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Abstract: Coastal areas around the world are becoming increasingly urban, which has increased
stress to both natural and anthropogenic systems. In the United States, 52% of the population lives
along the coast, and North Carolina is in the top 10 fastest growing states. Within North Carolina,
the southeastern coast is the fastest growing region in the state. Therefore, this research has developed
a methodology that investigates the complex relationship between urbanization, land cover change,
and potential flood risk and tested the approach in a rapidly urbanizing region. A variety of data,
including satellite (PlanetScope) and airborne imagery (NAIP and Lidar) and vector data (C-CAP,
FEMA floodplains, and building permits), were used to assess changes through space and time.
The techniques consisted of (1) matrix change analysis, (2) a new approach to analyzing shorelines by
computing adjacency statistics for changes in wetland and urban development, and (3) calculating
risk using a fishnet, or tessellation, where hexagons of equal size (15 ha) were ranked into high,
medium, and low risk and comparing these results with the amount of urbanization. As other
research has shown, there was a significant relationship between residential development and wetland
loss. Where urban development has yet to occur, most of the remaining area is at risk to flooding.
Importantly, the combined methods used in this study have identified at-risk areas and places where
wetlands have migrated/transgressed in relationship to urban development. The combination of
techniques developed here has resulted in data that local government planners are using to evaluate
current development regulations and incorporating into the new long-range plan for the County
that will include smart growth and identification of risk. Additionally, results from this study area
are being utilized in an application to the Federal Emergency Management Agency’s Community
Response System which will provide residents with lower flood insurance costs.
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1. Introduction

Urbanization in the coastal area is an increasing worldwide problem where 10% of the total
population and 13% of the urban population are located at 10 m or less above sea level [1]. In the
United States, 52% of the population resides in coastal counties [2] and the Southeastern US has
seen a rapid rate of population growth [3]. In the Southeastern US, North Carolina has experienced
rapid population growth in the urban areas (i.e., Charlotte and Raleigh) and along the coast, where
Brunswick, New Hanover, and Pender Counties have the fastest rates of population growth in the
state [4]. Along with population growth, coastal flooding and storm-water management is an increasing
problem in the Southeastern US including coastal North Carolina [5]. For example, Hurricanes
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Floyd (September 16, 1999), Matthew (October 8, 2016), and Florence (September 12, 2018) resulted
in catastrophic inland flooding to the region and very little flooding due to storm-surge.

Sea level has risen in North Carolina by 2.07–2.82 mm/year during the 20th century [6] and will
likely rise 52–98 cm by 2100 [7], or 0.3 m at a low rate to an extreme rate of 25 m depending on the
model used [8]. As sea level changes, the tidal plume may move further inland which leads to a change
in wetland type. As such, when wetlands change, the ecosystem services that they provide will also change.
The value of ecosystem services to the protection of urbanizing coastal areas has been well documented [9].
Theoretically, in flat terrain, salt marshes accrete sediment and transgress inland at the same rate as
sea-level rise [10]. However, if sea-level rise surpasses the rate that marshes transgress inland, existing
marshes will become intertidal mud flats or open water [11]. Further upstream, tidal freshwater wetlands
will transition to salt tolerant vegetation as the plume moves further inland [12]. Freshwater wetlands
accrete sediment at a faster rate than salt marsh vegetation. Thus, the potential transition from freshwater
wetland to salt marsh vegetation would increase coastal susceptibility to inundation and flooding with
increased sea-level rise predictions. In Southeastern North Carolina, planners recognize the importance of
ecosystem services and the vulnerability of the coastal environment and need information to support
responsible decision making to revise policies for managing urban development. Wetlands are sensitive
and important natural resources that provide ecosystem services such as protection from storm impacts,
but most research focuses on mapping wetlands and there is little information about the geographic
connection between changes in wetlands and how these changes may relate to changes in upland areas
that are becoming increasingly at risk to flooding [12–14]. Therefore, the purpose of this research was
to utilize geospatial analysis techniques to synthesize a variety of data to derive indices of risk and to
derive new measures of shoreline change with respect to wetland change and urban development. It was
hypothesized that urban development has increased, wetland extent has decreased, and coastal flooding
poses a risk to both urban and rural areas. Where wetlands have changed, we developed a method for
classifying the type of change such as transgressing inland, becoming open water, or potential for flooding.
Therefore, this research quantitatively investigated the spatial and temporal relationship between types
of historic wetland change, flood potential, and urbanization in a manner that can be applied to other
study areas. We utilized results to inform local government planning regulations and prepare for future
land use development by identifying areas at risk to future development. Results from this research
will help the local government to plan as they strive for sustainable development and coastal resilience.
Additionally, methods utilized in this research may be translated to other coastal counties where flood
potential, urban growth, and changes in wetlands are key factors for identifying coastal vulnerabilities for
future urban development.

