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Abstract: Nowadays, reliability of sensors is one of the most important challenges for widespread
application of Internet-of-things data in key emerging fields such as the automotive and manufacturing
sectors. This paper presents a brief review of the main research and innovation actions at the European
level, as well as some on-going research related to sensor reliability in cyber-physical systems (CPS).
The research reported in this paper is also focused on the design of a procedure for evaluating the
reliability of Internet-of-Things sensors in a cyber-physical system. The results of a case study of
sensor reliability assessment in an autonomous driving scenario for the automotive sector are also
shown. A co-simulation framework is designed in order to enable real-time interaction between
virtual and real sensors. The case study consists of an IoT LiDAR-based collaborative map in order to
assess the CPS-based co-simulation framework. Specifically, the sensor chosen is the Ibeo Lux 4-layer
LiDAR sensor with IoT added capabilities. The modeling library for predicting error with machine
learning methods is implemented at a local level, and a self-learning-procedure for decision-making
based on Q-learning runs at a global level. The study supporting the experimental evaluation of the
co-simulation framework is presented using simulated and real data. The results demonstrate the
effectiveness of the proposed method for increasing sensor reliability in cyber-physical systems using
Internet-of-Things data.

Keywords: Cyber-Physical Systems; reliability assessment; Internet-of-Things; LiDAR sensor; driving
assistance; obstacle recognition; reinforcement learning; Artificial Intelligence-based modelling

1. Introduction

Nowadays, the precise knowledge of the most appropriate sensor operating conditions and
fault detection systems are among the cornerstones of scientific and technical studies for automated
systems [1]. These are based upon on-line monitoring processes and additional comprehensive
interpretation of sensor data by assessing sensor reliability. Sensors are driving the rapid growth
of Cyber-Physical Systems (CPSs) and the Internet of Things (IoT) [2]. Both paradigms are pushing
towards the next generation of sensor networks and unpredictable future applications, meaning that
sensor reliability has become one of the most important and desirable performance indicators in the
design, implementation, and deployment of future sensor networks [3,4].

An important reliability-related issue to be detected in autonomous systems, in order to self-correct
problems such as lost data packages, and data collision, among others, is the failure of one network
element [5–7]. One possible solution is to build real-time prediction models that maximize robustness
and lifetime [8]. There are, in fact, several methods for the evaluation of sensor reliability. Each issue of
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reliability, or that might affect it, can be assessed individually and as a whole, through a total error band
figure. There are important features to be considered, such as sensitivity, range, precision, resolution,
accuracy, offset, linearity, dynamic linearity, hysteresis and response time [9,10]. Evaluating sensor
reliability includes probabilistic and statistical data that increase estimation reliability [11]. Evidence
theory can be used, such as the Dempster-Shafer theory of belief functions. Quantifying reliability
implies predictions concerning sensor lifetime and failure probability. Reliability can therefore be
based on both statistical and Artificial Intelligence (AI) models. Suitable probability functions must
be defined, which will be used to calculate the future behavior of devices, based either on carefully
controlled laboratory experiments or on thorough failure analysis while in use. A typical product
will be liable to various failure modes that change over time in a characteristic manner, so that the
probability functions are themselves time dependent.

Currently, two of the most widely applied sensors are the 3D stereoscopic camera and the
LiDAR [12,13]. Dozens of new applications have recently been reported [14–16]. However, the
computational load and the processing time for data fusion of 3D stereoscopic camera and the LiDAR
sensors in automotive applications are very high [17]. Therefore, a possible solution is to use only the
point cloud provided by the LiDAR with a model for predicting the reliability of the sensor data and
only activate the support sensors when a possible failure is anticipated [18].

Indeed, it is very difficult to guarantee the real topology and distance of objects with less
uncertainty due to dead zones, object transparency, light reflection, weather conditions, and sensor
failures, among others [19]. It is mandatory to obtain data in parallel from other connected LiDAR
sensors to guarantee reliability. Therefore, new IoT-based technologies open up a wide range of
methodologies for estimating and ensuring reliability in key emerging applications [20].

The most widely used techniques for modelling predictions in product lifetime and failure
probability are probabilistic methods. Probabilistic methods for uncertain reasoning represent another
group of techniques. Probability theory predicts events from a state of partial knowledge, while
possibilistic models, represented by fuzzy systems, are applied to situations with intrinsic vagueness
and uncertainty.

However, the prediction techniques are hardly limited to those mentioned above. Several clustering
techniques such as nearest neighbor methods have been explored, in order to enable self-detection and
self-correction capabilities [21]. Other capabilities to be considered from the perspective of reliability
are self-adaptation and self-organization by embedding artificial neural networks (ANNs) in CPSs [22].
Efficient performance of multiple sensors and their online monitoring and self-correction procedures,
through the application of machine learning (ML), such as Support Vector Machines (SVM) and ANNs,
are essential for reducing maintenance costs, risk associated with uncalibrated and faulty sensors,
increasing sensor reliability and, consequently, extended equipment life [23,24]. With the aim of
guaranteeing certain safety and security conditions in some critical applications, the verification of
sensory data and subsequent data evaluation are described in this paper on the basis of simulation of
virtual and real scenarios, as well as a framework that properly combines both scenarios.

A reliability assessment procedure is therefore described in this paper that is applicable to data
captured by IoT LiDAR sensors in automotive applications: LiDAR self-testing methodology. The
reliability analysis is based on the paradigm of cyber-physical systems (CPS) by distributing nodes
locally and globally, as will be explained later on. Each computing node has data-processing methods
and machine-learning models for reliability prediction. In addition, a run-time self-learning and
decision-making model runs within a global node, in order to determine the best model and the model
updating mechanism on request.

