

Optical flow voting(and)

Dense optical flow trajectory generation

Space

Conversion

Optical flow trajectory Voting

Target1：{F1,F2,F3}

Target2：{F4,F5}

 Frame t+1

ID1：{F1,F2,F3}

ID2：{F4,F5}

ID3：{F5,F6}

 Frame t

(Target i and j)

GPU-accelerated Guannar Farneback

Figure 4. Dense-optical-flow-trajectory generation and voting process. In this paper, we combined a
GPU-accelerated Gunnar Farneback algorithm with detection results to generate effective optical-flow
trajectories. To represent the voting process, we assumed that there were three detection targets in Frame
t + 1, and the optical-flow trajectories of these targets were {F1, F2, F3}, {F4, F5}, {F5, F6}, respectively.

Remote Sens. 2019, 11, 2278 8 of 23

Then, optical-flow field f low(x, y) was calculated as follows:

f low(x, y) = G(x, y)−1h(x, y) (4)

In this formula, f low(x, y) represents the displacement of pixel (x, y) of Frame t + 1 in the X and
Y directions relative to Frame t, and motion relations can be expressed as follows:

Framet+1(x, y) = Framet(x + f low(x, y)[0], y + f low(x, y)[1])

when x + f low(x, y)[0] <= P, y + f low(x, y)[1] <= Q,
(5)

where P and Q represent the length and width of the image, Framet+1(x, y) represents pixel (x,y) of
Frame t + 1, and Framet(x + f low(x, y)[0], y + f low(x, y)[1]) represents pixel (x + f low(x, y)[0], y +

f low(x, y)[1]) of Frame t + 1. These two pixels were actually the same pixel at different times.
The Farneback method is accurate and robust for calculating optical flow between adjacent frames
in aerial videos, and is not restricted by camera motion. It is also applicable when the video frame
rate is low. The algorithm is also accelerated by GPU, which improves calculation speed and makes
it suitable for practical applications. After obtaining dense-optical-flow information, we used the
YOLOv3 detection results as a mask to obtain effective optical flow for the target, as shown in Figure 4.

Thereafter, we voted on the optical-flow trajectories of each target by counting the target ID of
these optical-flow trajectories, as shown in Figure 4. Suppose there are three targets in Frame t + 1,
Targets 1, 2, and 3. According to the effective optical-flow trajectories of Frame t + 1, we only know
which optical-flow trajectories are in each target, but we do not know these targets’ ID. For example,
the optical-flow trajectories in Target 1 included F1, F2, and F3. In fact, there are many optical
trajectories for a target, at least several hundreds. Because the optical-flow trajectory can be extended
in time, we can see that these optical-flow trajectories also existed in Frame t; the target ID of each
optical-flow trajectory is known. For instance, optical-flow trajectory F2 belonged to the target of
ID 2, and optical-flow trajectory F5 belonged to target of IDs 2 and 3. Based on this information,
we voted on the optical-flow trajectories of each target in Frame t + 1, and counted their ID distribution.
For example, Target 1 in Frame t + 1 contains optical flows F1, F2, and F3. Because F1 belonged
to the target of ID 1, the optical flow voted for the target of ID 1. F2 and F3 also belonged to the
target of ID1, and two votes were cast for the target of ID 1. Target 2 in Frame t + 1 contained optical
flows F4 and F5. F4 belonged to the target of ID 2, so the optical flow voted for the target of ID 2.
F5 belonged to the target of IDs 2 and 3, and voted for the target of IDs 2 and 3. In this paper,
we used Vote(i,j) to indicate the vote result, and the value of Vote(i,j) was the number of optical-flow
trajectories in target i of Frame t + 1 that belonged to the ID j of Frame t. Therefore, the voting result
of Target 1 in Figure 4 is Vote(1,1) = 3, Vote(1,2) = 0, Vote(1,3) = 0; the voting result of Target 2 is
Vote(2,1) = 0, Vote(2,2) = 2, Vote(2,3) = 1. In addition, we needed to count the number of optical flows
in each target in Frame t. Nj represents the number of optical flows in the target of ID j in Frame t,
such as N1 = 3, N2 = 2.

2.3. Data-Association Based on Dense-Trajectory Voting

When we get the voting results of the optical-flow trajectories of the targets in Frame t + 1,
we need to confirm the ID of these targets. The process is shown in Figure 2. In this part, we show
data association based on dense-trajectory-voting results. In theory, the optical-flow trajectories of the
same target should completely overlap at different times. For example, Target 1 in Frame t + 1 and the
target of ID 1 in Frame t contain the optical trajectories of F1, F2 and F3. However, due to some errors
in actual optical-flow calculation, the optical-flow trajectories of the same target at different times
generally do not completely overlap, but in adjacent frames, the optical-flow overlap ratio between
the same targets should be much higher than that of different targets. Based on this, we could use the
voting results to measure the similarity of targets between adjacent frames. We assumed that Tt+1

i

Remote Sens. 2019, 11, 2278 9 of 23

represented target i in Frame t + 1, and Tt
j represented the target of ID j in Frame t. The number of

optical-flow trajectories of Tt
j is Nj, and the similarity between Tt

j and Tt+1
i , are calculated as follows:

Similarity(t+1,t)
(i,j) =

Vote(i,j)
Nj

(6)

In this way, we can get the similarity between every two targets in adjacent frames. In order to
confirm the matching relationship between the target in Frame t + 1 and the target of the known ID
in Frame t, we first used the calculated similarity to generate the data-association matrix of adjacent
frames. It was assumed that Frames t+1 and t had M and N detection targets, respectively, and the
similarity between Tt+1

i and Tt
j was Similarity(t+1,t)

(i,j) , i = 1, 2, 3..., M.j = 1, 2, 3, ..., N. Then, we used

NS(i, j) = 1− Similarity(t+1,t)
(i,j) to generate the data-association matrix, as follows:

D(t+1,t) =

NS(1, 1) NS(1, 2) · · · NS(1, N)

NS(2, 1) NS(2, 2) · · · NS(2, N)
...

...
. . .

...
NS(M, 1) NS(M, 2) · · · NS(M, N)

, (7)

Thereafter, we adopted the Hungarian algorithm to solve the data-association matrix and obtain
the optimal target-matching results between Frames t + 1 and t. Then, we needed to further judge
whether the two targets were really the same target according to whether the similarity between the
matched targets was greater than threshold TH. For example, if targets Tt+1

i and Tt
j were assigned

together by the Hungarian algorithm and their similarity satisfied Similarity(t+1,t)
(i,j) > TH, targets i

and j matched each other and belonged to the same target. This means IDt+1
i = IDt

j , and IDt+1
i

represents the ID number of the target Tt+1
i in Frame t + 1. Otherwise, it was considered that a new

target could emerge, and a new ID was assigned to detection target Tt+1
i . In the proposed algorithm,

we set TH = 0.6.
In addition, because the YOLOv3 algorithm may have missed targets and false targets,

our tracking algorithm adopted a prudent judgment strategy when creating a new target ID and
deleting an ID number. For unmatched targets or targets that failed to match in current frame t,
we set an observation period for them. When the number of consecutive occurrences of a target in a
subsequent frame exceeded the AN frame (observation period), we set it as a new target and assigned
a new ID that could reduce false targets generated by the detector. We set AN as 3 in this method.
For the unmatched target in previous frame t − 1, we temporarily retained the target in the tracking
result of the subsequent DN frames (reservation time), and used optical-flow calculation to update the
target position in the current frame. In this paper, DN = 10. If the target is rematched in the current
frame within the reservation time, the target is reidentified as being in the image. Otherwise, the target
left the image and destroyed the target ID. This can avoid a detector’s missed detection to a certain
extent. The proposed multiple-target algorithm flow is shown in Algorithm 1.

Remote Sens. 2019, 11, 2278 10 of 23

Algorithm 1: Proposed multiple-target-tracking method.
Input: Aerial video (Frame t, t = 0, 1, 2, ..., Q− 1), similarity threshold TH.
Output: Target-tracking result Rt = {IDt

i , Tt
i }, i = 1, 2, 3..., M of Frame t.

while t <= Q − 1 do
Get detection bounding boxes Tt

i , i = 1, 2, 3..., M by using YOLOv3 algorithm;
i = 1;
if t = 1 then

ID = 0;
while i <= M do

IDt
i = ID, and Rt ← {IDt

i , Tt
i } ;

ID = ID + 1;
i = i + 1;

end
else

Effective optical-flow-trajectory generation between Frames t and t − 1 by using
GPU-accelerated Gunnar Farneback, according to Formula (4);

while i <= M do
Get voting result Vote(i,j), j = 1, 2, ...N of optical-flow trajectories in target i for ID j;

Calculate similarity Similarity(t,t−1)
(i,j) , j = 1, 2, 3, ...N between Tt

i and Tt−1
j , as in

Formula (6);
i = i + 1;

end
Generate data-association matrix D(t,t−1) as in Formula (7), and obtain
target-association results by using Hungarian;

i = 1;
while i <= M do

if Target Tt
i and target Tt−1

j match each other then

if Similarity(t,t−1)
(i,j) > TH then

IDt
i = IDt−1

j , and Rt ← {IDt
i , Tt

i } ;

else
IDt

i = ID and, if the target appears in AN frames in succession,
Rt ← {IDt

i , Tt
i } ;

ID = ID + 1;
end

else
IDt

i = ID and, if the target appears in AN frames in succession, Rt ← {IDt
i , Tt

i }
;

ID = ID +1;
end
i = i + 1;

end
end
if Target Tt−1

j does not match, and the number of mismatch times is less than DN then
Rt ← {IDt−1

j , Tt−1
j }

end
t = t + 1 ;

end

Remote Sens. 2019, 11, 2278 11 of 23

3. Experiment Results

In this section, in order to evaluate the performance of the multiple-object-tracking algorithm
presented in this paper, we built an aerial-image dataset for vehicle targets, including a training
dataset and a test dataset. Based on the test dataset, we conducted many real experiments to test
algorithm performance, including qualitative experiments at different frame rates, and qualitative and
quantitative comparison experiments with other state-of-art algorithms.