2. Materials and Methods

2.1. Study Area

Pender County is located in Southeastern North Carolina, on the South Atlantic coast of the
United States (Figure 1). The county is a mixture of agriculture, small towns, rivers, conservation lands,
and a rapidly urbanizing coastal area along Highway 17. In general, Southeastern North Carolina has
seen a substantial growth in population (Figure 2), where Brunswick and Pender counties had the
fastest rates of growth (3.6% and 3.5%, respectively) from 2016 to 2017 [4].

A variety of data sources were gathered and analyzed (Table 1) and each data source is fully
cited in the list of references. The data were analyzed using a variety of image processing and GIS
techniques (Figure 3). First, a digital elevation model (DEM) was assessed for potential stormwater
flooding. Second, since Hurricane Florence made landfall in Wilmington, NC, on September 14,
2018 we analyzed the extent of flooding from this event. Third, land cover change analysis was
conducted at two spatial scales (county-wide and coastal). Fourth, residential building through time
was assessed using building permits. Lastly, results from these assessments were then integrated into
a shoreline change analysis and urban development risk index.
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Figure 1. The study area is Pender County in Southeastern North Carolina (NC), in the Southeastern 

United States. The study area included two scales: 1) county-wide analysis and 2) higher spatial 

resolution along the coast (outlined in yellow) east of Highway 17 and west of the Intracoastal 

Waterway. (Data sources: NC Department of Transportation, Pender County zoning, and US 

Geological Survey). 

 

Figure 2. North Carolina population change (2016 to 2017). (Data source: US Census). 

Figure 1. The study area is Pender County in Southeastern North Carolina (NC), in the Southeastern
United States. The study area included two scales: (1) county-wide analysis and (2) higher spatial
resolution along the coast (outlined in yellow) east of Highway 17 and west of the Intracoastal Waterway.
(Data sources: NC Department of Transportation, Pender County zoning, and US Geological Survey).
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Table 1. List of data sources and their purpose.

Provider Data Format Map Scale/
Image Resolution Purpose

US Geological Survey National
Hydrology Dataset [15]

Vector
(lines & polygons) 1:12,000 Compared shoreline change

Federal Emergency
Management Agency

National Flood
Hazard Layer [16] Vector (polygons) 1:12,000

Determined distance of land cover
change, urban growth, and depressions

to the 100-year floodplain

National Oceanic
Atmospheric

Administration
(NOAA) Digital Coast

Coastal Change Analysis
Program (C-CAP) [17] Raster 30 × 30 m Computed change in wetlands from

1996 to 2010

Pender County,
North Carolina (NC)

Residential
Building Permits [18] Addresses Unknown Identified residential development

from 2006 through 2017

NC Department of
Emergency

Management
QL2 Lidar [19] Raster 1.5 × 1.5 m

Created a DEM to identify areas at
risk to flooding and DSM and DEM

were used to assist with
classifying wetlands

Planet PlanetScope imagery [20] Raster
multi-spectral 3 × 3 m Identified flooded areas from

Hurricane Florence

US Department of
Agriculture Farm
Service Agency

Digital
Orthophotography [21] Raster 1 × 1 m Classified wetlands from 1980 and

2016 imagery and computed changeRemote Sens. 2019, 11, x FOR PEER REVIEW 5 of 25 
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Figure 3. Project flowchart illustrating the methods for analyzing Hurricane Florence floodwater and
potential storm-water depressions (blue), classifying wetlands and computing change through time
(green), and identifying urbanization and coastal risk (orange).
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2.2. Flooding and Potential Flooding

Using the 2014 North Carolina (NC) statewide QL2 Lidar data [22], a digital elevation model (DEM)
for the Pender County study area (2,281 km2) was generated using the ArcGIS 10.5.1 [22] terrain dataset
tools according to the following steps: (1) convert LAS point cloud data [23] to a multipoint feature class,
(2) create a feature dataset and import the LAS bare earth feature class, (3) build a terrain dataset, and (4) use
the Terrain to Raster tool to generate the DEM [22]. The raw Lidar data was in the North Carolina State
Plane coordinate system (FIPS 3200, NAD 83 datum and units in feet) and the resulting DEM had 5 × 5 ft
cell size. The DEM was analyzed using flow direction and sink tools (ArcGIS 10.5.1) to detect topographic
depressions where stormwater may collect. A sensitivity analysis was conducted using several kernel sizes,
and it was decided that a minimum size of three adjacent cells (75 ft2) removed smaller, and potentially
erroneous, sinks while also keeping small areas that may collect stormwater.