This paper will be organized into five sections. Following this introduction, the second section
will present a review of the state-of-the-art of the CPS-based reliability concept for sensor system
reliability using AI methods. Subsequently, the specifications and the requirements obtained from the
review of CPS reliability frameworks will be summarized in Section 3. A particular implementation of
a CPS-based co-simulation framework will also be proposed in this section. In addition, a case study
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for the evaluation of an IoT sensor network using a CPS-based co-simulation framework approach
will be described in Section 4. In that section, the experimental results and a discussion relating to a
comparative study will also be addressed. Finally, the conclusions and future research steps will be
presented in Section 5.

2. Reliability of Sensors in Cyber-Physicals Systems. A Brief State-of-the-Art Review

Reliability of sensors has become not only the main focus of on-going worldwide research, but
also the priority of research and innovation actions (RIA) supported by Horizon 2020 Programme. For
the sake of giving only a brief overview, Table 1 summarizes some of the most challenging projects
targeting sensor reliability, funded mainly by Electronic Components and Systems for European
Leadership (ECSEL) Joint Undertaking [25] in the last five years. It is clearly shown that the reliability
of sensors and remote sensing systems is a key enabling step towards massive utilization of sensor
networks in all application fields from manufacturing up to maritime and aeronautic applications.

Table 1. Research and innovation actions in sensor reliability supported by H2020 Programme in the
last five years.

Horizon 2020 Initiative Main Sensors Application Field Reference

RobustSENSE: Reliable, Secure, Trustable
Sensors. For automated driving

Laser scanners, position,
Virtual sensors Automotive Mäyrä et al. [26]

IoSense: Flexible FE/BE Sensor Pilot Line
for the Internet of Everything

Microphones, force,
pressure, gas, camera,
LiDAR, accelerometer,

others

Manufacturing,
automotive, energy,

environment

Castaño et al. [27]
Godoy et al. [28]

SECREDAS: Cyber Security for Cross
Domain Reliable Dependable Automated

Systems

Cameras, position,
ultrasounds, LiDAR,

pressure
Automotive Le et al. [29]

I-MECH: Intelligent Motion Control
Platform for Smart Mechatronic Systems Position, vision, force Manufacturing,

pharmaceutic, health Valencia et al. [30]

PRYSTINE: Programmable Systems for
Intelligence in Automobiles

Cameras, LiDAR,
position, ultrasounds Automotive Druml et al. [31]

Godoy et al. [32]
Power2Power: Providing next-generation
silicon-based power solutions in transport

and machinery for significant
decarbonisation in the next decade

Temperature, PZT, radar,
current, voltage,
accelerometers

Manufacturing, energy,
industrial machinery

Guerra et al. [33]
La Fe et al. [34]

NeXOS: Next Generation Web-Enabled
Sensors for the Monitoring of a Changing

Ocean

optics, passive acoustics
sensors, detectors Environment Toma et al. [35]

ReMAP: Integrated Fleet Management
solution aimed at replacing fixed-interval
inspections with adaptive condition-based

interventions

Piezo-electric, acoustic
emission, optical-fibber Aeronautic Lizé et al. [36]

About twenty thousand scientific reports have considered reliability as the cornerstone of the
main works [6,37]. The assessment of the sensor’s reliability in a classification problem based on the
transferable belief model was presented in [38], whereas the Dempster-Shafer theory of belief functions
was the foundation for a framework in another seminal paper [11]. The reliability of leap motion
sensor in static and dynamic tracking was analyzed in [39], with not-very-promising expectations due
to limited sensory space and inconsistent sampling frequency. Special attention has been received by
wireless sensor networks, considering a measure of reliability using a probabilistic graph [40], packet
delivery mechanism for guaranteeing quality of service [41] and adaptive and cross-layer framework
for reliable and energy-efficient data collection [42]. Some methods for improving reliability in data
transmission and localization by combining particle and finite impulse response filtering [43] and a
new routing protocol [44] have recently been reported. The reader may find an interesting review of
reliability assessment of wireless sensor network for industrial applications in [45].

Cyber-physical systems pose more scientific and technical challenges due to the need for
conjunctive approaches for evaluating sensor reliability using Internet-of-Things data [46,47]. A
pioneering work suggested a method called Loss Inference based on Passive Measurement (LIPM) to
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compute the link loss performance in digital ecosystems with plenty of distributed data sensors [48].
Scheduling policies formulated as a risk-sensitive Markov Decision Process were considered in an
asymptotic approach to reliability [49]. Likewise, the Markov model for the reliability analysis of
sensor nodes in wireless sensor networks was proposed in [3]. Similarly, the use of the stochastic
optimization problem to maximize estimation reliability in water distribution networks was suggested
in [50]. The quantification of the reliability of grid splitting under degraded communication conditions
in the presence of cyber interdependencies was presented in [51]. Recently, a method based on the
finite element model of a bridge integrated with structural vibration data for a self-governing structural
health monitoring system was shown in [52]. A set of algorithms for estimating the reliability of
the system under certain responsible time constraints was also recently suggested in [53]. Based
on this review, it is evident that probabilistic-based approaches have been explored for addressing
sensor reliability.

Certainly, the evaluation of sensor reliability is a highly important task, especially for Internet
of Things (IoT) applications, and new performance indices need to be proposed [54]. Some
recommendations for the standardized evaluation of sensor reliability are given in [55]. A recent
review of analyses of the state of the art time delays, network size, energy efficiency, scalability, and
reliability of mobile wireless sensor networks can be found in [56]. Attention has also been focused on
lowering latency and improving protocols [57,58].

How can machine learning methods enable improvements in sensor reliability in
cyber-physical systems?