3.1. Self-Built Dataset of Aerial Images

In this part, we introduce the self-built dataset of the aerial images, including training dataset
Train_UAVData, used to train the YOLOv3 network model, and test dataset Test_UAVData for the
performance evaluation of the proposed tracking algorithm.

Self-built training dataset Train_UAVData for training the YOLOv3 network model had 15,900
images—5000 aerial images and 10,900 pictures of the public traffic dataset UA-DETRAC [32].
Some images are shown in Figure 5a. The aerial images in this dataset were taken by a UAV system in
a variety of scenes. The UAV system was composed of DJI-MATRICE 100 and a monocular point gray
camera. Due to the different shooting angles and heights of the UAV, vehicle sizes in the images are
various and the background was complex. We used the LabelImg [31] tool to label vehicle targets in
these aerial images and generate label files for these images. The images of the public traffic dataset
UA-DETRAC [32] were captured by a fixed surveillance camera with a high erection height; vehicle
size was medium, which was similar to aerial images taken by UAVs at low altitude, as shown in
Figure 5b. This public dataset was labeled for vehicle targets and contains label files. In this paper,
we used this training dataset to offline-train the YOLOv3 network model to get new weights and
improve the vehicle-detection effect in aerial images.

The aerial images in test dataset Test_UAVData were collected by our UAV system at altitudes
of 50 to 60 m, which included four kinds of surveillance scenarios and multiple video frame rates.
Specifically, the test images were divided into four groups according to the scenarios, intersection,
highway triangular turntable, busy road, and crosroad, as shown in Figure 5c. In these scenarios,
the number of vehicles was large, the motion of vehicles was complex, such as straight running and
turning, and the size of vehicles varied greatly, which greatly challenged the object-tracking algorithm.
Each group of images contained more than 8000 images with a resolution of 1280× 960, including
three different frame rates. The video frame rates of Scenes 1 and 2 were 30, 10, and 5 fps, respectively,
and the video frame rates of Scenes 3 and 4 were 25, 8, and 4 fps, respectively. Each group of images
can be used to test the tracking performance and robustness of the algorithm at different frame rates.
At present, we posted this dataset on a website: https://frank804.github.io/.

https://frank804.github.io/

Remote Sens. 2019, 11, 2278 12 of 23

(b) Public Traffic Training DataSet: UA-DETRAC

(c) UAV-based Traffic Test DataSet

168.3597 mm

(a) Self-built Traffic Training DataSet based on UAV

Figure 5. The training dataset Train_UAVData included self-built training dataset (a) and public traffic
training dataset (b). Test_UAVData (c) has images which were taken by us using a drone equipped
with a point gray monocular camera in a variety of scenes.

3.2. Qualitative Experiments at Different Frame Rates

In our algorithm, we first used dataset Train_UAVData to train the YOLOv3 network model,
which is used to realize target detection in aerial videos. Based on this, we used the proposed
tracking algorithm based on dense-optical-flow-trajectory voting to get multiple-target-tracking results.
In this section, we conducted a number of experiments on the test dataset to prove that the proposed
multiple-object-tracking algorithm can obtain good tracking results in various complex environments
and at different frame rates. From the introduction of the self-built aerial-image dataset above, we can

Remote Sens. 2019, 11, 2278 13 of 23

see that the test dataset included four scenes, and each scenario included three different frame rates.
The experiment results on this dataset are shown in Figures 6 and 8.

S
c
e
n
e
1

3
0
fp

s
5
fp

s
1
0
fp

s

S
c
e
n
e
2

3
0
fp

s
5
fp

s
1
0
fp

s

#0066 #0096 #0114

#0022 #0032

#0011 #0016

#0038

#0019

#0102 #0144 #0168

#0034

#0017

#0048

#0024

#0056

#0028

Figure 6. Tracking results at three different frame rates in Scenes 1 and 2. Scene 1 is an intersection and
Scene 2 is a highway triangular turntable. In these two scenarios, the background was complex and
there were many trees. Target movement was also complicated, such as straight driving and turning a
corner, and target size greatly varied.

Remote Sens. 2019, 11, 2278 14 of 23

#0011 #0016

#0017 #0019

Scene1（5fps）

Figure 7. Tracking results of four tracking algorithms in Scene 1 with 5 fps frame rate, enlarged to
show tracking effect more clearly. This set of results mainly shows that the algorithm could track
crowded targets well when the frame rate of the intersection was only 5 frames.

