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Abstract: Autonomous navigation is an important task for unmanned vehicles operating both on
the surface and underwater. A sophisticated solution for autonomous non-global navigational
satellite system navigation is comparative (terrain reference) navigation. We present a method
for fast processing of 3D multibeam sonar data to make depth area comparable with depth areas
from bathymetric electronic navigational charts as source maps during comparative navigation.
Recording the bottom of a channel, river, or lake with a 3D multibeam sonar data produces a large
number of measuring points. A big dataset from 3D multibeam sonar is reduced in steps in almost
real time. Usually, the whole data set from the results of a multibeam echo sounder results are
processed. In this work, new methodology for processing of 3D multibeam sonar big data is proposed.
This new method is based on the stepwise processing of the dataset with 3D models and isoline maps
generation. For faster products generation we used the optimum dataset method which has been
modified for the purposes of bathymetric data processing. The approach enables detailed examination
of the bottom of bodies of water and makes it possible to capture major changes. In addition,
the method can detect objects on the bottom, which should be eliminated during the construction of
the 3D model. We create and combine partial 3D models based on reduced sets to inspect the bottom
of water reservoirs in detail. Analyses were conducted for original and reduced datasets. For both
cases, 3D models were generated in variants with and without overlays between them. Tests show,
that models generated from reduced dataset are more useful, due to the fact, that there are significant
elements of the measured area that become much more visible, and they can be used in comparative
navigation. In fragmentary processing of the data, the aspect of present or lack of the overlay between
generated models did not relevantly influence the accuracy of its height, however, the time of models
generation was shorter for variants without overlay.

Keywords: 3D sonar; bathymetry; data reduction; autonomous navigation

1. Introduction

Unmanned underwater vehicles, also known as underwater robots, have developed rapidly
over the past few years. These systems supersede previously used methods of the underwater
exploration of Earth, such as, e.g., hydrographic measuring units with human crew. The trend in
unmanned systems development is toward the execution of underwater tasks, including hydrographical
surveys, near the bottom by underwater robots, such as remotely operated vehicles remotely
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controlled by an operator and autonomous underwater vehicles (AUVs) operated without operator
input. Underwater positioning methods are not keeping pace with the fast development of AUVs
and measurement tools. The main global navigational satellite system (GNSS) positioning method for
submersible vehicles is limited to situations where the submersible vehicle can raise an antenna above
the surface of the water. However, some AUVs need the more independent method of comparative
(terrain) navigation via digital terrain models (DTMs) [1–7].

New methods of spatial data measurement using interferometric multibeam echosounders (MBES),
high-frequency side scan sonar, and integrated MBES with sonars require new data processing methods.
These new methods may also be suitable for creating autonomous navigation systems for unmanned
underwater platforms based on the development of comparative navigation, which uses redundant
positioning sources based on navigational radar and electronic navigational charts.

Comparative (terrain reference) navigation is an alternative method for position determination
where the GNNS signal is unsuitable or unavailable. This type of navigation is based on searching for
matches between a reference image prepared for a specific area (reference map) and a recorded image
of a specific, small area, recorded in real time and used to generate a fragment of an area to compare
with the reference map.

In comparative navigation, the ship’s or vehicle’s position is plotted by comparing a dynamically
registered image with a pattern image. The pattern images can be bathymetric electronic navigational
charts (bENCs), digital radar charts, sonar images, aerial images, or images from other sensors,
such as magnetometers or gravimeters, suitably prepared for comparison with radar, sonar, aerial,
or other images, respectively. The most frequently registered images at the sea are radar images,
whereas the pattern is a numeric radar chart generated from topographic and hydrometeorological data
or previous radar observations.

Many scientists globally are working on comparative (terrain reference) navigation [8–10].
Most studies have analyzed the shape of the bottom of bodies of water obtained from the depth
of the basin. For example, in [11,12] the authors presented an autonomous underwater vehicle
optimal path planning method for seabed terrain matching navigation to avoid these areas. In [13]
authors present an application for the practical use of priors and predictions for large-scale ocean
sampling. The proposed method takes advantage of the reliable, short-term predictions of an ocean
model, and the utility of priors used in terrain-based navigation over areas of significant bathymetric
relief to bound uncertainty error in dead-reckoning navigation. Another author [14,15] proposes
a comprehensive evaluation method for terrain navigation information and constructs an underwater
navigation information analysis model, which is associated with topographic features. Similar problems
are presented in [16–18]. In [17], a tightly-coupled navigation is presented to successfully estimate
critical sensor errors by incorporating raw sensor data directly into an augmented navigation system.
Furthermore, three-dimensional distance errors are calculated, providing measurement updates through
the particle filter for absolute and bounded position error. All these solutions are time consuming
because they use a big data sets. MBES big data processing [19–30] has also been investigated.
In [19], authors propose algorithm CUBE (combined uncertainty and bathymetry estimator). A model
monitoring scheme CUBE ensures that inconsistent data are maintained as separate but internally
consistent with the depth hypotheses. The other method is presented in [29]. The main purpose of
the presented reduction algorithm is that, the position of point and depth value at this point will not
be an interpolated. In the article, the author focused on the importance of neighborhood parameters
during clustering of bathymetric data using neural networks (self-organizing maps).