The answer to this question is not easy, because the conditioning and re-elaboration of machine
learning methods for assessing sensor reliability is not straightforward. This is indeed a new research
trend with some pioneering reports in the early of 1990s [59]. Bayesian approaches [60,61], Fuzzy set
theory [62,63], Dempster-Shafer (D-R) evidence theory [64–66], and Grey Group Decision-Making [67],
among other methods, have recently been explored to address the reliability of sensors using Artificial
Intelligence. However, many issues related with sensor reliability in cyber-physical systems using
Internet-of-Things data remain unsolved, such as efficient conditioning and pre-filtering of big sensor
data, high computational cost and limited parametrization of machine learning methods.

3. CPS-Based Reliability Approach

The truly challenging aspects of sensor network reliability and its evaluation have yet to prompt
an exhaustive exploration and evaluation of sensory data under critical conditions. A gap is addressed
in this study by sensors and sensor data in a CPS.

3.1. Sensor Reliability Assesment

One approach for assessing sensor reliability in key emerging applications, such self-driving in
the automotive sector [5], is a model-based design for representing key sensor parameters. These
parameters can be derived from monitoring processes where ‘functional parameters’ refer to the sensor
characteristics and sensor lifetime, as well as to economic aspects (see Figure 1).
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Figure 1. Procedure for sensor reliability assessment using a model-based approach for sensor data
and key performance indices.

With the aim of increasing the reliability of data collected by LiDAR, metrological assessment
procedures should also be applied. Linear interpolation of measurements from three detectors arranged
in series is a time-saving procedure for processing and reducing LiDAR data [68].

All the major sources of potential error that influence point positioning accuracy have to be
considered in the analytical derivations in order to determine the reliability of the achievable point
positioning accuracy of LiDAR systems. Some of the random errors are reported in [69]. Some
mathematical foundations are also provided for point positioning accuracy derived from the LiDAR
equation, via error propagation:

rM = rM,INS + RM
INS

(
RINS

L ·rL + bINS
)

(1)

where rM represents the 3D coordinates of an object point in the mapping frame; rM,INS represents
time-dependent 3D INS coordinates in the mapping frame, provided by GPS/INS; RM

INS is the
time-dependent rotation matrix between the INS body and the mapping frame; RINS

L is the boresight
matrix between the laser frame and the INS body frame; rL represents the 3D object coordinates in the
laser frame; and, bINS is the boresight offset vector.

In addition, the calculation of the accuracy of the estimated location of an object using the LiDAR
sensor can be performed by other key performance indices. For example, the use of the Distance Root
Mean Squared (DRMS) measure for the data that are tracked on the x-y plane (2D) and the Mean Radial
Spherical Error (MRSE) measure for the data that are tracked in the x–y–z space (3D) were reported
in [27,70]. Using derivable error formulas, any given random error and scan angle in the LiDAR range
can be modelled and simulated. By doing so, the factors affecting LiDAR system accuracy can be
analyzed [71].

3.2. Statistical and Artificial Intelligence-Based Methods

The Bayesian and Hidden Markov techniques are the most widely applied modeling techniques for
reliability assessment under fuzzy environments [72,73]. A Bayesian network is a directed acyclic graph
consisting of a set of nodes, representing random variables and a set of directed edges, representing
their conditional dependencies. The dependencies in a Bayesian network can be adaptively determined
from a dataset through a learning process. The objective of this training is to provide the best description
of the probability distribution over the dataset because the attribute values are not supplied in the
dataset [74].
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In addition to those probabilistic methods, new tools have been reported in the literature,
highlighting the use of Artificial Intelligence (AI) techniques and, in particular, Machine Learning (ML),
to solve complex situations [34]. AI techniques also provide cognitive abilities, so that performance
may be improved by increasing network lifetime and reliability [75]. Those techniques include ANN
and fuzzy inference systems [76,77]. Zhang et al. proposed a soft-computing system based on Genetic
Algorithm-Support Vector Regression (GA-SVR), in order to facilitate the reliability and survivability
of the Structural Health Monitoring (SHM) system faced with, for example, an invalid fiber link in the
sensor network [78].

4. CPS-Based Co-Simulation Framework

Some factors that can affect CPS reliability include component failure, environmental effects, task
changes, and network update. A strategy for testing the reliability of CPSs and for their evaluation is
proposed in [79] by analyzing both the internal and the external factors that influence their reliability.
One solution could be to evaluate each element that constitutes the system: testing hardware, software,
and architecture, as well as performance reliability including service reliability, cyber security reliability,
resilience and elasticity reliability, and vulnerability reliability.

Behavioral simulations of CPS and IoT are increasing in their relevance with respect to analyzing
reliability, because precise mathematical modeling is not straightforward [80]. These simulations are
based on addressing four main topics: node localization, energy management, network multi-objective
optimization, and self-capabilities approach [81,82].

While the reliability evaluation of physical systems is well understood and has been extensively
studied, the reliability evaluation of a CPS is still under-studied, because CPS will not degrade the
performance in the same way of physical systems and cannot be represented by a well-defined failure
model. An evaluation framework is therefore required in order to assess the performance of CPS.
A framework for CPS reliability analysis that includes reliability-based runtime reconfiguration is
proposed in [83]. This framework is codified in a domain-specific modelling language that provides
details on operational constraints and dependences.

However, domain-specific modelling-based analysis is, in many cases, unable to compute
reliability functions efficiently (e.g., in terms of failure distributions) for complex systems. To do so, a
frequency-domain reliability analysis framework of transportation CPSs was described in [84]. The
advantage of that method is its capability to capture higher-order moments of the system characteristics,
its scalability for the analysis of the reliability of complex systems, and efficient calculations.