Figures 6 and 7 shows the tracking results at three different frame rates in Scenes 1 and 2. Scene 1
was an intersection and Scene 2 was a highway triangular turntable, and the three frame rates were
30, 10, and 5 fps, respectively. Figure 8 displays the tracking results at three different frame rates in
Scenes 3 and 4. Scene 3 was a busy road and Scene 4 was a crosroad, and the three frame rates were
25, 8, and 4 fps. In these scenarios, there were many targets, such as in Scene 1, and the background
was complex. There were many trees, solar street lights, and some buildings, such as in Scenes 1 and
2. Target movement was also complicated, for example, stationary, straight driving, turning a corner,
turning back, and target size varied greatly.

Despite many difficulties, the proposed tracking method still yielded good results. The results
are shown in Figures 6 and 8. For example, (1) the proposed algorithm was able to track targets well
in both straight and curved roads at an arbitrary frame rate. Such as Target 13 in Scene 1 of Figure 6,
the black vehicle moving in a straight line at 30 fps, Target 14 at 10 fps, Target 15 at 5 fps; Target 39 in
Scene 2 of Figure 6, the white vehicle moving along the curve at 30 fps, Target 26 at 10 fps, and Target
23 at 5 fps. (2) Small targets could be tracked correctly, such as Target 2, Target 54 in 30 fps, Target 2,
Target 32 in 10 fps, and Target 2, and Target 30 in 5 fps in Scene 2 of Figure 6. (3) The detection and
tracking of stationary targets was effective, such as Targets 92, 102, 141 at 25, 8, and 4 fps, respectively,
in Scene 3 of Figure 8. (4) At a vehicle-intensive city intersection, the vehicle’s turning and U-turn
movements were also likely to cause target tracking to be lost from the curve. Our algorithm can
also achieve good tracking results. Such as Target 61 at 4 fps in Scene 4 of Figure 8. (5) The proposed
tracking algorithm also worked well for predictive tracking by optical-flow-trajectory voting, such
as Target 0 at 25 fps, Target 3 at 8 fps, and Target 1 at 4 fps in Scene 4 of Figure 8. (6) Object adhesion
caused by moving vehicles with closer movement, which is very easy to misjudge two targets as one.
Such as Target 217 in Scene 3 of Figure 9. However, our tracking algorithm could track them very well
by using the optical-flow voting method.

Remote Sens. 2019, 11, 2278 15 of 23

S
c
e
n
e
3

2
5
fp

s
4
fp

s
8
fp

s

S
c
e
n
e
4

2
5
fp

s
4
fp

s
8
fp

s

#0276 #0294 #0312

#0078 #0096

#0092 #0098 #0104

#0040#0032#0026

#0020#0016#0013

#0046 #0049 #052

#0120

Figure 8. Tracking results at three different frame rates in Scenes 3 and 4. Scene 3 is a busy road
and Scene 4 is a crosroad. There were many targets in these two scenarios that were prone to target
adhesion. Moving state of the target was also complex, such as stationary, straight driving, turning a
corner, and turning back.

Remote Sens. 2019, 11, 2278 16 of 23

#0102

#0156

#0046 #0049

#0052 #0055

Scene3（4fps）

Figure 9. Tracking results of four tracking algorithms in Scene 3 with 4 fps frame rate, enlarged to
show tracking effect more clearly. This set of results mainly show that the algorithm of this paper could
track high-speed moving vehicles well when acquisition frame rate was only 4 frames on the highway.

In general, it can be seen that we obtain great tracking performance in a certain number of
moving vehicles, which included few error detections and missed detections, and solved the adhesion
problem well.

3.3. Qualitative and Quantitative Comparison Experiments

In this section, we outline qualitative and quantitative comparison experiments with three
state-of-art tracking algorithms to further evaluate the performance of the proposed multiple-tracking
algorithm. These three tracking method were YOLOv3 + IOU [24], YOLOv3 + SORT [21], and YOLOv3
+ DeepSort [22], respectively. We selected two scenarios from test dataset Test_UAVData for the
experiment, Scenes 1 and 4, respectively. Scene 1 was an intersection with complex background and
vehicle movement. Scene 4 was a crosroad, there were many vehicles in the scene, and the motion of
the target was complicated.

After the self-built training dataset was trained for the YOLOv3 network model, deep-learning
algorithm YOLOv3 could generally obtain good detection results in various environments. On this
basis, YOLOv3 + IOU, YOLOv3 + SORT, and YOLOv3 + DeepSort could generally get good tracking
results at a normal frame rate. According to qualitative-experiment analysis above, we can see
that the tracking performance of the proposed algorithm was also excellent at normal frame rates.
Considering that, in practical applications, due to the limitation of data-transmission bandwidth or
the requirement of simultaneous transmission of multichannel videos, it is often necessary to process
low-frame-rate videos. Therefore, the tracking performance of a multiple-target-tracking algorithm at
low frame rate is also very important. In the comparative experiment, we tested these four algorithms
for low-frame-rate videos, and the frame rate was 5 fps. The experiment results in Scenes 1 and 4 are
shown in Figures 10, 11, 12 and 13. In addition, we quantitatively analyzed the tracking performance of
the four algorithms. Commonly used performance-evaluation parameters for multiple-target tracking
include FP, the number of false positives; FN, the number of missed targets; IDs, the number of target
ID changes; and MOTA [35], that intuitively express a tracker’s overall strengths and the calculation
formula is given by:

MOTA = 1− ∑ FN + FP + IDs
Total

(8)

where Total indicates the number of objects present in the image.