Hurricane Florence made landfall in Wilmington, NC, on September 14, 2018 and subsequently
produced record rainfall in Southeastern NC [24] during an already record-setting year for rainfall [25].
We used this opportunity to map the flooding from Hurricane Florence and compared this with
depressions derived from the Lidar DEM to assess the validity of the geospatial model of potential
flooding. PlanetScope 4-band (Red, Green, Blue and Near-Infrared) pre- and post-Hurricane Florence
imagery were obtained from Planet [20]. Pre-Florence imagery was taken on August 15, 23, and 26, while
Post-Florence imagery was taken on September 18 and 19. For both pre- and post-hurricane imagery,
a normalized difference water index (NDWI) was calculated, and then an ISODATA unsupervised
classification was conducted on the combined RGBN-IR and NDWI imagery. NDWI was calculated
using this ratio: (Green-NearIR)/(Green+NearIR) [26].

Water was further processed to remove shadows (from trees and clouds) that were misclassified as
water. The two classified images (pre and post storm) were compared to determine the extent of flooding
attributable to the record rainfall from Hurricane Florence (Figure 4). These maps were verified with local
government employees who checked them against their records from the post hurricane damage assessment.
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2.3. Land Cover Change

Two approaches were used to map land cover change through time. First, two land cover maps,
from 1996 and 2010, from the National Oceanic Atmospheric Administration (NOAA)’ Coastal Change
Analysis Program (C-CAP) were used to identify land cover change [17]. The C-CAP program uses
data from the National Landcover Dataset (NLCD) and has a spatial resolution of 30 × 30 m. Second,
a higher spatial resolution approach was used in the coastal area to map wetlands from 1980 to 2016
using aerial photography (Aerial Photo Single Frames) and National Agriculture Imagery Program
(NAIP) digital orthophoto quarter quads (DOQQs) [21,27]. Although some may consider aerial
photography to be a dated source of information, the NAIP program provides useful imagery for
mapping areas that are too large to be cost effective to purchase expensive high-resolution commercial
imagery (e.g., WorldView), and this imagery also provides enough spectral information to derive
general land cover classes. Therefore, while PlanetScope imagery worked well for county-wide analysis
of flood inundation from Hurricane Florence, the PlanetScope imagery was tested with NAIP aerial
photography for classifying land cover. NAIP provided more detail and better image classification
than the PlanetScope imagery. Therefore, the NAIP imagery was used to map land cover along the
coastal study area where greater detail was required (Figure 5).

Color infrared (CIR) aerial photographs (acquired on October 1, 1980 with a scale of 1:80:000)
were georeferenced to the PlanetScope 2018 post-storm imagery (with an RMSE under 4.5, and then
mosaicked together in ArcMap 10.5.1. Twelve NAIP DOQQs from 2016 were obtained during leaf-on
conditions (May 16, 2016; June 12, 2016; and June 19, 2016) with 1 × 1 m spatial resolution and were
mosaicked together in ArcMap 10.5.1.
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imagery from Planet (right) for a portion of coastal Pender County.
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The 2014 QL2 Lidar data were processed to create a normalized digital surface model (DSM)
and DEM with 1 × 1 m spatial resolution to coincide with the NAIP 2016 imagery. The four bands
(red (R), green (G), blue (B), and near-infrared (NIR)) from the NAIP imagery as well as the Lidar
DSM and DEM layers were classified using eCognition [28]. For both image years (1980 and 2016),
an object-oriented classification technique using a multiresolution segmentation algorithm was used to
segment the image into objects [29]. The objects were then classified using a decision tree process into
five land cover types: water, emergent wetland, forest, agriculture, and developed land. Developed
land was any area that has evidence of development (homes, roads, and managed grassland such as
parks and planned open space). This decision-tree approach removed the speckled and potentially
inaccurate representation of forested areas. An accuracy assessment was conducted where 50 randomly
selected points, with a minimum of 30 m between points, were generated for each land cover class and
each date/year. The overall accuracy for 1980 was 93% and 2016 was 92%. The two final maps where
then compared using a classification change matrix. With two dates to compare, another approach to
analyze change was a shoreline assessment of change, where each segment was assessed for the type
of change that has occurred.

2.4. Urban Development

Residential building permits from 2006 through 2017 were obtained from Pender County [18] and
were geocoded in ArcMap to analyze patterns of growth. The raw data were standardized to create
addresses that were suitable for geocoding, and unmatched records were checked and re-matched
until all acceptable data were geocoded. Some records did not have a street address and so these
were not able to be geocoded; however, the iterative geocoding process resulted in an average of
90 percent of the records being geocoded (Table 2). To identify spatial patterns in the point data,
a fishnet, or tessellation, using hexagons was generated for the coastal area. A variety of hexagon
sizes were tested, and polygons of 15 hectares were chosen because this size was small enough to see
patterns within subdivisions and not too small that there would be too many polygons with no data.

Table 2. Residential building permits (2006–2017): geocoding results.