In addition, it is important to consider the evaluation of other aspects of the CPS, such as safety
and, particularly, security; different aspects still in the focus of research in the past few years. Therefore,
the design of the simulation framework for CPS should consider these aspects at three levels: security
objectives, security approaches and security in specific applications [85]. However, the cyber part
not only should be secured, but also the physical part should take into account possible threats.
A multi-cyber (computational unit) framework was compared with traditional models to improve
the availability of the CPS based on the Markov model is reported in literature. The evaluation
was carried out in terms of availability, downtime, downtime costs, and the reliability of the CPS
framework [86]. Finally, another work considered an Internet-based computing platform in the form
of a global computing node. In [87], a new cloud security management framework was introduced,
based on improving collaboration between cloud providers, service providers, and service consumers
for the management of cloud platform security and the hosting services. In addition, although in
some applications this will not be possible, it is important to consider the possibility of introducing
the human factor in the reliability analysis procedure. A human-interactive Hardware-In-the-Loop
Simulation (HILS) framework for CPS was developed in [88] to support reliability and reusability in a
fully distributed operating environment.
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4.1. CPS-based Co-simulation Framework

Based on the above contributions, and considering the initial list of requirements for the deploying
an IoT sensor network, a CPS-based co-simulation framework is proposed. The IoT sensor network
will supply physical data having (local and global) computing nodes for processing the sensory data.

4.1.1. Conceptual Scheme

In addition, the IoT sensor network has a global or main node composed of a knowledge database,
a Q-learning method for decision-making, and an AI-based model library. During the simulation and
the real running, a decision-making module will decide which specific model is the best in the current
instant, taking into account the data received by all nodes that make up the network.

The functionalities are distributed in different nodes, both virtual and real, according to their
functions. The distributed virtual or real nodes manage the capture of sensor data and run the error
prediction calculation with the required accuracy, while the global or main node incorporates the
runtime model that is generated, the library, and the knowledge database (see Figure 2).
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nodes and IoT sensor network.

The IoT sensors should be able to establish reliable and accurate wireless communications,
ensuring that all the intrinsic challenges in an IoT network and in the different CPSs can be solved.
This is achieved through the implementation of the architecture that is represented in Figure 2 by a
network of n nodes, each node having n IoT sensors. In addition, the computing nodes communicate
with each other and with their corresponding global node.

4.1.2. Procedure Description

The framework is designed taking into account that both the real and the virtual (local) computing
nodes operate in parallel with the global computing node [89]. Data exchange between the different
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nodes takes place in two different ways. On the one hand, data exchange between local nodes is
produced in both the virtual (3D model simulation tool) and the real scenario. On the other hand,
there is the data exchange between different local nodes and the global node using the 802.11p wireless
communication protocol.

Therefore, there is an interaction between the simulated and the real environments and external
applications that are running in the main node. Figure 3 shows the schematic diagram of the data
exchange or messages exchange within the co-simulation framework.
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In this specific implementation, which is described more accurately in the following section, there
is a wireless exchange of messages between different nodes using the 802.11p communication protocol
in the following way. First, the local nodes with their IoT sensors detect different objects and their
respective properties. Secondly, this information is shared on the network through a broadcast process.

5. IoT LiDAR-based Collaborative Mapping – A Case Study

The IoT sensor network chosen to evaluate the CPS-based co-simulation framework is composed
of virtual and real LiDAR sensors [28]. An Ibeo Lux LiDAR 4-layer sensor was used with the following
specifications: horizontal field of 120 deg, horizontal step of 0.125 deg., vertical field of 3.2 deg., vertical
step of 0.8 deg., range of 200 m, and an update frequency of 12.5 Hz. As previously mentioned, the
sensor network to be evaluated is composed of IoT sensors. The sensor network therefore has IoT
capabilities connected to its computing nodes. These nodes are on-board computers integrated in an
autonomous vehicle with a wireless communication interface between them.

The particular implementation of the CPS-based co-simulation framework, the LiDAR-based
collaborative map is based on a co-simulation framework between two different software systems,
designed in [90]. However, the contribution of this study is to include the real part in the co-simulation
framework. This framework consists mainly of a computer-aided system to enable efficient interaction
between the virtual scenario with virtual nodes setting in the simulation tool of Webots for automobile
8.6 [91] and an external application development for the computing nodes in the real scenario. The
scenario in this particular case, in which the vehicles are represented as nodes, is as follows. A real
vehicle (in a real scenario) and three virtual vehicles in the simulated scenario are detecting obstacles.
Both kinds of vehicles share the position, object type and size of the obstacles (e.g., pedestrian, trees on
the road and another vehicle). This is possible thanks to the IoT LiDAR network using an IoT obstacle
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detection application (see Section 4.1), created in run time. Figure 4 shows the detailed diagram of the
implementation of the LiDAR-based collaborative map using the CPS-based framework approach.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 20 
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In addition, another application implemented in the IoT LiDAR-based collaborative map is the
LiDAR self-testing methodology incorporated in each local computing node (autonomous vehicle), in
order to evaluate the reliability of each IoT sensor in the network that will be described in Section 5.2.

5.1. Obstacle Detection in the IoT Application

The framework is implemented in an external application using Qt 5.10, which is an open-source
widget toolkit for creating graphical user interfaces. The framework consists of an illustrated map
updated in run time (see Figure 6a) and a database with the information on both virtual and real objects
that are detected (see Figure 6b). The information contains the position, object type, and size of the
obstacles in order to guarantee security and safety of the object detection process with a single sensor.
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Figure 6 depicts the visual interface developed for the case study. Specifically, the collaborative
map is globally updated in the main computing node. A partial area of this updated map can also be
sent at the request of a local node. A set of computational procedures is in charge of adapting and
transferring sensory information from Webots, virtual nodes with the Ibeo Lux sensor model, and the
real node, real vehicles with the real Ibeo Lux sensor; and vice versa.

5.2. LiDAR Selft-testing Application

The external application also includes a LiDAR data self-testing methodology using the AI-based
error-prediction models. Figure 6c shows the graphical interface that represents the estimated error
with regard to time on the left-hand side. However, on the right-hand side, the admissible error
threshold is observed, whereby, if it is exceeded, it must be requested that a decision be made regarding
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the best performance of each model at any given time. Specifically, the results are focused on showing
the improved performance of the IoT sensor network composed of each CPS element with each LiDAR
sensor plus added IoT capabilities. To do so, a reliability prediction model dedicated to obtaining the
accuracy error in obstacle detection is incorporated in each computing node.

