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Abstract: Many wetlands are characterized by a vegetation cover of variable height and density 
over time. Tracking spatio-temporal changes in inundation patterns of these wetlands remains a 
challenge for remote sensing. Water In Wetlands (WIW) was predicted using a dichotomous 
partitioning of reflectance values encoded based on ground-truth (n = 4038) and optical-space 
derived (n = 7016) data covering all land cover types (n = 17) found in the Rhône delta, southern 
France. The models were developed with spectral data from Sentinel 2, Landsat 7, and Landsat 8 
sensors, hence providing a monitoring tool that covers a 35-year period (same sensor for Landsat 5 
and 7). A single model combining the near infrared (NIR ≤ 0.1558 to 0.1804, depending on sensors) 
and short-wave infrared (SWIR2 ≤ 0.0871 to 0.1131) wavelengths was identified by three 
independent analyses, each one using a different satellite. Overall accuracy of water maps ranged 
from 89% to 94% for the training samples and from 90% to 94% for the validation samples, 
encompassing standard water indices that systematically underestimate flooding duration under 
vegetation cover. Sentinel 2 provided the highest performance with a kappa coefficient of 0.82 for 
both samples. Such tool will be most useful for monitoring the water dynamics of seasonal 
wetlands, which are particularly sensitive to climate change while providing multiple services to 
humankind. Considering the high temporal resolution of Sentinel 2 (every 5 days), cumulative 
water maps built with the WIW logical rule could further be used for mapping a wide range of 
wetlands which are either periodically or permanently flooded. 

Keywords: dichotomous partitioning; wetland hydrology; remote sensing; satellite data; water 
detection 

 

1. Introduction 

Ecosystem monitoring with replicable remotely-sensed methods offers the distinct advantage 
of repeated, homogeneous coverage of large areas, with little extra effort [1–4]. This allows the 
development of time series datasets at coherent spatial scale irrespective of site accessibility. 
Application of remotely-sensed techniques for wetland mapping and monitoring has received a lot 
of attention [5–7] due to this ecosystem’s decline and contribution to human well-being [8,9]. 
Wetland classifications have been performed with a multitude of sensors (aerial, multispectral, and 
synthetic aperture radar SAR) under a wide array of parametric and non-parametric statistical 
approaches using pixel- and object-based algorithms [5,10–14]. Among spectral bands, the near 
infrared (NIR) and red edge (RE) have been identified as the most useful for delineating wetland 
types [5–7,11,15,16], along with short-wave infrared (SWIR) bands, which are sensitive to both soil 
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and vegetation moisture [6,17]. Thermal infrared (TIR) bands have also been used successfully to 
distinguish water bodies from vegetation and soil covers [6,7], as well as for identifying inundated 
wetlands [6,18]. With microwave bands, optimal values for incidence angles, wavelengths, and 
polarizations differ according to wetland vegetation types, with longer wavelengths performing 
better in forested wetlands [14]. What stands out from the abundant literature reviews on the remote 
mapping of wetlands is that, owing to the diversity of their vegetation morphologies, which are 
highly dynamic and often hard to discriminate from that of terrestrial ecosystems, there is no 
standard methodology to map wetlands on a large scale [6,19]. However, because hydroperiod is a 
prime factor influencing biodiversity and the services provided by aquatic ecosystems [20,21], 
surface water area is often used as a proxy in remote sensing to identify wetlands or estimate 
spatio-temporal changes in their extent [22–25]. 