Big data problems are closely related to the idea of single-beam echosounders measurements [31]
and Light Detection and Ranging (LiDAR) [32–38].

The method of comparative underwater navigation presented in the work compares depth area
images registered in semi-real time with depth areas in bENCs. The construction of bENCs for
comparative navigation has been described previously [39].

A ship’s position can be plotted by comparative methods using one of three basic methods [40].
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• Determining the point of best match of the image with the pattern. The logical conjunction
algorithm is used and it finds the point of best match of images recorded as a digital matrix.
The comparison between the registered real image and the source image (in this case bENCs)
as a whole is done using a method that can determine global difference or global similarity
between the images.

• Using previously registered real images associated with the position of their registration.
This method uses an artificial neural network (ANN) trained by a sequence created from
vectors representing the compressed images and the corresponding position of the vehicle.

• Using the generated map of patterns. An ANN is trained with a representation of selected
images corresponding to the potential positions of the vehicle. The patterns are generated based
on a numerical terrain model, knowledge of the effect of the hydrometeorological conditions
and the observation specificity of the selected device.

In addition to ANN, the literature also provides other solutions that can be used in comparative
navigation. One possible solution is the application of a system based on an algorithm of multi-sensor
navigational data fusion using a Kalman filter [40]. The said solution is intended to be implemented in
a navigational decision support system on board a sea-going vessel. The other possible solution is
comprehensive testing and analysis of a particle filter framework for real-time terrain navigation on
an autonomous underwater vehicle [41].

Deterministic methods include comparative navigation, which is mainly performed using distance
and proximity functions, as well as correlation and logical conjunction methods [42].

The idea of using ANN for position plotting is particularly intriguing. The teaching sequence
of the ANN consists of registered images correlated with their positions. Teaching is performed in
advance and can take as long as necessary. During the use of the trained network, the dynamic
registered images are passed to the network input, and the network interpolates the position based
on recognized images closest to the analyzed image. A merit of this method is that the network is
trained with real images, including their disturbances and distortions, which are similar to those that
are used in practice. The main problem with this method is that it requires previous registration of
numerous real images in various hydrometeorological conditions, and the processing and compressing
of images. After compressing the analyzed image, a teaching sequence for the neural network designed
to plot the vehicle’s position is constructed. The task of the network is to construct a mapping function
associating the analyzed picture with the position.

Regardless of the method of comparative navigation, the basic problem is registration, filtering,
and reduction of measurement data.

The standard methodology of the development of MBES big data, in general, consists of following
stages: (1) Obtaining a whole 3D multibeam sonar data set, (2) pre-processing (including, among
others the filtration process, noise removal and data reduction), (3) main processing (including, among
others, DTM construction and development of bathymetric maps), (4) visualization, (5) analysis.

In this work, we present a new approach of acquiring and simultaneously processing a set
of bathymetric observations. This is a different approach than presented in the literature on
the subject [19,27,29]. The approach includes fragmentary data acquisition, and fast reduction
(the optimum dataset method—OptD [35]) within acquired measuring strips in almost real time,
and generation of DTMs. The OptD method was modified for this purpose. This modification relies on
introducing in the OptD method a loop (FOR instruction) for fragmentary data processing. All these
processes in our approach were performed in a first stage under acquisition of data, during measurement,
whole data set was not obtained, but a fragment of the data set. The approach was considered where
measuring strips were obtained without overlay and where measuring strips had overlay between
each other. The proposed approach was compared with the method that uses full sets of bathymetric
data. The results showed that our approach quickly obtained, reduced, and generated DTMs in almost
real time for comparative navigation.
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The originality of this paper was a new approach for 3D multibeam data processing. Reduction
and 3D model generation in almost real time is an important research subject in the context of
comparative navigation. The navigators need to have, in short time, the results of measurement
for opportunity to compare generated isolines map (or DTMs) with existing maps (or DTMs).
In this way, the navigators can detect differences in depth, and recognize obstacles at the bottom of
the water reservoir.

2. Materials and Methods

While preparing a master image, such as the depth area taken from a bENC, the problem of data
processing time is not critical. For recording and processing images intended for dynamic comparison
with the master image, data reduction is the key problem. A dynamically registered image should
be processed for a DTM generated in close to real time. DTM construction is an important step in
generating the depth area of the acquired image to be compared with the master image of the bottom.
A DTM of the bottom can be generated based on data obtained from GNSS measurements connected to
a single-beam echosounder or a MBES, which is currently the most popular technology. The acquired
data is used to create a DTM of the bottom of the river, lake, channel, or harbor area. The DTM not only
models bottom area processes but also detects objects under the water surface and eventually helps with
their visual inspection. Handling such a large volume of data is time-consuming and labor-intensive.
Therefore, we propose the use of the OptD method [35–37] to reduce the data set. Reducing the number
of observations allows the 3D model and depth area to be generated much faster. Moreover, the OptD
method allows the data set to be divided into points representing the bottom of the river, lake, or channel
and points representing objects that are not the bottom (items under the water surface).