5.2.1. Reliability Prediction Models

A reliability model is generated for both virtual and real IoT LiDAR sensors for predicting the
accuracy error in obstacle detection. The procedure for developing these models is extracted from
the methodology described in [27], with a different set of training data. In this study, a model-based
procedure is used with a point-cloud clustering technique, in this case Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [92]. In addition, an error-based prediction model library
is implemented, highlighting AI-based model techniques, such as, Multilayer Perceptron Neural
Network (MLP), k-Nearest Neighbors (k-NN), and Linear Regression (LR). A difference in the particular
implementation described in this paper is that, while k-NN, MLP and LR were maintained, SVM is
incorporate as a new technique to the modeling library [93–95].

5.2.2. Model Parametrization and Validation

With the aim of determining which model training strategy based on AI provides the best reliability
prediction model, an experimental validation was performed. The training dataset was composed of
998 scenes for the model training and 250 scenes for the model validation. All of them were obtained
from a simulation procedure. The data input consisted of geospatial statistics [70,96] that were extracted
from the point cloud supplied by the LiDAR sensor, so that the models could generate the figures of
merit in terms of accuracy error: DRMS and MRSE.

The four AI-based strategies considered can be summarized as follows. First, a multilayer
perceptron neural network with backpropagation error (MLP) is selected with two hidden layers,
each with five neurons and sigmoid activation functions, and an output layer with a lineal activation
function, two neurons, and 5000 epochs. The initial value of the learning rate (µ) is 10−3 with a decrease
factor ratio of 10−1, an increase factor ratio of 10, and a maximum µ value of 1010. The minimum
performance gradient was 10−7. The training process stop criteria is as follows: the maximum number
of epochs (repetitions); goal performance minimization; the performance gradient below a minimum
gradient; or, a µ value in excess of the maximum value. The second modeling technique is k-nearest
neighbors (k-NN), with k = 5 and using Euclidean distance as the distance function. The third method
is a lineal regression that was also obtained by minimizing the sum of squared differences between the
predicted and the observed values. Finally, a support vector machine model is also obtained by means
of data standardization and the radial basis function kernel.

5.2.3. Self-Learning-Based Decision-Making. Q-Learning Algorithm

The global or main computing node executes several parallel procedures in a specific self-learning
module that uses a Q-learning algorithm (see Figure 7). On the one hand, a dataset for training
by default is done in the global node. On the other hand, a knowledge database (warehouse) is
also included, which can be updated in run time with the data provided by each local node. The
self-learning strategy also runs in the global node in order to determine the best model behavior, when
new traffic situations are generated by providing new point clouds (environment information).
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The local node simulates the reliability model. When the error surpasses the 20% threshold
in one the figures of merit (DRMS or MRSE), it is inferred that the current model is failing. A
request is therefore made to the global module to establish whether there is a model that is working
better. The decision for selecting the best prediction model available in the library is taken during
the decision-making stage at each instant by means of a self-learning module, on the basis of the
generalization capability and the accuracy of the model. The corresponding performance metrics are
R2 and RAE, respectively. In summary, based on this information flow and the previous prediction
results (knowledge database), when a request from one of the local nodes is received and a new best
model behavior is detected, the current error prediction model is then switched from MLP to k-NN,
and vice versa.

6. Experimental Results

First, a comparative study was conducted on the basis of different AI techniques applied to
model the prediction error obtained in objects detection. Spatial statistics, reported in [27], are the
inputs for being aware of the condition of the point cloud in each scan provided by the LiDAR sensor.
Subsequently, based on the results of this study, the best models are determined for the final evaluation.
The final decision-making is done by means of a Q-learning strategy, which was selected for its good
features among unsupervised learning methods [97]. This procedure predicts in advance which model
has the best behavior on the basis of the available data information.

6.1. Reliability Model-based Validation

Table 2 shows the evaluation results obtained during the initial validation of each reliability model.
Five error-based performance indices and two classification criteria were considered in the validation
process: Mean Absolute Error (MAE); Root Mean Squared Error (RMSE); Relative Absolute Error
(RAE); Root Relative Squared Error (RRSE); and, the coefficient of determination (R2). Only the models
generated with k-NN and MLP returned R2 results higher than 90%. Key performance indices based
on plane (DMRS) and space (MRSE) figures of merit.
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Table 2. Key performance indices based on plane (DMRS) and space (MRSE) figures of merit.

Model
MAE RMSE RAE RRSE R2

DMRS MRSE DMRS MRSE DMRS MRSE DMRS MRSE DMRS MRSE

MLP 0.0046 0.0035 1.275 1.270 0.187 0.188 0.395 0.392 0.933 0.933
k-NN 0.002 0.0002 1.014 1.010 0.114 0.114 0.371 0.365 0.963 0.961

LR 0.6781 0.6530 2.305 2.285 0.701 0.695 0.782 0.788 0.434 0.435
SVM 0.4735 0.4740 2.072 2.065 0.442 0.447 0.773 0.773 0.692 0.684

Figure 8 illustrates the behavior of the LiDAR error on the plane (DRMS) and space (MRSE) for
each model (MLP, LN, k-NN and SVM) with regard to the validation data. The modeling techniques
that provide the best performance are MLP and k-NN, according to the comparative study of the four
modelling strategies, improving about 30% the performance indices with regard to LR and SVM. These
two type models are then chosen for validating the decision-making module.
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6.2. Self-Learning for Decision-Making Evaluation

Based on the previous knowledge generated by the rewards obtained from similar situations
studied in the simulations, the ranges of the values of each reward are defined as a function of the
prediction error of the reliability model, calculated during the simulation. The reward function is
chosen for setting the best possible Q-value in 100 different scenes. Therefore, the function for updating
the Q-values is [98]:

Q(st+1, at+1)← Qt(st, at) + αt

(
Rt+1 + γmax

aεA
Q(St+1, at) −Q(St, at)

)
(2)

where st is the state in time t; at is the action taken in time t; R(t+1) is the reward received after
performing action at; αt is the learning rate (0 ≤ αt ≤ 1); and γ is the discount factor which trades off the
importance of sooner-versus-later rewards. Table 3 lists the error reward matrix based on knowledge
of the behavior of those prediction models.
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Table 3. Q-learning reward matrix for error admissible threshold.