Although supervised classifications based on spectral analysis have been useful for accurately 
and repeatedly mapping water bodies [26–28], the application of spectral indices has gained 
popularity because they are considered less restrictive and more reproducible, especially for 
applications at large or on global scale [4,29]. Several spectral indices have been developed to 
monitor surface water areas using satellite imagery [25,30–37]. They generally use the near infrared 
(NIR) and/or short-wave infrared (SWIR) bands because water absorbs most radiation at NIR 
wavelengths and beyond, in contrast to other landscape features [33,38]. Their increasing 
applications under various situations has led to several modifications to improve classification 
accuracy, especially relative to the misclassification of turbid waters [39] or the noise caused by 
built-up land and shadow [22,40]. For instance, the NIR band in the Normalized Difference Water 
Index (NDWI) developed in 1996 [37] was replaced by the SWIR band in 2006 to reduce 
disturbances related to built-up lands giving rise to the Modified NDWI [36]. Under the same 
reasoning, it was further suggested to calculate the MNDWI using the band SWIR2 instead of 
SWIR1 [22]. An Automated Water Extraction Index (AWEI) has been proposed under two versions 
to reduce misclassifications related to either shadow or built-up land [31]. A comprehensive 
comparison of the performance of these water indices using Landsat scenes from Australia revealed 
that most indices tend to underestimate water presence, being affected by water color and the 
presence of non-water features in a pixel [41]. Considering the unique spectral characteristics of 
water bodies in the visible and infrared wavelengths, the application of fixed thresholds to spectral 
bands remains a valuable approach for delineating aquatic ecosystems [40,42]. Arguments against 
threshold-based methods is that they do not necessarily perform as well outside the areas where 
they were developed [25]. Although water indices are considered as more stable because they use 
band ratios, recent studies have revealed similar shortcomings when water maps are confronted 
with ground-truth data, imposing the use of specific thresholds (different from 0) to increase 
classification accuracy [22,41]. 

Because of its particular climate characterized by an annual water deficit, many wetlands of the 
Mediterranean basin are flooded only seasonally [43]. In this area, wetlands colonized by reeds, 
bulrushes, and other emergent plants provide sheltered refuges for wildlife and primary resources 
for industry and local populations [44]. The biodiversity and socio-economic value of these wetlands 
primarily rely on the timing and duration of inundation [45]. Increased water stress predicted under 
climate change projections [46–49] will negatively affect ecosystem services (provision of food, 
building materials, recreational activities, etc.) and biodiversity (e.g., reduction of suitable feeding, 
spawning, nesting and nursery grounds to birds, amphibians and fish) [8,50,51]. Accordingly, failure 
to detect water presence under vegetation could lead to errors in the (1) classification of wetland 
habitats; (2) detection of changes in wetland functions; (3) assessment in water resource use, 
availability or management; and (4) extrapolation of wetland biodiversity and services [19,46,52]. 

Detection of water under wetland vegetation has received little attention in the development of 
remote sensing algorithms and indices using optical data [25,26]. Vegetation growth inhibits optical 
sensors in variable ways, depending on the plant species, by interfering with water detection 
[25,26,53,54]. With radar sensors, emergent vegetation presents differences in surface roughness and 
increases the amount of backscattered radiation from inundated surfaces, making the discrimination 
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of land and vegetated wetlands problematic [24,54]. Long wavelength SAR sensors with small 
incidence angles can penetrate vegetation more successfully, but the signal that is partially blocked 
by the vegetation creates a specific backscatter response due to double-bounce scattering [55]. 
Because vegetation growth and structure will induce different scattering mechanisms [54–57], the 
ability to detect surface water will vary across space and time being influenced by vegetation 
morphology and phenology [14,58]. 

Several studies have recently tested the performance of standard spectral indices for surface 
water detection under various situations in terms of terrain and sensor [22,40,41,59]. Capitalizing on 
a solid ground-truth sample, this study aims at identifying what are currently the best options for 
detecting surface water, with special attention to water under dense vegetation cover. However, 
instead of individually testing the water and non-water classification accuracy of each index relative 
to ground-truth data as previously done [22,40,41,59], this study uses a data mining approach to 
identify what performs best among water indices, vegetation indices, and spectral bands used alone 
or in combination, using decision trees as classifiers. This work was carried out with the optical 
sensors of Sentinel 2, Landsat 7, and Landsat 8. The recent launch of Sentinel 2 satellites provides 
scenes of relevant spectral, spatial, and temporal resolution for monitoring wetlands routinely and at 
no cost. Although Landsat data have lower temporal and spatial resolutions, they were also selected 
because of their exceptional data archive that enables long-term trend assessments. 