2.1. Instrument Description

The 3D Sidescan 3DSS-DX-450 sonar system (Ping DSP) (Figure 1) uses a state-of-the-art acoustic
transducer array, SoftSonar electronics, and advanced signal processing to produce superior swath
bathymetry and 3D side-scan imagery. This system resolves multiple concurrent acoustic arrivals,
separating backscatter from the seabed, sea surface, water column, and multipath arrivals to produce
3D side-scan image spanning the entire water column. High-resolution swath bathymetry coverage of
up to 14 times altitude is achieved. The system operates on frequencies of 450 kHz and the maximum
power consumption is 18 W. The dimensions of the sonar head are 57 × 9.8 cm, and its weight in air is
8 kg. The device generates a beam with a width of 0.4◦ and the maximum number of soundings per
ping is 1440 across the swath [43].
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2.2. Test Area Characteristics

The measurements were carried out by HydroDron-1 [44] on Klodno Lake, which is a gutter-type
lake and located in the Kashubian Lake District in Chmielno Commune, in the Kartuzy administrative
unit (Pomorskie Province), Poland. Klodno Lake is one of the three Chmielenskie Lakes and lies on
the Kolko Radunskie waterway. The Kashubian Route runs along the southern and western coastline
of the lake, and the lake itself is connected to Male Brodne Lake and Radunski Dolny Lake through
narrow waterways. Radunia river flows through the lake. The total area of the lake is 134.9 ha,
the length is 2.0 km, and the maximum depth is 38.5 m. Data presented in the article were taken during
a 9 day measurement campaign in April and May 2019.

2.3. Methodology

2.3.1. Methodology v1

In methodology v1, the test area was processed and divided into strips, and tests without and with
overlay between the strips were performed. For the tests, the following assumptions were made.

(a) The test area was divided into strips pi without overlay between them, where pi was a strip with
observations, i= 1, 2, 3 . . . , m, and m was the number of strips.

(b) The test area was divided into strips poi with 25–30% overlay between them, where poi was
a strip with observations, i = 1, 2, 3 . . . , m, and m is the number of strips.

For strips without overlay (methodology v1.1) and strips with overlay (methodology v1.2.),
DTMmv1.1 and DTMmv1.2, respectively, were generated using the kriging method, and the results of
processing all strips combined together were whole DTMv1.1 and whole DTMv1.2, respectively.

2.3.2. Methodology v2

Methodology v2 differed from methodology v1 in that the DTMs were generated based on
a reduced set. The reduction was performed by the OptD method. The tests were performed using
similar assumptions to methodology v1.

(a) The test area was divided into strips pi without overlay between them and the set was reduced
by the OptD method.

(b) The test area was divided into strips poi with 25–30% overlay between them and the set was
reduced by the OptD method.

DTMmv2.1 and DTMmv2.2 were obtained for methodologies v2.1 and v2.2, and DTMv2.1
and DTMv2.2 were obtained as a sum of partial DTMs, respectively. The scheme for the proposed
methodologies is presented in Figure 2.

Additionally, for comparison, DTMs were generated from all the data (100%) and from all the data
after reduction (2%):

(a) DTM100% = whole DTMv1.1 = whole DTMv1.2.
(b) DTM2% = whole DTMv2.1 = whole DTMv2.2.

Our approach used the OptD reduction method and the kriging interpolation method.
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2.3.3. OptD method

The main aim of OptD method was the reduction of the set of measurement observations.
The degree of reduction was determined by setting prior, the reduction optimization criterion (c)
(e.g., the number of observations in the dataset that the user required after reduction). Reduction itself
was based on the cartographic generalization method. The area of interest was divided on measuring
strips L. Within each L, the relative position of the points to each other was considered. The way
how the points were tested in the context of being removed or preserved in the dataset depended on
the tolerance range t related to the chosen cartographic generalization method. The width of L and t are
iteratively changed until the optimization criterion was achieved. In result, there were different levels
of reduction in the individual parts of the processing area: There were more points in the detailed part
of the scanned object and much less within uncomplicated structures or areas. Only those points that
were significant remained. This method has been described in detail in [35–37].

Previous applications of the OptD method consisted of processing the entire data set (airborne
laser scanning—ALS, terrestrial laser scanning—TLS, mobile laser scanning—MLS). In the case of
MBES, the strips with observations were reduced in almost real time and happened in stages. The OptD
method was modified for this purpose. This modification relied on introducing in the OptD method
a loop (FOR instruction) for fragmentary data processing. The methodology of processing MBES based
on the modified OptD method is presented in Figure 3.

The strip’s width can be determined or set in relation to the measuring speed. The first measurement
strip is reduced while the next strip is acquired. The second strip is attached to the previous reduced
strip, and then the second is reduced while the third is obtained and so on, until the measurement is
finished. Reduction conducted within each of the separated strips is based on the Douglas–Peucker
cartographic generalization method [45,46]. The process can be performed for strips without overlay
(methodology v2.1) or strips with overlay (methodology v2.2). Finally, we obtained a whole data set
consisting of reduced strips.