R2 RAE

0–10% 10–20% 20–40% 40–70% >70%

90–100% 1 0.9 0.8 0.5 0.2
80–90% 0.85 0.8 0.65 0.4 0.15
70–80% 0.7 0.6 0.5 0.3 0.1
30–60% 0.5 0.4 0.3 0.2 0.05
0–30% 0.3 0.2 0.15 0.1 0.01

The decision-making is based on two of the main performance indices. First, the coefficient of
determination (R2) is taken into account, because it provides a measure of the generalization capacity of
the model. The Relative Absolute Error (RAE), which is a measure of model accuracy, is also considered.

Finally, another simulation is performed in order to determine the quality of the Q-learning
method for automatically selecting the best prediction model. One hundred new scenes captured by
the LiDAR sensor were analyzed. The Q-learning method runs online in the main node. When new
data becomes available, models contained in the library are evaluated. Once each model has been
assessed, the performance indices are calculated, and the Q-learning determines the best reliability
model between MLP and k-NN. Figure 9a,b depicts the behavior of RAE and R2, respectively, for both
reliability models.
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Figure 10 shows the Q-learning classification error matrix. In all considered cases, the best model
chosen was k-NN 76 times and MLP 24 times. Analyzing the results obtained, the best model selected
had a RAE between 0 and 20% and a R2 above 80% in 61% of the scenarios. The system was able
to guarantee models with a greater capability of generalization in 71% of the scenarios, based on a
coefficient of determination higher than 80%. Overall, reliability can be predicted with an RAE of
less than 40% and an R2 of about 70% in 90% of the scenarios, which demonstrates the quality of the
learning process. The models presented a low generalization, with a coefficient of determination of less
than 70% in only 9% of the scenarios and an RAE greater than 40% in only 1%. Therefore, the Q-learning
method that evaluates reliability on the basis of the prediction error model at each instant worked
appropriately for calculating the best model that represented the LiDAR performance to a high degree
of accuracy and that guaranteed the required levels of safety and reliability for automotive applications.
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7. Conclusions

This paper presents a review of the main research and innovation actions dealing with sensor
reliability in cyber-physical systems supported by the European Commission in recent years. The
review demonstrates that cyber-physical systems pose greater scientific and technical challenges due
to the need for conjunctive approaches for evaluating sensor reliability using Internet-of-Things data.
New research trends are focused on machine learning methods for improving metrics and sensor
reliability in cyber-physical systems. However, the insufficient performance of big data conditioning
and pre-filtering methods, the high computational cost and the ad-hoc parametrization of machine
learning methods still limit generalization, real-time application and certification of solutions based on
Internet-of-Things data for increasing sensor reliability.

This paper also presents a case study of sensor reliability assessment in autonomous driving
scenario. The procedure for evaluating the reliability of IoT sensors in a cyber-physical system is
proposed. A co-simulation framework is designed in order to enable real-time interaction between
virtual and real sensors by running simulations in appropriate safety conditions. The case study consists
of a IoT LiDAR-based collaborative map in order to validate the CPS-based co-simulation framework.

The assessment of the proposed method is divided into two parallel procedures. First, at a local
level, each reliability model evaluates the condition of the IoT LiDAR sensor. The evaluation is carried
out on the basis of AI-based models under 250 scenes. Based on the obtained results, only the multilayer
perceptron and k-nearest neighbor methods were chosen for the validation of the decision-making
module. Secondly, at a global level, a self-learning strategy for decision-making calculates the most
appropriate behavior in the reliability model library, also in run time. Based on the results with 100
different scenarios, the Q-learning method improves the reliability of LiDAR sensor data with regard
to using a single model at a local level.

Therefore, the proposed co-simulation framework serves to assess the performance of IoT LiDAR
sensor data very accurately, guaranteeing safety and reliability in this autonomous driving scenario.
These promising results serve as the basis for future work in validating the proposed method in real
autonomous driving conditions.

Author Contributions: R.E.H., J.K. and S.S. reviewed all technical and scientific aspects of the article. A.V. and
F.C. was in charge of the implementation of software application, the library models and the reinforcement
learning algorithm. F.C. and A.V. designed and implemented the scenario, the external application and the LiDAR
self-testing procedure, and drafted the paper.

Funding: This work was partially supported by the project Power2Power: Providing next-generation silicon-based
power solutions in transport and machinery for significant decarbonisation in the next decade, funded by the
Electronic Component Systems for European Leadership (ECSEL-JU) Joint Undertaking and the Ministry of



Remote Sens. 2019, 11, 2252 16 of 20

Science, Innovation and Universities (MICINN), under grant agreement No 826417. In addition, this work was
also funded by the Spanish Ministry of Science, Innovation and Universities through the project COGDRIVE
(DPI2017-86915-C3-1-R). Preparation of this publication was also partially co-financed by the Polish National
Agency for Academic Exchange (NAWA) through the project: “Industry 4.0 in Production and Aeronautical
Engineering (IPAE)”.