2. Materials and Methods 

2.1. Ground-Truth Data 

The diversity and dynamics of Camargue wetlands make it an ideal case study for testing the 
performance of water detection methods under different types of vegetation cover. The Camargue or 
Rhône delta is a 145,300 ha alluvial plain located in southern France that rarely surpasses 5 m 
elevation. It is comprised of a network of wetland habitats including ponds, lagoons, freshwater 
open and reed marshes, halophilous scrubs (Salicornia marshes), salt pans, and rice fields (Figure 1). 
The variety of human uses associated with wetlands combined with the natural water deficit (–700 
mm annually) on one hand and the possibility of water pumping from the Rhône river on the other 
hand, produce a variety of hydrological conditions at any time of the year (Figure 2). 

 

Figure 1. Simplified land cover map of the Camargue Unesco Man and Biosphere reserve built from 
maps provided by the Syndicat Mixte de Camargue gardoise and Parc naturel régional de Camargue 
based on orthophotographs of 2011 and 2016, respectively. 
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Figure 2. Monthly hydroperiod and vegetation development for different wetland types in relation 
to human uses in Camargue. 

Between 20 April and 27 October 2017, 480 points were monitored for water presence/absence 
within lagoons, salt marsh, reed beds, and grasslands. These measurement points were distributed 
every 60 m along 29 transects. Most transects were sampled two or three times during this period in 
order to obtain data under wet and dry conditions. Some 1115 additional measures of water level 
were obtained from a monitoring programme initiated in 2001 in the largest reed bed of the 
Camargue. This wetland is divided into 37 independent hydrological units covered more or less 
homogenously with common reed Phragmites australis which can grow up to 1.5–3 m tall depending 
on salinity. Water levels were measured bi-monthly or monthly at piezometers buried 50 cm into the 
ground at the marsh edge. A number of studies collected data on water levels in the middle of these 
hydrological units and these measures, calibrated with the associated piezometer [26,43,60], were 
the ones used in this study. For each hydrological unit, mean water level at one point randomly 
selected in emergent vegetation was extrapolated once or twice a month at the time of passage of a 
satellite under the assumption that water levels vary linearly over time. To overcome the 
insensitivity of the data associated with micro-topography, points with water levels estimated 
between –5 and 5 cm were discarded from the analysis. Because early classification attempts with 
Sentinel 2 misclassified dune areas as flooded, 454 dry points were sampled in the dunes during the 
summer of 2016, and these points were systematically reported on the two scenes corresponding to 
the period of field sampling. 

2.2. Optical Data 

To increase the performance and transferability of this work, water measures in wetlands were 
complemented by optical data extracted from 50 random points selected in each of the 17 main land 
cover types (n = 850) of the Camargue. Information on water presence/absence was derived from five 
SPOT-5 scenes of 2015 by applying the Modified Index of Free Water (MIFW, [26]), which provides 
an overall accuracy of 88% for detecting water in Camargue wetlands. The five scenes of SPOT-5 
were selected to match dates at which scenes could be provided by the Operational Land Imager 
(OLI) of Landsat 8 (Table 1), allowing us to transfer the water presence/absence information of the 
850 reference points to the five Landsat 8 scenes. A new model to detect Water In Wetlands (WIW) 
using field and optical data was then developed with Landsat 8. The resulting water masks were 
used to extract and transfer the reference point data (n = 850) to five Sentinel 2 scenes of the same 
dates. A similar reasoning was followed to obtain optical data for 6 scenes provided by the 
Enhanced Thematic Mapper Plus (ETM+) of Landsat 7 in 2014 from the Landsat 8 water mask. To 
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compensate for the failure of the Landsat 7 ETM+ scan line corrector since May 2003, the number of 
optical reference points was increased twofold for each land cover type with this satellite. The 
number of scenes used for data transfer between satellites corresponds to the maximum number of 
clear images that coincide in time (within three days maximum), while covering all seasons. 
Considering the satellite timelines and the fact that Landsat 7 used the same sensors as Landsat 5 TM 
(from 1984 to 2011), the three models developed in this study provide a water monitoring tool for 
several upcoming years extending 35 years back. 

Table 1. Satellite sensors and spectral bands used in this study with their spatial and temporal 
resolutions. 