(a) For methodology v2.1, the whole dataset after reduction = p1 after OptD + p2 after OptD + . . . +

pm after OptD
(b) For methodology v2.2, the whole dataset after reduction = po1 after OptD + po2 after OptD + . . .

+ pom after OptD
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In both versions, the optimization criterion, c, was adopted, which controls the reduction rate.
For simplicity, this criterion was given as a percentage of points in the set after reduction. In this work,
c = 2% was used, which is a high reduction rate. For almost real-time processing, processing time was
important. Reduction decreased the number of observations, which substantially shortened the next
process, DTM, and depth area generation. To generate DTM in almost real time, the kriging method
was used.

In methodology v2.1, DTM1v2.1 was generated based on a reduced set with observations from
the first measurement strip, p1. DTM2v2.1 was generated from p2 after the reduction, and the last
interpolated node points were in the place where the DTM2v2.1 and DTM1v2.1 nodes coincided.
The DTM3v2.1 nodes coincided with the nodes of the next DTM, DTM4v2.1, and the previous DTM,
DTM2 v2.1, and so on. Methodology v2.2 used a similar process for strips with overlay.

Finally, the method gave the following models.

(a) For v2.1, the whole DTMv2.1 = DTM1v2.1 + DTM2v2.1 + . . . + DTMmv2.1
(b) For v2.2, the whole DTMv2.2 = DTM1v2.2 + DTM2v2.2 + . . . + DTMmv2.2

In addition to the DTMs generated by methodologies v2.1 and v2.2, DTMv2.1 and DTMv2.2 were
obtained from the whole dataset after reduction. For comparison, using methodology v1, DTMmv1.1
and DTMmv1.2 and DTMv1.1 and DTMv1.2 were also generated.

2.3.4. Reduction

The methodology v1 test area was divided into strips with no overlay between them. The scheme
for this division (methodology v1.1) is shown in Figure 4a and that for methodology v1.2, in which strips
are selected with overlay, is shown in Figure 4b.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 24 
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Figure 5. Whole test area (694,185 points).

The statistical characteristics of the datasets obtained by methodology v1 are shown in Table 1.
Each dataset represented an individual strip, pi characterized by number of points in the dataset,
and the minimum and maximum height of points. Additionally, information about range and standard
deviation of height was included. They allowed us to initially assess the fragments of measured areas.

Table 1. Statistical characteristics for datasets in methodology v1. (Where: H—height, R—range,
STD—standard deviation).

Number of Points H min. [m] H max. [m] R [m] STD [m]

Whole dataset 694185 15.08 23.65 8.57 2.44

St
ri

ps
w

it
ho

ut
ov

er
la

y

p1 54176 22.86 23.54 0.68 0.08
p2 35106 22.86 23.60 0.74 0.11
p3 44333 22.82 23.58 0.76 0.12
p4 53579 22.75 23.65 0.90 0.10
p5 52967 22.64 23.52 0.88 0.11
p6 55497 22.04 23.39 1.35 0.20
p7 70704 20.84 23.14 2.30 0.40
p8 84962 19.48 22.16 2.68 0.55
p9 79890 17.86 20.42 2.56 0.49
p10 53216 17.35 18.78 1.43 0.27
p11 55373 16.36 18.04 1.68 0.33
p12 54382 15.08 17.03 1.95 0.31

St
ri

ps
w

it
h

ov
er

la
y

po1 72718 22.86 23.54 0.68 0.09
po2 56075 22.82 23.60 0.78 0.12
po3 72478 22.75 23.65 0.90 0.11
po4 80936 22.73 23.65 0.92 0.10
po5 80642 22.40 23.52 1.12 0.14
po6 90022 21.50 23.39 1.89 0.29
po7 115584 20.18 23.16 2.98 0.62
po8 122894 18.75 22.21 3.46 0.75
po9 101810 17.71 20.42 2.71 0.56
po10 84810 16.92 18.78 1.86 0.41
po11 84551 15.82 18.04 2.22 0.44
po12 54592 15.08 17.04 1.96 0.31

In methodology v2, the original dataset was optimized using the OptD method. As in the previous
case, the test area was divided into strips with and without overlay, and the variants are shown in
Figures 6 and 7.

Figures 6 and 7 show the difference between methodology v2.1 and v2.2. In the case of v. 2.1,
there are more points where the strips contact each other than in the middle of the strips. However, in
the case of v2.2 more points are in the entire overlay area.

The appearance of the whole dataset after reduction conducted using the same optimization
criterion (c = 2%) is shown in Figure 8. The time required for the reduction of the whole set to 2% of
the original set was about 20 s, which is acceptable for comparative navigation.
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Figure 8. Optimized test area (13,976 points).

In the case of reducing the whole data set presented in Figure 8, we observed that the points
remained in characteristic places of the studied area.

The statistical characteristics of the datasets obtained by methodology v2 are shown in Table 2.