Acknowledgments: The authors would like to thank the AUTOPIA group located at the Center for Automation
and Robotics, jointly owned by the Spanish National Research Council and Technical University of Madrid.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Beruvides, G.; Quiza, R.; Del Toro, R.; Haber, R.E. Sensoring systems and signal analysis to monitor tool
wear in microdrilling operations on a sintered tungsten-copper composite material. Sens. Actuators A Phys.
2013, 199, 165–175. [CrossRef]

2. Iarovyi, S.; Mohammed, W.M.; Lobov, A.; Ferrer, B.R.; Lastra, J.L.M. Cyber-Physical Systems for
Open-Knowledge-Driven Manufacturing Execution Systems. Proc. IEEE 2016, 104, 1142–1154. [CrossRef]

3. Kabashkin, I.; Kundler, J. Reliability of Sensor Nodes in Wireless Sensor Networks of Cyber Physical Systems.
Procedia Comput. Sci. 2017, 104, 380–384. [CrossRef]

4. Jakovljevic, Z.; Petrovic, M.; Mitrovic, S.; Miljkovic, Z. Intelligent sensing systems—Status of research at
KaProm. In Lecture Notes in Mechanical Engineering; Springer: Berlin/Heidelberg, Germany, 2018; pp. 18–36.

5. Godoy, J.; Pérez, J.; Onieva, E.; Villagrá, J.; Milanés, V.; Haber, R. A driverless vehicle demonstration on
motorways and in urban environments. Transport 2015, 30, 253–263. [CrossRef]

6. Routh, D.; Seegmiller, L.; Bettigole, C.; Kuhn, C.; Oliver, C.D.; Glick, H.B. Improving the reliability of mixture
tuned matched filtering remote sensing classification results using supervised learning algorithms and
cross-validation. Remote Sens. 2018, 10, 1675. [CrossRef]

7. Zhao, Y.; Feng, D.; Yu, L.; See, L.; Fritz, S.; Perger, C.; Gong, P. Assessing and improving the reliability of
volunteered land cover reference data. Remote Sens. 2017, 9, 1034. [CrossRef]

8. Hao, X.; Wang, L.; Yao, N.; Geng, D.; Chen, B. Topology control game algorithm based on Markov lifetime
prediction model for wireless sensor network. Ad Hoc Netw. 2018, 78, 13–23. [CrossRef]

9. Hessner, K.G.; El Naggar, S.; von Appen, W.J.; Strass, V.H. On the reliability of surface current measurements
by X-Band marine radar. Remote Sens. 2019, 11, 1030. [CrossRef]

10. Jia, F.; Lichti, D.D. A model-based design system for terrestrial laser scanning networks in complex sites.
Remote Sens. 2019, 11, 1749. [CrossRef]

11. Guo, H.; Shi, W.; Deng, Y. Evaluating Sensor Reliability in Classification Problems Based on Evidence Theory.
IEEE Trans. Syst. Man Cybern. Part B 2006, 36, 970–981. [CrossRef]

12. Lei, L.; Qiu, C.; Li, Z.; Han, D.; Han, L.; Zhu, Y.; Wu, J.; Xu, B.; Feng, H.; Yang, H.; et al. Effect of leaf occlusion
on leaf area index inversion of maize using UAV-LiDAR data. Remote Sens. 2019, 11, 1067. [CrossRef]

13. Okhrimenko, M.; Coburn, C.; Hopkinson, C. Multi-spectral lidar: Radiometric calibration, canopy spectral
reflectance, and vegetation vertical SVI profiles. Remote Sens. 2019, 11, 1556. [CrossRef]

14. Chen, P.; Pan, D. Ocean optical profiling in South China Sea Using Airborne LiDAR. Remote Sens. 2019, 11,
1826. [CrossRef]

15. Dash, J.P.; Watt, M.S.; Paul, T.S.H.; Morgenroth, J.; Pearse, G.D. Early detection of invasive exotic trees using
UAV and manned aircraft multispectral and LiDAR Data. Remote Sens. 2019, 11, 1812. [CrossRef]

16. Kerfoot, W.C.; Hobmeier, M.M.; Green, S.A.; Yousef, F.; Brooks, C.N.; Shuchman, R.; Sayers, M.; Lin, L.;
Luong, P.; Hayter, E.; et al. Coastal ecosystem investigations with LiDAR (Light Detection and Ranging)
and bottom reflectance: Lake superior reef threatened by migrating tailings. Remote Sens. 2019, 11, 1076.
[CrossRef]

17. Xiao, L.; Wang, R.; Dai, B.; Fang, Y.; Liu, D.; Wu, T. Hybrid conditional random field based camera-LIDAR
fusion for road detection. Inf. Sci. 2018, 432, 543–558. [CrossRef]

18. Zeng, Y.; Yu, H.; Dai, H.; Song, S.; Lin, M.; Sun, B.; Jiang, W.; Meng, M. An Improved Calibration Method for
a Rotating 2D LIDAR System. Sensors 2018, 18, 497. [CrossRef]

19. Kempf, J.; Arkko, J.; Beheshti, N.; Yedavalli, K. Thoughts on reliability in the internet of things. In Proceedings
of the Interconnecting Smart Objects with the Internet Workshop 2011, Prague, Czech, 25 March 2011;
Volume 1, pp. 1–4.

http://dx.doi.org/10.1016/j.sna.2013.05.021
http://dx.doi.org/10.1109/JPROC.2015.2509498
http://dx.doi.org/10.1016/j.procs.2017.01.149
http://dx.doi.org/10.3846/16484142.2014.1003406
http://dx.doi.org/10.3390/rs10111675
http://dx.doi.org/10.3390/rs9101034
http://dx.doi.org/10.1016/j.adhoc.2018.05.006
http://dx.doi.org/10.3390/rs11091030
http://dx.doi.org/10.3390/rs11151749
http://dx.doi.org/10.1109/TSMCB.2006.872269
http://dx.doi.org/10.3390/rs11091067
http://dx.doi.org/10.3390/rs11131556
http://dx.doi.org/10.3390/rs11151826
http://dx.doi.org/10.3390/rs11151812
http://dx.doi.org/10.3390/rs11091076
http://dx.doi.org/10.1016/j.ins.2017.04.048
http://dx.doi.org/10.3390/s18020497


Remote Sens. 2019, 11, 2252 17 of 20

20. Ahmad, M. Reliability Models for the Internet of Things: A Paradigm Shift. In Proceedings of the 2014 IEEE
International Symposium on Software Reliability Engineering Workshops, Naples, Italy, 3–6 November 2014;
pp. 52–59.