Spectral Band 
Landsat 8 OLI Landsat 7 ETM+ Sentinel 2A, 2B 

Band Wavelength 
(µm)  Band Wavelength 

(µm)  Band Wavelength 
(µm) 

Blue (B1) B1 0.43–0.45 
Blue (B) B2 0.45–0.51 B1 0.45–0.52 B2 0.46–0.52 

Green (G) B3 0.53–0.59 B2 0.52–0.60 B3 0.54–0.58 
Red (R) B4 0.64–0.67 B3 0.63–0.69 B4 0.65–0.68 

Red edge (RE1) B5 0.698–0.712 
Red edge (RE2) B6 0.733–0.747 
Red edge (RE3) B7 0.773–0.793 

Near Infrared (NIR) B4 0.77–0.90 B8 0.784–0.9 
Near Infrared (NIR) B5 0.85–0.88 B8A 0.855–0.875 

Shortwave Infrared (SWIR1) B6 1.57–1.67 B5 1.55–1.75 B11 1.565–1.655 
Shortwave Infrared (SWIR2) B7 2.11–2.29 B7 2.09–2.35 B12 2.1–2.28 

Launched date 11 February 2013 15 April 1999 June 2015, March 2017 
Spatial resolution (m) 30 30 10−20 

Frequency of data acquisition 16 days 16 days 5 days 

2.3. Development of the Water In Wetlands (WIW) Logical Rule 

A supervised classification was performed in the Rpart (Recursive PARTitioning, [61]) package 
in R software. Reference field and optical data points were encoded as 0 for water absence and 1 for 
water presence. Classification algorithms included the reflectance value of spectral bands listed in 
Table 1, as well as 9 current water indices or equations and 13 indices used in image analysis which 
are listed in Table 2. Several classifiers were created iteratively by progressively varying (at every 
5%) the value of prior probabilities of the presence and absence of water classes. The classifier that 
was the least complex with the highest rate of good classification was selected. A cross-validation 
procedure called CV1-0 [62], for pruning with 10 subsets as well as iterative runs of the algorithm 
[63] for the selection of the cost complexity parameter and the prior parameter for imbalanced 
samples, was used. A random selection of 30% of all points was excluded from the sample and used 
for (independent) validation. In addition, a second validation was performed by comparing the 
classification rates from all of the points (training and validation) by separating the ground-truth 
from the optical-space based data. 
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Table 2. Indices used as potential model variable in dichotomous partitioning for classifying water presence in wetlands. 

Index Equation Reference 
AWEInsh—Automated Water Extraction Index with no shadow 4 × (G − SWIR1) − (0.25 × NIR + 2.75 × SWIR1) [31] 
AWEIsh—Automated Water Extraction Index with shadow B + 2.5 × G − 1.5 × (NIR + SWIR1) − 0.25 × SWIR2 [31] 
BI—Bare soil Index ((SWIR1 + R) − (NIR + B))/((SWIR1 + R) + (NIR + B)) × 100 + 100 [64] 
DVI—Differential Vegetation Index NIR − R [65] 
DVW—Difference between Vegetation and Water NDVI − NDWI [66] 
IFW—Index of Free Water NIR – G [30] 
IPVI—Infrared Percentage Vegetation Index NIR/(NIR + R) [67] 
MIFW—Modified Index of Free Water SWIR1 − G [26] 
MNDWI1—Modified Normalized Difference Water Index with SWIR1 (G − SWIR1)/(G + SWIR1) [36] 
MNDWI2—Modified Normalized Difference Water Index with SWIR2 (G − SWIR2)/(G + SWIR2) [36] 
MSI—Moisture Stress Index SWIR/NIR [68] 
NDVI—Normalized Difference Vegetation Index (NIR − R)/(NIR + R) [69] 
NDWI(F)—Normalized Difference Water Index of McFeeters (G − NIR)/(G + NIR) [37] 
NDWI(G)—Normalized Difference Water Index of Gao (NIR − SWIR1)/NIR + SWIR1) [32] 
OSAVI—Optimized SAVI (NIR − R)/(NIR + R + 0.16) [70] 
RVI—Ratio Vegetation Index NIR/R [71] 
SAVI—Soil Adjusted Vegetation Index 1.5 × (NIR − R)/(NIR + R + 0.5) [72] 
SR—Simple Ratio R/NIR [73] 
TVI—Triangular Vegetation Index 0.5 × (120 × (NIR − G) − 200 × (R − G)) [74] 
WII—Water Impoundment Index NIR2/R [75] 
WRI—Water Ratio Index (G + R)/(NIR + SWIR1) [34] 
WTI—Water Turbidity Index 0.91 × R + 0.43 × NIR [76] 
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2.4. Validation of the Water In Wetlands (WIW) Logical Rule 