Year Number of Records Number of
Geocoded Records Percent Geocoded

2006 655 586 89.47
2007 553 488 88.25
2008 365 312 85.48
2009 224 196 87.50
2010 235 209 88.94
2011 246 213 86.59
2012 323 281 87.00
2013 381 349 91.60
2014 435 401 92.18
2015 538 513 95.35
2016 574 534 93.03
2017 525 473 90.10

2.5. Coastal Vulnerability and Urban Development

To assess the relationship between urban development and vulnerability, several factors were
aggregated to 15 ha tessellation polygons: total area of depressions, total area of wetlands, and average
distance to floodplains. Each of these factors was converted to ranks (0, 1, 2, and 3) and then a total risk
was calculated as the sum of the three ranked variables. Therefore, each tessellation polygon could
have a total risk between 0 (all three variables ranked 0) and 9 (all three variables ranked with a value
of 3). The total risk was then compared with the amount of developed land (measured as a percent
of the tessellation polygon) to identify locations where there has been high urban development and
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high risk. Additionally, for areas that have not been fully developed (percent developed less than
25%), a comparison was made with risk to identify places that should be carefully considered before
further development takes place. This last analysis is an important step in the spatial assessment of this
coastal environment because it provides planners and decision-makers with a quantitative assessment
of future development.

3. Results

3.1. Flooding and Potential Flooding

The derived 2014 DEM for Pender County was analyzed to identify potential places where
stormwater may collect. In total, 73 ha (97.44%) were identified as depressions within wetlands, forests,
and grasslands while only 0.655 ha (0.09%) occurred within developed/urban areas (Table 3).

Table 3. Amount of potential stormwater depressions by land cover type (2010).

General Land
Cover Class Land Cover Class Area

(ha)
Total Area

(ha)
Percent

(%)

Developed

High Intensity Developed 0.01

0.655 0.09
Medium Intensity Developed 0.023

Low Intensity Developed 0.084
Developed Open Space 0.538

Agriculture
Cultivated 0.546

10.231 13.67Pasture/Hay 9.665
Grassland 0.02

Forest
Deciduous Forest 3.096

17.211 23.00Evergreen Forest 0.11
Mixed Forest 14.005

Scrub/Shrub Scrub/Shrub 1.088 1.088 1.45

Wetland

Palustrine Forested Wetland 8.385

44.643 59.30
Palustrine Scrub/Shrub Wetland 26.052

Palustrine Emergent Wetland 8.085
Estuarine Scrub/Shrub Wetland 2.111

Estuarine Emergent Wetland 0.01

Bare
Unconsolidated Shore 0.667

0.67 0.89Bare Land 0.003

Water Water 0.318 0.318 0.42

Total 74.816

Before Hurricane Florence, Pender County had 82.55 km2 of surface water (mapped using
August 2018 PlanetScope imagery), and a few days after the storm, an additional 123.27 km2 of land
were inundated (mapped using PlanetScope Imagery taken in September), resulting in 205.83 km2 of
inundated land (a 149% increase in area covered by water) (Figure 4). Flooding was greatest along the
Cape Fear River, Northeast Cape Fear River, and Holly Shelter Game Land while there was much less
flooding along the coast where there was an increase of only 0.17 ha (19%) (Figure 6). Even though
there was less flooding along the coast, this is where much of the population lives, which means
the impact from flooding mostly impacted the rural part of the county, with possibly less access to
emergency services, versus the coastal urban area which had less flooding.
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Figure 6. Hurricane Florence (September 2018) caused extensive inland flooding (122 km2), but much
less flooding (only 1.07 km2 or less than 1%) along the coast.

The potential flooding from the Lidar DEM analysis was compared with the actual flooding from
Hurricane Florence, and although the total area is different (Hurricane Florence had much greater
area of impact, 12,320 ha, than the small depressions generated using the DEM, 72.45 ha), there was
no statistical difference between the locations of the two data products. For example, the areas of
inundation from the hurricane and DEM depressions were intersected with the 2010 land cover data to
compute percent inundation by land cover type. These percentages were compared using correlation
(correlation coefficient = 0.98544), regression (R2 = 0.9711), and F Test (P = 0.74286). These analyses
show that the two datasets were very similar and were not statistically different.

3.2. Land Cover Change

From 1996 to 2010, Pender County had a 4.39% loss of forest, 1.02% loss of wetlands, and 6.57%
growth in urban area along the coast (Figure 7 and Table 4). Additionally, while there was only a 1%
loss in wetlands for all of Pender County, there was more (2.28%) loss of wetlands in the coastal zone
where there was also high growth in urban development. Across Pender County, the loss of forest is
attributable to an increase in agricultural/cleared land used for either timber or row crops (Table 5).
Conversely, the higher resolution aerial photography (1980 and 2016) in the coastal area was dominated
by 22.70% growth in urban development (from 12.69% to 35.40%) mostly because of a loss in forest
(18.81%) and agriculture (6.86%) (Table 6). Figure 8 illustrates the 2016 land cover (a) and the change
to new urban land from 1980 to 2016 (b). Notice the large tracts of forest and agriculture that were
converted to developed areas which are dominated by residential subdivisions.
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Figure 7. Land cover change (1996 to 2010) illustrating forest (green) and wetland (magenta) loss and
undeveloped areas that have become developed (red). (Data Source: C-CAP).