Table 2. Statistical characteristics for datasets in methodology v2. (Where: H—height, R—range,
STD—standard deviation).

Number of Points H min. [m] H max. [m] R [m] STD [m]

Optimized dataset 13976 15.10 23.57 8.47 2.86

St
ri

ps
w

it
ho

ut
ov

er
la

y

p1 1091 22.86 23.53 0.67 0.11
p2 702 22.86 23.57 0.71 0.13
p3 888 22.85 23.57 0.72 0.13
p4 1071 22.75 23.65 0.90 0.13
p5 1055 22.72 23.52 0.80 0.14
p6 1111 22.05 23.35 1.30 0.25
p7 1403 20.84 23.10 2.26 0.55
p8 1710 19.50 22.16 2.66 0.78
p9 1605 17.86 20.38 2.52 0.71
p10 1066 17.40 18.76 1.36 0.36
p11 1116 16.36 18.00 1.64 0.50
p12 1079 15.10 17.01 1.91 0.46

St
ri

ps
w

it
h

ov
er

la
y

po1 1446 22.86 23.54 0.68 0.13
po2 1132 22.86 23.60 0.74 0.13
po3 1444 22.81 23.65 0.84 0.14
po4 1633 22.77 23.65 0.88 0.14
po5 1619 22.42 23.52 1.10 0.21
po6 1794 21.56 23.38 1.82 0.42
po7 2321 20.26 23.11 2.85 0.86
po8 2456 18.76 22.19 3.43 1.08
po9 2018 17.71 20.42 2.71 0.80
po10 1691 16.92 18.77 1.85 0.62
po11 1689 15.91 18.01 2.10 0.65
po12 1094 15.10 16.96 1.86 0.46

The average data acquisition time in strips of 20 m at a measuring unit speed of 4 knots was about
20 s. The reduction within strips without overlay took 4–7 s, whereas for strips with overlay it took
6–9 s. The data processing time was much faster than for that of obtaining one strip.

3. Results

Each dataset representing strips pi and poi was used for DTM generation. The DTMs generated
for strips p1, p2, and p3 are shown in Figures 9–11, respectively. Next to DTMs, corresponding to them
isoline maps are attached. They show, how the fragment of measured bottom of the lake look alike,
when methodologies v1.1 and v2.1 were applied.
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Figure 10. Isolines2v1.1 and DTM2v1.1, and isolines2v2.1 and DTM2v2.1 generated for strip 2 (p2) by
methodologies v1.1 and v2.1, respectively.

The generated DTMs and isolines maps were more readable in the case of v2.1. Fewer data
has made the isoline image easier to read. Visibility of places with great depths was definitely
better. Therefore, it was easier to assess the nature of the bottom from the DTMs generated by
methodology v2.1. The statistical characteristics of the DTMs are presented in Table 3. As can be seen,
DTMs from both methodologies v1.1 and v2.1 do not show significant statistical differences. In height,
observed differences usually were about 2–3cm. For DTM4 and DTM6 they equaled −6 cm and 5 cm,
respectively. This may indicated, on existence of some items on the bottom of the lake, that reduction
allowed us to notice. The standard deviations calculated for DTMs generated from original dataset was
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usually smaller, about 1 cm in comparison to standard deviations corresponding to DTMs obtained
from reduced datasets.
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Table 3. Statistical characteristics for DTMmv1.1 and DTMmv2.1. (Where: H—height, STD—standard deviation).

DTM H min. [m] H max. [m] STD [m] Time [s] for Generated DTMs

DTM1v1.1
DTM1v2.1

22.88
22.85

23.48
23.47

0.08
0.09

14
14

DTM2v1.1
DTM2v2.1

22.87
22.87

23.57
23.53

0.12
0.12

12
10

DTM3v1.1
DTM3v2.1

22.83
22.83

23.54
23.54

0.13
0.14

11
9

DTM4v1.1
DTM4v2.1

22.80
22.79

23.54
23.60

0.13
0.12

15
12

DTM5v1.1
DTM5v2.1

22.67
22.65

23.51
23.51

0.12
0.13

13
11

DTM6v1.1
DTM6v2.1

22.70
22.67

23.38
23.33

0.22
0.24

14
10

DTM7v1.1
DTM7v2.1

20.79
20.77

23.12
23.12

0.44
0.47

13
9

DTM8v1.1
DTM8v2.1

19.43
19.45

22.09
22.09

0.58
0.59

14
10

DTM9v1.1
DTM9v2.1

17.99
17.96

20.40
20.37

0.55
0.55

16
12

DTM10v1.1
DTM10v2.1

17.35
17.37

18.76
18.74

0.31
0.32

12
10

DTM11v1.1
DTM11v2.1

16.37
16.36

18.02
17.99

0.39
0.40

12
9

DTM12v1.1
DTM12v2.1

15.16
15.15

17.01
17.01

0.29
0.29

13
10

The total generation time for DTMv1.1 was 159 s, whereas that for DTMv2.1 was 126 s.
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The DTMs generated for strips p1, p2, and p3 are presented Figures 11–14.
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Figure 13. Isolines2v1.2 and DTM2v1.2, and isolines2v2.2 and DTM2v2.2 generated for strip 2 (po2)
by methodologies v1.2 and v2.2, respectively.
Analyzing Figures 12–14, it can be stated, as in the case of v2.1, that methodology v2.2 gave better

results in terms of visibility and effectiveness of generated isolines maps and DTMs. In the figures
showing the results of processing with the new v2.2 methodology, it was easier to read shallow
and deep places. Methodology v1.2 figures were hard to read, and the isolines map were difficult
to analyze.