A binary mask of water presence based on the most accurate classifiers with each satellite was 
created with the raster calculator (Spatial Analyst) of ArcGIS version 10 (ESRI). Using the zonal 
statistics tool (Spatial Analyst) of ArcGIS, the values of the validation points (1 for water presence 
and 0 for water absence) were extracted to build an error matrix for estimating omission errors, 
commission errors, overall accuracy, and Kappa coefficient [22]. These statistics were also calculated 
for 8 standard water indices or equations found in the literature based on the training and validation 
reference points used in this study. The annual water masks, obtained by combining monthly water 
masks when applying the WIW and three water indices having the highest classification accuracy 
with our dataset, were also computed for qualitative visual validation based on local expert 
knowledge. 

3. Results 

3.1. Optimal Classifiers for Detecting Water In Wetlands (WIW) According to Satellites 

Although based on different ground-truth and optical-based data, the binary trees resulting 
from the data mining process were highly similar among satellites. Two single spectral bands from 
Landsat and Sentinel sensors were preferred over the various existing water indices for detecting 
water in wetlands according to the following thresholds: 

 Landsat 8 : WIW = NIR ≤ 0.1735 and SWIR2 ≤ 0.1035 
 Landsat 5, 7 : WIW = NIR ≤ 0.1558 and SWIR2 ≤ 0.0871 
 Sentinel 2 : WIW = NIR ≤ 0.1804 and SWIR2 ≤ 0.1131 
Threshold values identified by the classifiers differed slightly from one satellite to another, 

resulting from the diversity of sensors (Table 1) and the different ground-truth data used to fit their 
time coverage. Details on the samples used for training and validation of the classifiers as well as 
accuracy estimates are provided in Table 3. Overall accuracy was highest with Sentinel 2 (94.1%) 
followed by Landsat 7 (93.0%) and Landsat 8 (89.2%). Omission errors were lower for predicting 
water absence (9% for Landsat 8, 3% for Landsat 7, and 4% for Sentinel 2) than water presence 
(respectively 19%, 20%, and 15%). Kappa coefficients on the training and validation samples were, 
respectively, 0.63 and 0.68 for Landsat 8, 0.82 and 0.78 for Landsat 7, and 0.82 and 0.82 for Sentinel 2. 
All classifiers behaved similarly with all datasets, with classification accuracy for training and 
validation samples not varying by more than 1.3%. Field data were better classified than data 
extrapolated from water masks for Landsat 7 and Sentinel 2, reaching 97% of correct classification 
with S2. 

3.2. Classification Accuracy According to Landcover Types 

Predictive accuracy according to land cover classes was also quite similar across satellites (Table 
3). Dry habitats were typically well classified, and the low omission errors were probably 
overestimated due to potentially false data in the training samples which were entirely based on 
remotely-sensed transferred data. A good example of this are the buildings from Landsat 7 scenes, of 
which 4% were “misclassified” as flooded areas. Model performance was lower for sand, with 
around 90% of good classification. Wet habitats with permanent or temporary waters were typically 
less well classified (≈ 85%), mostly due to omission errors of water presence. Wet habitats containing 
tall vegetation, which were our main targets in this study, were correctly classified at 83% (Landsat 
8), 85% (Landsat 7), and 89% (Sentinel 2). Riparian vegetation was rather well classified even though 
the training data were remotely-sensed and identified as dry areas in the training sample. As a 
consequence, the omission rate when the habitats are flooded can reach up to 55% with Sentinel 2. 
Another particular case is that of canals and rivers, which were well classified at only 75% with 
Landsat 8.
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Table 3. Optimal classifiers for predicting water presence with error matrix and calculation of overall accuracy (%OA) according to land cover types for each satellite. 