Remote Sens. 2019, 11, 2278 17 of 23

S
c
e
n

e
1
(5

fp
s)

#
0
0
1
2

#
0

0
2

4

Our Method

YOLOv3+IOU YOLOv3+SORT YOLOv3+DeepSort

#
0
0
3
0

#
0
0
3
6

#0012 #0024

#0030 #0036

Figure 10. Tacking results of this algorithm and three other tracking algorithms, YOLOv3 + IOU,
YOLOv3 + SORT, and YOLOv3 + DeepSort, in Scene 1. Scene 1 was an intersection with a complex
background and vehicle movement, and the video frame rate of the experimental images was 5 fps.

Remote Sens. 2019, 11, 2278 18 of 23

In the video with 5 fps frame rate in Scenes 1 and 4, we selected 200 consecutive images in each
scene for parameter statistics. The tracking-performance parameters of the four tracking methods are
shown in Table 1.

Table 1. Tracking performance parameters of four tracking methods.

Methods
Scene1 Scene4

Total FP FN IDs MOTA(%) Total FP FN IDs MOTA(%)

YOLOv3+IOU [24] 1888 72 824 56 49.57 2956 120 1010 314 51.15
YOLOv3+SORT [21] 1888 1448 74 214 8.05 2956 1302 84 106 49.52

YOLOv3+DeepSort [22] 1888 80 362 10 91.94 2956 10 60 20 96.95
Our Method 1888 2 14 4 98.94 2956 4 62 6 97.56

#0019

Our Method YOLOv3+IOU

YOLOv3+DeepSortYOLOv3+SORT

Scene1 #0024 (5fps)

Figure 11. Tracking results of four tracking algorithms in Scene 1 with frame rate of 5 fps, enlarged
to show the tracking effect more clearly. Scene 1 was an intersection with a complex background and
vehicle movement. This set of results showed that YOLOv3 + SORT easily lost the target and entered
the prediction stage, causing target ID to be frequently replaced.

The YOLOv3 + IOU method relies on the coincidence area of adjacent frame targets.
Since low-frame-rate detection caused the target to have a large interval in adjacent frames and
a small overlap area, especially in Scene 4 of Figure 12, the camera lens performed a vertical rotation
motion, so the tracking effect was poor and the FN was large. In order to solve the problem of
high-speed moving-target tracking, we constructed an image multiresolution wavelet pyramid in our
optical flow system and obtained displacement at different scales. The displacement of the gold-tower
layer and interlayer-displacement calculation were used to Reduce the displacement on different
scales compared to the original displacement. Therefore, it could still track well at low frame rates or
high-speed motion.

Remote Sens. 2019, 11, 2278 19 of 23

S
c
e
n

e
4

(4
fp

s)

#
0

2
2

2
#

0
2

9
4

Our Method

YOLOv3+IOU YOLOv3+SORT YOLOv3+DeepSort

#
0
3

3
0

#
0

3
9

6

#0222 #0294

#0396#0330

Figure 12. Tracking results of this algorithm and three other tracking algorithms in Scene 4, YOLOv3 +
IOU, YOLOv3 + SORT, and YOLOv3 + DeepSort. Scene 4 was a crosroad, there were many vehicles
in the scene, and the motion of the target was complicated. The video frame rate of the experimental
images was 5 fps.

Remote Sens. 2019, 11, 2278 20 of 23

548.15 mm

Our Method YOLOv3+IOU

YOLOv3+DeepSortYOLOv3+SORT

Scene4 #0330 (4fps)
325.5 mm

YOLOv3+DeepSort

Figure 13. Tracking results of the four tracking algorithms in Scene 4 with frame rate of 5 fps, which
are enlarged to show the tracking effect more clearly. Scene 4 is a crosroad, there are many vehicles in
the scene, and the motion of the target is complicated. This set of results show that YOLOv3 + DeepSort
easily lost the target when the target turned.

The YOLOv3 + SORT method relies on Kalman prediction and target area coincidence degree
judgment, so vehicle targets were easy to deviate from the curve trajectory tracking in the fast-turning
situation. For example, the tracking frame of white vehicle Target 4 in Scene 4 of Figure 12 seriously
deviated from the normal trajectory when cornering. Since low frame rate causes the adjacent frame
target spacing to be too large, YOLOv3 + SORT could easily lose the target and retrack it as a new target.