Table 4. Percent Change in Land Cover for Pender County and Coastal Pender County (1996–2010)
(Data source: C-CAP).

Pender County Coastal Pender County

Land
Cover Type

1996
(Percent)

2010
(Percent)

Change
(2010–1996)

1996
(Percent)

2010
(Percent)

Change
(2010–1996)

Developed 2.70 3.38 0.68 19.06 25.63 6.57
Agriculture 17.07 18.45 1.38 17.35 14.18 −3.17

Forest 28.35 23.96 −4.39 14.56 15.22 0.66
Scrub/Shrub 11.61 14.59 2.98 12.20 9.65 −2.55

Wetland 37.64 36.62 −1.02 31.56 29.28 −2.28
Bare 0.46 0.81 0.35 0.10 0.90 0.80

Water 2.15 2.21 0.06 5.16 5.15 −0.01
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Table 5. Land Cover Change Matrix (in percent): 1996–2010. (Data source: C-CAP).

2010

Developed Agriculture Forest Scrub/Shrub Wetland Bare Water Total
(1996)

1996

Developed 2.70 0.00 0.00 0.00 0.00 0.00 0.00 2.70

Agriculture 0.32 14.99 0.29 1.24 0.15 0.06 0.01 17.07

Forest 0.13 2.57 21.60 3.82 0.04 0.18 0.01 28.35

Scrub/Shrub 0.12 0.62 1.82 8.75 0.17 0.13 0.01 11.61

Wetland 0.11 0.23 0.24 0.76 36.18 0.07 0.05 37.64

Bare 0.00 0.02 0.00 0.00 0.04 0.36 0.04 0.46

Water 0.00 0.00 0.00 0.00 0.04 0.01 2.09 2.15

Total (2010) 3.38 18.45 23.96 14.59 36.62 0.81 2.21 100.00

Table 6. Land Cover Change Matrix (in percent) for Coastal Pender County: 1980–2016. (Data source: NAIP).

2016

Developed Agriculture Forest Wetlands Water Total
(1980)

1980

Developed 9.52 0.11 2.82 0.14 0.10 12.69

Agriculture 6.86 0.66 3.98 0.02 0.08 11.60

Forest 18.81 2.47 42.41 0.49 0.40 64.58

Wetlands 0.10 0.00 0.16 1.27 0.34 1.88

Water 0.11 0.00 0.15 0.84 8.15 9.25

Total
(2016) 35.40 3.24 49.53 2.76 9.08 100.00
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where the main loss to urban areas was forest (green) and agriculture (yellow).
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A statistical comparison between the land cover changes in the county versus the coast showed
that there was low correlation (correlation coefficient = 0.49195) and low regression (R2 = 0.3919),
but an ANOVA determined that there was no statistical difference between the two change matrices.
It is expected that the two change matrices (county and coast) should not be statistically different
given their geographic proximity; however, there are clear differences between the two as described
above. Therefore, an ANOVA comparison using only the changes (off-diagonals) showed that there
was a significant difference between the county and the coast (p = 0.078). The county was dominated
by changes in forest while the coast had the largest change in urban growth, and even though the
change in wetlands was small (1.02% in the county and 2.28% in the coast), the change in wetlands
was significantly different along the coast in comparison with the inland part of the county. Regarding
wetland change through time, wetlands comprised a smaller area compared to other cover types,
which is expected. Hence, a closer look at the changes in coastal wetlands was necessary.

To quantify where wetland changes have taken place and how they have transitioned, we created
a shoreline (total length of 143,774 m), divided it into equal lengths (1000 m), and classified each
segment based on the type of wetland change along each segment (n = 145). Wetland change along the
shoreline, from 1980 to 2016, had several types of change (Figure 9):

1. Urban growth: wetland loss and urban gain
2. Marsh migration inland/upland: wetland loss and adjacent wetland gain
3. Sea-level rise and/or decrease in sedimentation: wetland loss with no change in urban areas
4. Wetland gain and adjacent urban growth: increase in sedimentation resulted in the expansion of wetlands
5. Wetland gain and no urban growth: increased sedimentation to maintain and expansion of wetlands

Most of the study area shoreline (100 km or 69 percent) was class 1 (wetland loss and urban growth),
which was expected given the large amount of urban development. Class 2 (wetland/salt marsh migration)
was the next largest at 22 km (15 percent), and close behind was class 4 (wetland gain/urban growth) at 19
km (13 percent). Lastly, there was only 2 km (1.4 percent) of wetland gain (class 5) and 1 km (0.7 percent) of
wetland loss with no other adjacent urbanization or wetland change (class 3).
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Figure 9. Coastal shoreline classifications where each 1000 m segment was assigned a type of wetland
change depending on the adjacent land cover change. The dominant change was wetland loss and urban
growth (100 km), but there are smaller areas that had other changes. For example, (A) and (B) are examples
of tidal creeks that had a variety of changes including wetland migration, and (C) illustrates a closer look at
wetland migration where marsh loss was accompanied with wetland gain on the inland side.
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3.3. Urban Development