The statistical characteristics of the DTMs are presented in Table 4.
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Figure 14. Isolines3v1.2 and DTM3v1.2, and isolines3v2.2 and DTM3v2.2 generated for strip 3 (po3)
by methodologies v1.2 and v2.2, respectively.

Table 4. Statistical characteristics for DTMmv1.2 and DTMmv2.2. (Where: H—height, STD—standard deviation).

DTM H min. [m] H max. [m] STD [m] Time [s] for Generated DTMS

DTM1v1.2
DTM1v2.2

22.87
22.86

23.47
23.50

0.09
0.12

20
19

DTM2v1.2
DTM2v2.2

22.86
22.87

23.52
23.53

0.12
0.13

21
18

DTM3v1.2
DTM3v2.2

22.80
22.82

23.54
23.55

0.12
0.12

23
19

DTM4v1.2
DTM4v2.2

22.82
22.79

23.54
23.55

0.11
0.13

22
18

DTM5v1.2
DTM5v2.2

22.43
22.46

23.50
23.51

0.15
0.16

21
17

DTM6v1.2
DTM6v2.2

21.52
21.53

23.41
23.39

0.31
0.32

21
16

DTM7v1.2
DTM7v2.2

20.23
20.25

23.12
23.09

0.67
0.68

22
16

DTM8v1.2
DTM8v2.2

18.76
18.76

22.15
22.16

0.81
0.82

22
15

DTM9v1.2
DTM9v2.2

17.75
17.71

20.39
20.42

0.63
0.65

24
16

DTM10v1.2
DTM10v2.2

16.95
16.96

18.76
18.75

0.43
0.45

19
14

DTM11v1.2
DTM11v2.2

15.81
15.83

18.02
18.00

0.49
0.50

23
16

DTM12v1.2
DTM12v2.2

15.16
15.17

17.02
16.99

0.29
0.28

22
16

The generation time for DTMv1.2 was 260 s, whereas that for DTMv2.2 was 201 s. Analyzing
the statistical characteristics of DTMs obtained in methodologies v1.2 and v2.2, the trend can be observed.
DTMs generated on the basis of the reduced dataset were about 1 cm higher than corresponding DTMs
obtained from original measurement data.

DTM 100% and DTM 2% were also generated (Figures 15 and 16).
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Figure 16. Isolines2% and DTM2%.

In Figures 15 and 16, the conclusion about a more readable isoline map was repeated. Figure
Isolines2% (Figure 16) shows areas of depth in the test area better than Isolines100% in Figure 15.

The statistical characteristics of the isolines2%, DTM2%, isolines100% and DTM100% are presented
in Table 5.
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Table 5. Statistical characteristics for DTM100% and DTM2%. (Where: H—height, STD—standard deviation).

DTM H min. [m] H max. [m] STD [m] Time [s] for Generated DTMS

DTM100%
DTM2%

15.29
15.32

23.56
23.56

2.50
2.54

268
150

The total development time of the whole set was 508 s, consisting of 240 s acquisition time of
the whole set and 268 s DTM100% generation time. The total development time of the reduced set was
410 s, consisting of 240 s acquisition time of the whole set, 20 s reduction of the set to 2% of the original
set, and 150 s DTM2% generation time.

To assess how the DTM strips fit together, the height differences at the corresponding nodes
between adjacent strips were calculated. The results for methodologies v1 and v2 are shown in Tables 6
and 7, respectively.

Table 6. Height differences between strips in methodology v1. (Where: H—height, STD—standard deviation).

∆H min. [m] ∆H max. [m] ∆Hmean [m] STD [m]

St
ri

ps
w

it
ho

ut
ov

er
la

y

p1–p2 −0.32 0.32 0.01 0.08
p2–p3 −0.22 0.27 0.00 0.02
p3–p4 −0.37 0.30 −0.01 0.08
p4–p5 −0.49 0.28 −0.02 0.08
p5–p6 −0.36 0.30 −0.02 0.07
p6–p7 −0.40 0.32 −0.03 0.08
p7–p8 −0.60 0.29 −0.09 0.13
p8–p9 −0.58 0.27 −0.06 0.11
p9–p10 −0.80 0.23 −0.06 0.11
p10–p11 −0.52 0.19 −0.08 0.09
p11–p12 −0.43 0.22 −0.03 0.07