On the other hand, tracking lost targets is reserved for multiple frames for prediction. As a result,
rapidly moving vehicle targets are mistaken for a plurality of new targets, resulting in an increase
in FP value. For example, (1) black-vehicle Targets 44–54 in Scene 1 of Figure 10. (2) silver-car
Targets 65–75 in Scene 4 of Figure 12. In view of the fact that a target is easy to lose when turning,
our optical-flow-tracking system directly obtained the motion information of the target in the historical
frame, so the target could accurately track the curve motion.

The YOLOv3 + DeepSort method relies on previously identified target features for re-recognition,
so it is easy to lose targets when target detection is poor and appearance changes rapidly at low frame
rates. For example, (1) in Scene 1 of Figure 10, black-vehicle Target 24 made a wide 90 degree turn,
and white-vehicle Target 10 in Scene 4 of Figure 12 made a 180 degree sharp turn. The appearance of
the vehicle changed quickly from the side view to the rear view. (2) In Scene 4 of Figure 12, vehicles 8
and 77 passed through the intersection center because they had multiple frames to detect lost targets
and vehicle-angle changes, and were reidentified as Targets 84 and 87.

Compared with the three other algorithms in Table 1, the FP and FN values of our method
were relatively small. Performance parameter MOTA was 98.94% and 97.56% in Scenes 1 and
4, which were better than the other three algorithms, as shown in Figure 14. Although our
system has many processing mechanisms, there were some targets which could not be tracked well.
This was mainly because some targets had not been detected for a long time and could not produce
target-tracking results.

Remote Sens. 2019, 11, 2278 21 of 23

100%

80%

60%

40%

20%

0%

100%

80%

60%

40%

20%

0%

YOLOv3+IOU YOLOv3+SORT YOLOv3+DeepSort Our Method YOLOv3+IOU YOLOv3+SORT YOLOv3+DeepSort Our Method

Figure 14. Histogram of tracking-performance parameter MOTA of four tracking methods. The MOTA
of: YOLOv3 + IOU in Scenes 1 and 4 was 98.94% and 97.56%, YOLOv3 + SORT in Scenes 1 and 4 was
98.94% and 97.56%, and YOLOv3 + DeepSort in Scenes 1 and 4 was 98.94% and 97.56%. The MOTA of
our method was 98.94% and 97.56% in Scenes 1 and 4, which was better than the three other algorithms.

Additionally, we tested the time performance of the proposed tracking algorithm. The used
computer had an Intel i5-8400 CPU, 8 GB RAM, an Nvidia GeForce GTX1080Ti GPU, and 6 GB video
memory. The algorithm was implemented by two processes. One process was the YOLOv3 algorithm,
and its average calculation time was 46.0 ms. The other process was target tracking, with an average
time of about 93.2 ms, including optical-flow-trajectory generation, voting, and data association.
The two processes can run at the same time. With extra time such as coping images, resizing images
and so on, the average processing time of the algorithm for image processing at 1920× 1080 resolution
is 115.4 ms, higher than 93.2 ms slightly. Therefore, the proposed tracking algorithm could be fast,
efficient, and robust, and is suitable for practical scenarios.

In addition to the vehicle-tracking results presented in the paper, we also produced a video
demo with more experiment results to demonstrate the effectiveness and robustness of our tracking
algorithm, which you can review in the Supplementary Material. Moreover, we have posted the code
and the demo for multiple objects tracking algorithm based on dense trajectories voting in aerial videos
on a website: https://frank804.github.io/.

4. Conclusions

In this paper, we proposed a novel multiple-object-tracking algorithm based on dense-trajectory
voting in aerial videos. The core of the algorithm was to obtain target-tracking results by voting the
target ID on target-optical-flow trajectories, which is superior to obtain good tracking results in various
complex aerial environments and at different frame rates. More specifically, we first built training
dataset Train_UAVData of aerial images and used the YOLOv3 algorithm to obtain vehicle-detection
results in aerial videos. Then, combined with the detection results, we utilized a GPU-accelerated
Gunnar Farneback algorithm to process the adjacent frames and generate effective target-optical-flow
trajectories. On this basis, according to the target ID of these optical-flow trajectories, ID voting
and statistics were carried out for each target. After that, we used the voting results to measure
the similarity between detection objects in adjacent frames and obtain the tracking results through
data association.

Finally, in order to evaluated the tracking performance of this method, we conducted a number
of experiments on the self-built test dataset Test_UAVData, including qualitative experiments at
different frame rates, and qualitative and quantitative comparison experiments with other state-of-art
algorithms. A large number of experiment results verified that the proposed tracking algorithm
could work in various complex environments at different frame rates, and obtain effective and robust
tracking results when there are some situations such as target adhesion, large changes of target size,
complex backgrounds, similar target appearance, and complicated motion of targets. In addition,
compared with the three other advanced tracking algorithms, the tracking effect of YOLOv3 + IOU
and YOLOv3 + SORT is greatly reduced by low video frame rates, and their MOTA was less than 50%,

https://frank804.github.io/

Remote Sens. 2019, 11, 2278 22 of 23

while our tracking algorithm was robust in low-frame-rate aerial videos, the MOTA was about 98%,
and performance was much better than the other algorithms.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/19/2278/s1,
Video S1: Multiple-Object-Tracking Algorithm Based on Dense Trajectory Voting in Aerial Video.