Geocoded new residential (not renovations or improvements) building permits from 2006 to 2017
were analyzed to identify patterns through space and time. After several iterations, 4537 records
(90.31%) were geocoded (Figure 10A). Both 2006 and 2007 had high levels of permits, and the county
had more than the coast. However, these levels dropped considerably from 2008 through 2011,
which mimics the 18 month national recession which began in December 2007. After the low period,
building permits steadily increased from 2012 through 2015 and then declined through 2017. Unlike
the earlier years, the coastal area had more permits from the rest of the county from 2012 to 2017.

The building permit points were summarized by polygon (Figure 10B). The rate of change,
or slope of the regression line, was calculated for each tessellation polygon which indicated growth
(positive slope), no growth (slope near zero), or decline (negative slope) (Figure 11). Most hexagons
(74.13%) did not have a positive or negative change in building permits from 2009 to 2017; however,
all hexagons with the steepest positive slope were also located within the floodplain or within 2000 m
of the floodplain, which indicates that the areas with the fastest growing urbanization also have the
highest risk to flooding (Table 7).
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Figure 11. Number of residential building permits (from 2006 through 2017) (A) and rate of new
residential construction (slope of the regression line) for each hexagon (B). Increasing rates of permits
through time have a positive slope (shown in orange and red).

Table 7. Rate of change in building permits (2009 to 2017) and distance to floodplain.

Distance (m) from 100-yr Floodplain

Slope
(Rate Change) 0 * 500 1000 2000 Over 2000

N
um

be
r

of
he

xa
go

ns

–0.3 0 1 0 0 0

–0.29 to –0.05 15 14 7 4 1
–0.04 to −0.05 253 125 112 116 8
–0.06 to 0.30 58 44 12 5 1
0.31 to 2.08 11 12 5 0 0

Total 337 196 136 125 10
Percent 41.90% 24.40% 16.90% 15.50% 1.20%

* Distance of “0” indicates these building permits were located within the floodplain.

The land cover data (percent urban/developed in 2016 and the percent change in developed areas
from 1980 to 2016, Figure 12) were compared with the total number of residential building permits and
the rate/slope of residential building permits. Hypothetically, if there is a strong and direct relationship
between the land cover data (derived from imagery) and the history of building permits, then if there is
a shortage of imagery, geocoding building permits can be a useful secondary source of data to identify
areas of growth. However, in this study area, there was no direct relationship between total number
of permits and amount of development (R2 = 0.1322) and no direct relationship between the rate of
permits through time and the percent change in developed area (R2 = 0.0404). Therefore, the two data
sources are providing independent information about the urbanization of the coastal study area, where
1) the percentage of the tessellation polygon that is urban can relate to the degree of impervious surface
and 2) the rate of change (slope) of permits indicates the direction of urbanization. Both are indicators
of urbanization, but in this case, they are providing complimentary and independent information
rather than redundant information.
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3.4. Comparison of Urban Development with Flood Risk

Topographic depressions (identified from processing Lidar data), distance to floodplain, and total
area of wetlands are the primary factors that indicate risk along the coast (Figure 13). Most of the coastal
area has topographic depressions, which increases vulnerability to stormwater flooding, (Figure 13a).
The distance to the 100 year floodplain was calculated (Figure 13b) and the total area of wetlands
(Figure 13c) was the combination of total wetland area in the most recent imagery (2016) as well as
the area of wetland loss (2008–2016) because risk is related to the existing wetland habitat as well as
areas that are no longer wetlands since wetland habitats ameliorate the impact of storms. Total risk
was computed by ranking (0, 1, 2, or 3) each of the three variables (area of depressions, distance to
floodplain, and area of wetlands) and summing the ranks. Figure 13 illustrates the ranks and total risk.
Of the total number of hexagons (n = 804), only three had 0 risk, while 318 (39.6%) had low risk (1, 2,
or 3), 324 (40.3%) had medium risk (ranks 4 and 5), and 159 (20%) had high risk (ranks, 6, 7, 8, and 9).
Only four hexagons had the highest possible ranking (9), which means these had the highest risk for
all three factors