St
ri

ps
w

it
h

ov
er

la
y

po1–po2 −0.26 0.22 0.00 0.05
po2–po3 −0.33 0.33 0.00 0.05
po3–po4 −0.31 0.25 −0.01 0.04
po4–po5 −0.26 0.24 0.00 0.04
po5–po6 −0.28 0.24 0.00 0.04
po6–po7 −0.37 0.28 −0.03 0.07
po7–po8 −0.56 0.21 −0.04 0.10
po8–po9 −0.43 0.20 −0.03 0.07
po9–po10 −0.52 0.24 −0.03 0.07
po10–po11 −0.38 0.25 −0.02 0.05
po11–po12 −0.43 0.42 −0.01 0.06

Both methodologies gave similar results; the differences between almost all the statistical
characteristics were close to zero. However, the difference for ∆H min. was larger (from −0.25
to 0.14 m) because some points representing an object with various values of H may be near the area
where adjacent strips are coincident. Therefore, the content of the set processed by the OptD method
was different. Nonetheless, data reduction by the OptD method made the main features in the modeled
areas clearer (Figures 9–14).
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Table 7. Height differences between strips in methodology v2. (Where: H—height, STD—standard deviation).

∆H min. [m] ∆H max. [m] ∆Hmean [m] STD [m]

St
ri

ps
w

it
ho

ut
ov

er
la

y
p1–p2 −0.21 0.34 0.03 0.07
p2–p3 −0.29 0.28 0.00 0.11
p3–p4 −0.22 0.25 0.00 0.07
p4–p5 −0.34 0.21 −0.02 0.07
p5–p6 −0.31 0.23 −0.02 0.09
p6–p7 −0.24 0.24 −0.03 0.07
p7–p8 −0.44 0.26 −0.08 0.11
p8–p9 −0.55 0.28 −0.10 0.13
p9–p10 −0.49 0.27 −0.04 0.08
p10–p11 −0.40 0.18 −0.06 0.08
p11–p12 −0.44 0.17 −0.04 0.07

St
ri

ps
w

it
h

ov
er

la
y

po1–po2 −0.21 0.27 −0.01 0.08
po2–po3 −0.20 0.05 −0.06 0.07
po3–po4 −0.26 0.26 0.07 0.07
po4–po5 −0.29 0.20 −0.02 0.08
po5–po6 −0.20 0.20 0.03 0.06
po6–po7 −0.31 0.33 −0.03 0.12
po7–po8 −0.52 0.24 −0.11 0.14
po8–po9 −0.70 0.28 −0.06 0.19
po9–po10 −0.35 0.26 0.02 0.08
po10–po11 −0.39 0.47 0.03 0.16
po11–po12 −0.37 0.53 0.05 0.15

The statistical characteristics of the height differences for methodologies v1 and v2 are shown in
Tables 8 and 9, respectively.

Table 8. Statistical characteristics for height differences between strips (methodology v1). (Where:
H—height, STD—standard deviation).

Methodology v1

∆H min. [m] ∆H max. [m] ∆Hmean [m] STD [m]

St
ri

ps
w

it
ho

ut
ov

er
la

y

Min. −0.80 0.19 −0.09 0.02

Max. −0.22 0.32 0.01 0.13

Mean −0.46 0.29 −0.03 0.08

Standard deviation 0.16 0.04 0.03 0.03

St
ri

ps
w

it
h

ov
er

la
y

Min. −0.56 0.20 −0.04 0.04

Max. −0.26 0.42 0.00 0.10

Mean −0.38 0.26 −0.01 0.06

Standard deviation 0.10 0.06 0.01 0.02

Table 10 shows the differences between statistical characteristics for height differences between
methodologies v1 and v2.

The differences in statistical characteristics for height differences between using strips with
and without overlay for methodology v2 are shown in Table 11. The majority of values were
from −0.01 to 0.08 m, indicating that there were no significant differences between the approaches.
However, the processing time for strips with overlay was longer than for strips without overlay.
Therefore, the methodology based on data reduction and the variant that uses strips without overlays
are suitable for depth area calculation.
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Table 9. Statistical characteristics for height differences between strips (methodology v2). (H—height,
STD—standard deviation).

Methodology v2

∆H min. [m] ∆H max. [m] ∆Hmean [m] STD [m]

St
ri

ps
w

it
ho

ut
ov

er
la

y

Min. −0.55 0.17 −0.10 0.07

Max. −0.21 0.34 0.03 0.13

Mean −0.34 0.26 −0.03 0.09

Standard deviation 0.12 0.05 0.04 0.02

St
ri

ps
w

it
h

ov
er

la
y

Min. −0.70 0.05 −0.11 0.06

Max. −0.20 0.53 0.07 0.19

Mean −0.35 0.28 −0.01 0.11

Standard deviation 0.15 0.13 0.05 0.04

Table 10. Differences between statistical characteristics for height differences between methodologies.
(Where: H—height, STD—standard deviation).