Author Contributions: T.Y., D.L., and Y.B. designed the algorithm, and wrote the source code and the manuscript.
F.Z., S.L., M.W., Z.Z. and J.L. provided suggestions on the algorithm, and revised the entire manuscript.

Funding: This research was funded by National Natural Science Foundation of China grant number 61672429,
and National Natural Science Foundation of China grant number 61502364.

Acknowledgments: Thanks to the editors and reviewers for their time and thoughtful comments; their valuable
advice is greatly appreciated.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kumar, R.; Sawhney, H.; Samarasekera, S.; Hsu, S.; Tao, H.; Guo, Y.; Hanna, K.; Pope, A.; Wildes, R.;
Hirvonen, D. Aerial video surveillance and exploitation. Proc. IEEE 2001, 89, 1518–1539. [CrossRef]

2. Yang, T.; Li, Z.; Zhang, F.; Xie, B.; Li, J.; Liu, L. Panoramic uav surveillance and recycling system based on
structure-free camera array. IEEE Access 2019, 7, 25763–25778. [CrossRef]

3. Ke, R.; Li, Z.; Kim, S.; Ash, J.; Cui, Z.; Wang, Y. Real-Time Bidirectional Traffic Flow Parameter Estimation
From Aerial Videos. IEEE Trans. Intell. Transp. Syst. 2017, 18, 890–901. [CrossRef]

4. Zhao, X.; Pu, F.; Wang, Z.; Chen, H.; Xu, Z. Detection, Tracking, and Geolocation of Moving Vehicle From
UAV Using Monocular Camera. IEEE Access 2019, 7, 101160–101170. [CrossRef]

5. Cao, X.; Jiang, X.; Li, X.; Yan, P. Correlation-Based Tracking of Multiple Targets With Hierarchical Layered
Structure. IEEE Trans. Cybern. 2018, 48, 90–102. [CrossRef] [PubMed]

6. Bi, F.; Lei, M.; Wang, Y.; Huang, D. Remote Sensing Target Tracking in UAV Aerial Video Based on Saliency
Enhanced MDnet. IEEE Access 2019, 7, 76731–76740. [CrossRef]

7. Farmani, N.; Sun, L.; Pack, D.J. A Scalable Multitarget Tracking System for Cooperative Unmanned Aerial
Vehicles. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1947–1961. [CrossRef]

8. Bhattacharya, S.; Idrees, H.; Saleemi, I.; Ali, S.; Shah, M. Moving object detection and tracking in forward
looking infra-red aerial imagery. In Machine Vision Beyond Visible Spectrum; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 221–252.

9. Andres, B.; Kroeger, T.; Briggman, K.L.; Denk, W.; Korogod, N.; Knott, G.; Koethe, U.; Hamprecht, F.A.
Globally Optimal Closed-Surface Segmentation for Connectomics. In Proceedings of the European
Conference on Computer Vision, Florence, Italy, 7–13 October 2012; pp. 778–791.

10. Uzkent, B.; Hoffman, M.J.; Vodacek, A. Real-Time Vehicle Tracking in Aerial Video Using Hyperspectral
Features. In Proceedings of the Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, USA,
26 June–1 July 2016; pp. 1443–1451.

11. Liu, X.; Yang, T.; Li, J. Real-Time Ground Vehicle Detection in Aerial Infrared Imagery Based on Convolutional
Neural Network. Electronics 2018, 7, 78. [CrossRef]

12. Ochs, P.; Malik, J.; Brox, T. Segmentation of Moving Objects by Long Term Video Analysis. IEEE Trans.
Pattern Anal. Mach. Intell. 2014, 36, 1187–1200. [CrossRef] [PubMed]

13. Keuper, M.; Andres, B.; Brox, T. Motion Trajectory Segmentation via Minimum Cost Multicuts.
In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 3271–3279.

14. Li, J.; Dai, Y.; Li, C.; Shu, J.; Li, D.; Yang, T.; Lu, Z. Visual Detail Augmented Mapping for Small Aerial Target
Detection. Remote. Sens. 2019, 11, 14. [CrossRef]

15. Xiao, J.; Cheng, H.; Sawhney, H.; Han, F. Vehicle detection and tracking in wide field-of-view aerial video.
In Proceedings of the Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010;
pp. 679–684.