21. Zhang, H.; Liu, J.; Pang, A.-C. A Bayesian network model for data losses and faults in medical body sensor
networks. Comput. Netw. 2018, 143, 166–175. [CrossRef]

22. Serpen, G.; Li, J.; Liu, L. AI-WSN: Adaptive and Intelligent Wireless Sensor Network. Procedia Comput. Sci.
2013, 20, 406–413. [CrossRef]

23. Nsabagwa, M.; Mugume, I.; Kasumba, R.; Muhumuza, J.; Byarugaba, S.; Tumwesigye, E.; Otim, J.S. Condition
Monitoring and Reporting Framework for Wireless Sensor Network-based Automatic Weather Stations.
In Proceedings of the 2018 IST-Africa Week Conference (IST-Africa), Gaborone, Botswana, 9–11 May 2018;
pp. 1–8.

24. Chuan, Y.; Chen, L. The Application of Support Vector Machine in the Hysteresis Modeling of Silicon Pressure
Sensor. IEEE Sens. J. 2011, 11, 2022–2026. [CrossRef]

25. Commission, E. Project impact articles. In Electronic Components and Systems for European Leadership
(ECSEL) Joint Undertaking; 2019; Available online: https://www.ecsel.eu/project-impact (accessed on 20
September 2019).

26. Mäyrä, A.; Hietala, E.; Kutila, M.; Pyykönen, P.; Tiihonen, M.; Jokela, T. Experimental study on spectral
absorbance in fog as a function of temperature, liquid water content, and particle size. In Proceedings of
the SPIE REMOTE SENSING, Optics in Atmospheric Propagation and Adaptive Systems, Warsaw, Poland,
11–14 September 2017.

27. Castaño, F.; Beruvides, G.; Villalonga, A.; Haber, R.E. Self-tuning method for increased obstacle detection
reliability based on internet of things LiDAR sensor models. Sensors 2018, 18, 1508. [CrossRef]

28. Godoy, J.; Haber, R.; Muñoz, J.J.; Matía, F.; García, Á. Smart sensing of pavement temperature based on
low-cost sensors and V2I communications. Sensors 2018, 18, 2092. [CrossRef]

29. Le, V.H.; den Hartog, J.; Zannone, N. Security and privacy for innovative automotive applications: A survey.
Comput. Commun. 2018, 132, 17–41. [CrossRef]

30. Valencia, J.; Goswami, D.; Goossens, K. Comparing platform-aware control design flows for composable and
predictable TDM-based execution platforms. ACM Trans. Des. Autom. Electron. Syst. 2019, 24, 32. [CrossRef]

31. Druml, N.; Macher, G.; Stolz, M.; Armengaud, E.; Watzenig, D.; Steger, C.; Herndl, T.; Eckel, A.; Ryabokon, A.;
Hoess, A.; et al. PRYSTINE—PRogrammable sYSTems for INtelligence in AutomobilEs. In Proceedings of
the 2018 21st Euromicro Conference on Digital System Design (DSD), Prague, Czech Republic, 29–31 August
2018; pp. 618–626.

32. Godoy, J.; Artuñedo, A.; Villagra, J. Self-Generated OSM-Based Driving Corridors. IEEE Access 2019, 7,
20113–20125. [CrossRef]

33. Guerra, R.H.; Quiza, R.; Villalonga, A.; Arenas, J.; Castano, F. Digital Twin-Based Optimization for
Ultraprecision Motion Systems with Backlash and Friction. IEEE Access 2019, 7, 93462–93472. [CrossRef]

34. La Fe-Perdomo, I.; Beruvides, G.; Quiza, R.; Haber, R.; Rivas, M. Automatic Selection of Optimal Parameters
Based on Simple Soft-Computing Methods: A Case Study of Micromilling Processes. IEEE Trans. Ind. Inform.
2019, 15, 800–811. [CrossRef]

35. Toma, D.M.; Masmitja, I.; del Río, J.; Martinez, E.; Artero-Delgado, C.; Casale, A.; Figoli, A.; Pinzani, D.;
Cervantes, P.; Ruiz, P.; et al. Smart embedded passive acoustic devices for real-time hydroacoustic surveys.
Measurement 2018, 125, 592–605. [CrossRef]

36. Lizé, E.; Rébillat, M.; Mechbal, N.; Bolzmacher, C. Optimal dual-PZT sizing and network design for
baseline-free SHM of complex anisotropic composite structures. Smart Mater. Struct. 2018, 27, 115018.
[CrossRef]

37. Fratarcangeli, F.; Savastano, G.; D’Achille, M.C.; Mazzoni, A.; Crespi, M.; Riguzzi, F.; Devoti, R.;
Pietrantonio, G. VADASE reliability and accuracy of real-time displacement estimation: Application
to the Central Italy 2016 earthquakes. Remote Sens. 2018, 10, 1201. [CrossRef]

38. Elouedi, Z.; Mellouli, K.; Smets, P. Assessing Sensor Reliability for Multisensor Data Fusion within the
Transferable Belief Model. IEEE Trans. Syst. Man Cybern. Part B 2004, 34, 782–787. [CrossRef]
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