Methodology v1—Methodology v2

∆H min. [m] ∆H max. [m] ∆Hmean [m] STD [m]

St
ri

ps
w

it
ho

ut
ov

er
la

y

Min. −0.25 0.02 0.01 −0.05

Max. −0.01 −0.02 −0.02 0.01

Mean −0.12 0.02 0.00 0.00

Standard deviation 0.04 −0.01 0.00 0.01

St
ri

ps
w

it
h

ov
er

la
y

Min. 0.14 0.15 0.07 −0.03

Max. −0.05 −0.11 −0.07 −0.09

Mean −0.03 −0.02 −0.01 −0.05

Standard deviation −0.05 −0.07 −0.04 −0.03

Table 11. Differences in statistical characteristics for height differences between strips with and without
overlay. (Methodology v2). (where: H—height, STD—standard deviation).

Strips with Overlay—Strips without Overlay

∆H min.
[m]

∆H max.
[m] ∆Hmean [m] STD [m]

Min. −0.15 −0.12 −0.01 0.00
Max. 0.01 0.19 0.05 0.06
Mean 0.00 0.02 0.02 0.02

Standard deviation 0.04 0.08 0.02 0.02

4. Discussion

The new approach of methodology for processing MBES big data proposed by the authors was
based on fragmentary 3D multibeam sonar data processing conducted in almost real time. All stages
of standard methodology were performed not after acquisition of the whole dataset but in time,
the fragments of data were acquired. While the one fragment of data was processed (execution of all
stages: Reduction, DTM generation, isolines generation, analysis) the next fragment was obtained.

The most important step during the processing was reduction, because a reduced number of data
allowed faster 3D bottom model generation, which can be compared with other types of data within
terrain reference navigation.
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Various tests can be found in the literature to speed up the calculation time of big data, e.g., parallel
programming can be used with compute unified device architecture (CUDA). Using CUDA in processing
of big datasets was tested, among others, by [47–49]. Within these works, tests on the possibility of using
CUDA to generate a digital elevation model were performed. To speed up calculations there was also
possibility to use artificial neural networks for modeling sea bottom shape, as these also continually
implemented a surface approximation process [50,51]. These methods processed the entire dataset upon
completion of the measurement. The use of these methods in almost real time was difficult, so in the new
development methodology, we proposed using the OptD method.

The time needed to reduce the 3D multibeam sonar dataset based on OptD method with
optimization criterion of 2% in strips was 4–7 s, whereas for strips with overlay it took 6–9 s. Such time
can be considered as insignificant compared to the entire time needed for processing the whole data
set. Moreover, the benefit of the reduction was a shorter time needed to generate the model. The times
were as follows:

1. The total generation time for DTMv1.1 was 159 s, whereas that for DTMv2.1 was 126 s.
2. The generation time for DTMv1.2 was 260 s, whereas that for DTMv2.2 was 201 s.
3. The time needed for DTM generation was 268 s for DTM100% and 150 s for DTM2%.

Thus, the longest time was needed to generate a DTM100%. In all other cases, the time was
shorter. The shortest time was needed for DTMv2.1 generation (the version with strips without overlay
and with processing based on OptD method). The processing time depended on performed computer
equipment and software. It is important, however, that the reduction algorithms, whose task is to
speed up the development time, were uncomplicated and easy to implement.

The proposed solution also enables ongoing control during measurement. Acquired data were
observed and initially analyzed in almost real time, therefore, if there was need, measurement can be
repeated, completed or omitted in the selected area. Therefore, the presented approach can save time,
labor, space on disks, etc.

5. Conclusions

For comparative navigation, data from MBES was processed by a new methodology
which consisted of the OptD method to reduce the number of observations and generate DTMs
representing measured fragments of the bottom of the area in almost real time. The data was then
used to perform depth area calculations. The methodologies were based on fragmentary processing
of observations organized in strips with or without overlay. Our analysis showed that using strips
without overlay and with reduction by the OptD method (methodology 2.1) was an efficient, fast way
to obtain data appropriate for 3D model generation that can be compared with a reference chart,
such as bENCs. A major advantage of our method is that only points containing relevant information
about depth differences are used for DTM construction and unimportant points belonging to flat areas
are omitted. The resulting depth model of the bottom forms the first layer of a multi-layered model
of the reference image bottom, which in many methods there is the only one layer. For comparative
navigation based on the depth model above the flat bottom, the system cannot determine the position
and additional information is required. For example, subsequent layers could be a bottom object layer
and a layer containing information about the type of bottom. The layer containing characteristic points
and bottom objects will use the same reduced points as the depth layer, allowing the analysis of data in
semi-real time.

The general conclusions can be formulated as follows:

1. The new methodology is dedicated for 3D multibeam sonar data.
2. The new approach consists of the following steps: Acquisition the fragment of data, reducing

data, and 3D model generation.
3. At the same time, the one fragment of data was processed with a new methodology, the next

fragment of data was measured. This approach allows fast processing.
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4. The generated DTMs or isolines maps can be simultaneously compared with existing maps
(for example bENCs).

5. The time needed for fragmentary processing of 3D multibeam sonar data is shorter than the time
needed for processing the whole data set.

6. The navigator has full control over the number of observations and the obtained DTMs are of
good quality. In the case of isolines, mapping the obtained results shows that isolines generated
by way of the OptD method are more readable and these isolines present more visible depths.
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