16. Szottka, I.; Butenuth, M. Tracking multiple vehicles in airborne image sequences of complex urban
environments. In Proceedings of the Urban Remote Sensing Event, Munich, Germany, 11–13 April 2011;
pp. 13–16.

http://www.mdpi.com/2072-4292/11/19/2278/s1
http://dx.doi.org/10.1109/5.959344
http://dx.doi.org/10.1109/ACCESS.2019.2900167
http://dx.doi.org/10.1109/TITS.2016.2595526
http://dx.doi.org/10.1109/ACCESS.2019.2929760
http://dx.doi.org/10.1109/TCYB.2016.2625320
http://www.ncbi.nlm.nih.gov/pubmed/27875236
http://dx.doi.org/10.1109/ACCESS.2019.2921315
http://dx.doi.org/10.1109/TAES.2017.2677746
http://dx.doi.org/10.3390/electronics7060078
http://dx.doi.org/10.1109/TPAMI.2013.242
http://www.ncbi.nlm.nih.gov/pubmed/26353280
http://dx.doi.org/10.3390/rs11010014

Remote Sens. 2019, 11, 2278 23 of 23

17. Wang, Y.; Zhang, Z.; Wang, Y. Moving Object Detection in Aerial Video. In Proceedings of the International
Conference on Machine Learning and Applications, Boca Raton, FL, USA, 12–15 December 2012; pp. 446–450.

18. Al-Kaff, A.; Gómez-Silva, M.J.; Moreno, F.M.; de la Escalera, A.; Armingol, J.M. An appearance-based
tracking algorithm for aerial search and rescue purposes. Sensors 2019, 19, 652. [CrossRef] [PubMed]

19. Chen, T.; Pennisi, A.; Li, Z.; Zhang, Y.; Sahli, H. A Hierarchical Association Framework for Multi-Object
Tracking in Airborne Videos. Remote. Sens. 2018, 10, 1347. [CrossRef]

20. Yin, Y.; Wang, X.; Xu, D.; Liu, F.; Wang, Y.; Wu, W. Robust visual detection—learning—tracking framework
for autonomous aerial refueling of UAVs. IEEE Trans. Instrum. Meas. 2016, 65, 510–521. [CrossRef]

21. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of
the 2016 IEEE International Conference on Image Processing, Phoenix, AZ, USA , 25–28 September 2016;
pp. 3464–3468.

22. Wojke, N.; Bewley, A.; Paulus, D. Simple Online and Realtime Tracking with a Deep Association
Metric. In Proceedings of the 2017 IEEE International Conference on Image Processing, Beijing, China,
17–20 September 2017; pp. 3645–3649.

23. Wojke, N.; Bewley, A. Deep Cosine Metric Learning for Person Re-identification. In Proceedings of the 2018
IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March
2018; pp. 748–756.

24. Bochinski, E.; Eiselein, V.; Sikora, T. High-speed tracking-by-detection without using image information.
In Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance,
Lecce, Italy, 29 August–1 September 2017; pp. 1–6.

25. Zhou, H.; Kong, H.; Wei, L.; Creighton, D.; Nahavandi, S. Efficient Road Detection and Tracking for
Unmanned Aerial Vehicle. IEEE Trans. Intell. Transp. Syst. 2015, 16, 297–309. [CrossRef]

26. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. CoRR. 2018. Available online: http:
//xxx.lanl.gov/abs/1804.02767 (accessed on 1 March 2019).

27. Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955, 2, 83–97.
[CrossRef]

28. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

29. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in Neural Information Processing Systems; 2015; pp. 91–99. Available
online: https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-
proposal-networks.pdf (accessed on 1 March 2019)

30. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.; Berg, A.C. SSD: Single shot multibox detector.
In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October
2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37.

31. Tzutalin. LabelImg. Available online: https://github.com/tzutalin/labelImg (accessed on 1 March 2019).
32. UA-DETRAC. Available online: http://detrac-db.rit.albany.edu/ (accessed on 1 March 2019).
33. Hosang, J.; Benenson, R.; Schiele, B. Learning Non-maximum Suppression. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 6469–6477.

34. Farneback, G. Two-Frame Motion Estimation Based on Polynomial Expansion. In Proceedings of the
Scandinavian Conference on Image Analysis, Halmstad, Sweden, 29 June–2 July 2003; pp. 363–370.

35. Bernardin, K.; Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics.
EURASIP J. Image Video Process. 2008, 2008, 246309. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s19030652
http://www.ncbi.nlm.nih.gov/pubmed/30764528
http://dx.doi.org/10.3390/rs10091347
http://dx.doi.org/10.1109/TIM.2015.2509318
http://dx.doi.org/10.1109/TITS.2014.2331353
http://xxx.lanl.gov/abs/1804.02767
http://xxx.lanl.gov/abs/1804.02767
http://dx.doi.org/10.1002/nav.3800020109
https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
https://github.com/tzutalin/labelImg
http://detrac-db.rit.albany.edu/
http://dx.doi.org/10.1155/2008/246309
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed Method
	Target Detection
	Dense-Optical-Flow-Trajectory Generation and Voting
	Data-Association Based on Dense-Trajectory Voting

	Experiment Results
	Self-Built Dataset of Aerial Images
	Qualitative Experiments at Different Frame Rates
	 Qualitative and Quantitative Comparison Experiments

	Conclusions
	References