OLI Landsat 8  ETM + Landsat 7  Sentinel 2A, 2B 
Water Equation B5 ≤ 0.1735 and B7 ≤ 0.1035 B4 ≤ 0.1558 and B7 ≤ 0.0871 B8a ≤ 0.1804 and B12 ≤ 0.1131 

Observed => Predicted 0 => 0 0 => 1 1 => 0 1 => 1 %OA 0 => 0 0 => 1 1 => 0 1 => 1 %OA 0 => 0 0 => 1 1 => 0 1 => 1 %OA 
Model building 
Training data 2157 232 84 361 88.8 1623 44 103 453 93.4 2052 81 79 471 94.0 

Validation data 940 77 44 170 90.2 685 24 50 173 92.1 894 30 35 192 94.4 
Data source  

Scenes 2204 209 46 349 90.9 1158 28 89 328 92.7 1849 84 104 568 92.8 
Field 893 100 82 182 85.5 1150 40 64 298 93.3 1097 27 10 95 97.0 

Land cover classes  
Building 139 0 4 0 97.2 91 0 4 0 95.8 74 0 1 0 98.7 

Road 194 25 1 5 88.4 85 2 3 2 94.6 178 4 7 2 94.2 
Dry crop 162 1 0 1 99.4 137 0 1 1 99.3 127 1 0 1 99.2 
Rice field 185 25 8 20 86.1 97 0 2 1 98.0 163 7 1 2 95.4 
Grassland 186 3 0 1 98.4 84 2 0 1 97.7 128 1 0 1 99.2 

Fallow land 153 1 0 1 99.4 101 0 7 0 93.5 82 2 0 1 97.6 
Forest 222 8 0 0 96.5 92 1 5 5 94.2 145 1 6 3 95.5 
Dune 332 24 1 1 93.0 464 5 4 1 98.1 664 9 5 1 97.9 

Bare ground 152 5 5 8 94.1 74 2 4 13 93.5 164 7 6 30 93.7 
Beach 181 11 8 5 90.7 95 5 4 20 92.7 174 14 11 26 88.9 

Salt pans 264 10 25 67 90.4 313 9 7 82 96.1 353 15 3 126 96.4 
Open-water marsh 165 58 27 210 81.5 161 13 16 199 92.5 108 10 6 202 95.1 
Halophilous scrub 221 28 1 0 88.4 110 3 9 13 91.1 175 17 15 14 85.5 

Canal, River 26 39 11 123 74.9 13 7 1 65 90.7 3 3 2 121 96.1 
Reed marsh 258 38 35 87 82.5 281 17 70 206 84.8 190 14 23 100 88.7 

Riverine forests 122 16 1 0 87.8 45 1 10 1 80.7 90 4 16 13 83.7 
Salt meadows 135 17 1 2 88.4 65 1 6 16 92.0 128 2 12 20 91.4 

Total 3097 309 128 531 89.2 2308 68 153 626 93.0 2946 111 114 663 94.1 
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3.3. Coherence of Resulting Water Masks 

More important than the statistics is the coherence of the water maps produced with our 
predictive classifiers relative to “real” habitat hydrology [19]. Permanent and seasonal wetlands, as 
well as dry natural areas were all correctly identified based on visual interpretation and expert 
knowledge (Figures 1 and 3). The differing management strategies (flooding durations) of 
embanked units were easily recognizable on the resulting water maps, similarly to hydrology of 
rectangular rice fields, which are flooded for four to five months a year. A strong decrease in rice 
cropped areas was further easily detected when comparing the maps built with Landsat 7 scenes to 
the more recent satellite images (Figure 3). Such decrease is in accordance with data from the French 
Rice Centre reporting 20479 hectares of rice in 2001 [77], compared to 11349 ha in 2017 [78]. The 
Landsat 7 classifier provided longer flooding durations compared to Landsat 8 and Sentinel 2 due to 
discrepancies in the amount of rainfall among the three periods considered (Figure 3a,b,c). The 
annual water maps were created with at least one image per month. However, given the availability 
of cloud-free scenes from Landsat 7 and 8, images from different successive calendar years were 
combined. The sum of rainfalls in the month preceding the 12 scenes corresponded to 651 mm for 
Landsat 7, 393 mm for Landsat 8, and 474 mm for Sentinel 2, based on data from a local 
meteorological station. A closer look at the September–December period, when Mediterranean 
wetlands are flooded again, is shown in Figure 4. The period covered by Landsat 7 (from 26 August 
2002 to 31 December 2002) was characterized by strong rainfalls cumulating 328 mm compared to 
67mm for Landsat 8 (from 27 August 2017 to 16 December 2017) and 89 mm for Sentinel 2 (from 27 
August 2017 to 24 December 2017). These precipitations translated into the inundation of natural 
and agricultural systems of which the progression is easily detected on the successive Landsat 7 
scenes (Figure 4). Actually, the impact of a wet month preceding scene acquisition is clearly visible 
when comparing scenes on a monthly basis, irrespective of the satellite used. 