Coastal resiliency necessitates an understanding of where urban development is occurring
in relationship with the level of risk. Therefore, we compared risk with urbanization to identify where
current development is at risk and where potential future development may be at risk and can be
protected or land use development regulations can be adopted to protect homeowners and their
property. The area of urban land in 2016 was summarized to the tessellation polygons, and although
there is still undeveloped land, most of the coastal area (666 tessellations or 83%) has been at least 25%
developed (Figure 14). These developing hexagons are a mixture of low risk (273 or 34%), medium
risk (269 or 33%), and high risk (124 or 15%), which means 48% of the study area is urban and at risk.
Conversely, of the hexagons that are not yet developed (urban ≤ 25%) (138 out of 804), there are 55 (7%)
that have a medium risk and 35 (4%) that have a high risk, which means that 65% of the undeveloped
area is at risk and may get developed, and these places need to have careful considerations to reduce
the risk to these properties.
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Figure 13. Flood risk in the coastal area is a combination of area of surface depressions (A), distance to
floodplain (B), and area of wetlands (C). The total risk is a sum of the rankings for each of these factors (D).
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Figure 14. Urbanization (percent) compared with risk: places with at least 25% development (2016) or
increasing development (slope greater than 0.1) of medium risk (orange) or high risk (red) and places
with low development (less than 25 percent) of medium (light green) or high risk (dark green).
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4. Discussion

The goal was to utilize a variety of readily available data and a combination of geospatial analysis
techniques to investigate the relationship between land cover change, urbanization, wetland loss,
and potential flooding with respect to how these factors spatially interact. Most studies of this type
have focused on a relatively small study area, such as one urban area or a bay/estuary, where the
investigation identifies where changes have occurred and computes various metrics (e.g., rate of
wetland loss) [30–40]. Conversely, in this project, we investigated a large study area (2281 km2) where
we conducted a generalized/regional assessment of the changing environment and investigated a large
coastal area (105 km2) in much greater detail using high-resolution data to look for patterns and trends
for a variety of factors. Unlike previous studies, it is the combination of techniques that enabled
the careful investigation of several changes throughout the area. We statistically tested the changes
in the county versus the coast and identified that (1) the larger county area was dominated by a loss
in forested area while the coast had the largest increase in urban development and (2) the change
in wetlands was significantly greater along the coast in comparison with the inland part of the county.

Unlike previous research, this project utilized a vast amount of data at a very high resolution.
For example, we analyzed aerial photography for the entire coastal zone including classifying the
shoreline (144 km) into the type of changes that have taken place. We demonstrated that computing
resources, software, data, and algorithms are fully capable of analyzing a large volume of data at
multiple spatial scales to derive an understanding of the complex changes and the interplay among
the various coastal processes at work in this area. Future research could build upon this multi-scale
approach by using imagery obtained from unmanned aerial systems (UASs) at a very local scale where
land cover and shoreline changes have been identified [41–45]. Instrumentation aboard unmanned
aerial vehicles (UAVs) can provide excellent spatial resolution as well as multispectral bands; however,
the coverage is limited because of battery time for overflights and access to launch and retrieve
equipment can be problematic [44,45]. Therefore, a multi-scale approach that identifies critically
changing locations is a prudent approach to identifying and ranking UAS missions.

The primary drivers of change to wetlands in a coastal environment are subsidence (which is
minimal to non-existent in this study area), sea-level rise (SLR), and sedimentation. This project
has documented that land cover change and urbanization along the coast has been substantial and
is directly related to the natural and anthropogenic processes. Although the overall rate of change
in wetlands was small (2.28% loss in wetlands along the coast), which is normal for a large study area,
the location of change was significantly related to the processes that impact the coast. For example, most
of the study area shoreline (100 km or 69%) had wetland loss and adjacent urban growth while a small
amount (19 km or 13%) of shoreline had wetland gain in areas of urbanization which indicates that the
sedimentation rate from development is keeping up with SLR. Evidence of wetland migration (22 km or
15%) demonstrated that SLR has necessitated that the environment keeps up with this rising water level,
and subsequently, new wetlands/salt marsh have been established in the landward direction of the
original marsh. These results confirm the conceptual model of wetland transition and migration [10,11]
and the methods to derive this information. In this study area, urban expansion was the dominant
detrimental impact to the coastal salt marsh; however, the variety of marsh changes provided examples
of all types of coastal wetland change which demonstrates that the coastal environment is complex but
directly correlated urbanization with wetland change.

The use of high spatial resolution Lidar data to derive a DEM, which was then used to identify
potential places of storm-water collection/flooding, worked well in this study area. We utilized Planet
satellite imagery to map water before and after a hurricane (Florence) to derive a map of floodwater,
and when this was compared with DEM-derived potential stormwater collection points, these data
matched well (significantly correlated) with the recent storm event. What this means is that there
is value in having a historical record of flooding, but the additional topographic assessment based
on a high spatial resolution DEM provides an independent predictive assessment of flood potential,
which helps with planning and decision making to ameliorate stakeholders’ concerns that may negate



Remote Sens. 2019, 11, 2260 18 of 23

historical events. Therefore, although each site area is different and Lidar data vary considerably,
it is a useful method to potentially identify stormwater management issues. Additionally, potential
stormwater depressions provide an important addition to support local government planning and the
management of rapidly urbanizing areas where stormwater management is an increasing problem
in many areas [46–51]. Traditionally, FEMA floodplain boundaries are the de-facto standard to
measure flood risk, but they have been highly criticized and do not provide a complete picture of
flood potential [52,53].

The identification of coastal risk from flooding and wetland loss documented areas that can be
further investigated. For example, future analysis could incorporate the Lidar elevation data (DSM
and DEM) along with the wetland maps (which were mapped using NAIP aerial photography and
Lidar) and change results to further identify areas at risk to wetland loss [54]. The most popular model
to assess potential changes to coastal marshes due to SLR is SLAMM (sea-level affecting marshes
model) [55]; however, there is an increasing amount of evidence that the output from this model is
directly related to the accuracy (horizontal and vertical) of elevation and habitat mapping data [56].
Therefore, another potential future analysis with data derived from this project will be to test the
accuracy of the SLAMM model in this study area. Now that we have documented areas at risk, it will be
interesting and potentially useful to see if SLAMM also identifies these same areas at risk. Considering
the reliance on elevation data (which can be inaccurate [57–77]), many researches have questioned the
validity of the SLAMM output [54,56]. For example, one major drawback of SLAMM is that it does
not incorporate urban development, or other land use conversions, into the model and since this is
a driver of change in this study area, another modeling option is the use of ST-SIM (state-and-transition
simulation model) [78]. The advantage of ST-SIM is that the model incorporates all types of changes,
or transitions, and can simulate various scenarios such as SLR, urban development, loss of forest,
agriculture, wetlands, etc. The simulations can then be compared to previous historical data to validate
the transitions and plan for future land use development. We are currently testing ST-SIM at various
locations along the North Carolina coast, such as barrier islands and large tidal creeks, where there have
been changes in the tidal freshwater habitats that have been transitioning to saltwater marshes [12,79].

With regards to urban development, this study utilized an often unused and yet valuable data
source: building permits. All property owners in the United States must purchase a building permit to
develop land and therefore these records can be useful, if geocoded, to identifying spatial and temporal
patterns. The study area described here has been rapidly urbanizing, like most coastal areas around
the world; hence, most of the area is already developed or is in the process of been converted from
natural to developed land. Only 11% of the study area is less than 25% developed and yet much of
this area is at risk to possible flooding, wetlands loss, and short distance to floodplains. In this study,
we used a tessellation approach to quantifying coastal risk and comparing it with urban development,
but there are other approaches that can be utilized. For example, a multi-criteria stochastic modeling
approach is simple and popular [80–85] but runs the risk of not accounting for inherent error in spatial
data. Alternatively, fuzzy set methods and change vector analysis have demonstrated utility in the
coastal zone [35,36,86–90].

5. Conclusions

Analyzing coastal change is dependent on several factors: (1) natural and anthropogenic processes,
(2) scale (spatial and temporal) of available data, and (3) techniques to identify and assess patterns and
trends. In this study, we have conducted a multi-scale approach to identify coastal changes in a rapidly
urbanizing area of southeastern North Carolina, USA. Urbanization is the largest driver of change
where forest, agriculture, and wetlands have been replaced with urban development. Along the
coast, 75% of the area and 69% of the shoreline has been urbanized while wetlands have been lost.
Geocoded building permits and the calculation of change through time has identified areas of growth
that provided new information not captured in the image processing and land cover change analysis.
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Areas at risk were identified using Lidar data to derive depressions that are potential stormwater
flooding, wetland loss which reduces the ability to ameliorate storm impacts, and distance to floodplains.
These at-risk areas were compared with urbanization to reveal current problem areas and areas that
are yet to be developed. These results are being used by planning officials to compare with existing
planning regulations to propose new regulations to the Planning Board that will establish greater
coastal resiliency through measures such as preserving wetlands, creating connected green spaces,
and possibly adjusting building codes such as modifications to existing freeboard regulations which
is more expensive to construct, but provides homeowners with a safer house if a flood event is to
occur [91]. Additionally, Pender County is pursuing admission to FEMAs Community Rating System
(CRS), which will enable county residents to participate in the National Flood Insurance Program
(NFIP) at reduced rates [92,93]. However, to be granted into this program the county must meet
planning standards that demonstrate that they are reducing risk to people and property. Information
derived from this project is being used to apply to the CRS.

Lastly, this paper has demonstrated that the combination of image processing and geospatial
analysis has identified patterns that would not be evident if only one approach had been undertaken.
Investigating patterns using a variety of techniques will identify consistent patterns and specific
locations where changes have occurred. Therefore, our recommendation is to utilize the data and
methods described here to identify coastal changes and risk in other locations. Through this systematic
approach to both raster and vector analysis, new information about coastal environments can be
derived and compared. By utilizing multiple spatial analysis approaches, there can be verifiable
measures of certainty and patterns in the landscape can be confirmed or reveal new information about
how a place has been changing.
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