With all satellites, uneven slopes facing north of a small mountain range located north west of 
the study area were sometimes misclassified as flooded (Figure 4). These misclassifications arise 
from the end of autumn to winter and disappear progressively from winter to early spring. On a few 
occasions, some permanent waters in large lagoons were identified as dry (see November scenes of 
Landsat 8 in Figure 4). This situation occurred systematically under strong winds (above 100 km/h) 
according to data from a local meteorological station. 
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(a) 

 

(b) 

(c) 

Figure 3. Annual water masks resulting from application of the WIW logical rule on (a) Landsat 7, (b) 
Landsat 8 and (c) Sentinel 2 satellites. 
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Figure 4. Impact of precipitations received in the month preceding scene acquisition from September through December based on single water masks (one scene per 
month showing water presence/absence) produced with Landsat 7 (328 mm in 2002), Landsat 8 (67 mm in 2017) and Sentinel 2 (89 mm in 2017). The red circle refers to 
noises caused by waves on a windy day, while the yellow circles enclose misclassifications due to shadows in a mountainous area. 
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3.4. Impact of Radiometric Corrections and Satellite Sensors on Classifier Accuracy 

Considering that atmospheric corrections affect the reflectance value of a pixel, they can 
influence classification accuracy based on reflectance thresholds. The effect of correction methods on 
overall accuracy was tested with Sentinel 2. The original model, obtained with 2A level scenes from 
THEIA (WIW = B8a ≤ 0.1804 and B12 ≤ 0.1131) was compared with models using 1A level scenes 
provided by the Sentinel products exploitation platform (PEPS) of Copernicus and scenes corrected 
with the Semi-Automatic Classification Plug-in (SCP) in QGIS. The models obtained were very 
similar to the original (SCP: B8a ≤ 0.1798 and B12 ≤ 0.1143; PEPS: B8a ≤ 0.1839 and B12 ≤ 0.1269), as 
was their overall accuracy with 93.9% (SCP) and 93.1% (PEPS) compared to 94.1% for the original 
classifier. For any land cover class, omission or commission errors did not vary by more than 1% 
from the original classification, except for halophilous scrubs for which omission errors increased by 
5.3% (SCP) and 3.6% (PEPS) due to misclassification of ten dry-ground points (Table 4). 

Considering that the WIW logical rules differed little among satellites, their performance was 
tested across satellites. All models performed well with all satellite sensors (Table 4). Actually, the 
model developed with Landsat 7 performed better with Landsat 8 than the model originally built 
with Landsat 8. While the overall accuracy was rather similar, discrepancies were sometimes 
observed according to land cover classes. For instance, classification accuracy of bare ground and 
halophilous scrubs decreased by more than 10% when the Sentinel 2 model was applied to Landsat 7 
scenes. Application of any model to Sentinel 2 provided, however, a roughly similar overall 
accuracy. Water maps were coherent and similar, the only perceptible divergence being an overall 
slight increase or decrease in the annual flooding durations. Results issued from the Landsat 7 model 
applied to Landsat 8 scenes or from the Sentinel 2 model applied to Landsat 8 can be considered as 
identical as they were only very marginally different. 

Table 4. Difference in % overall accuracy according to the original satellite used for classification and 
the radiometric correction used for Sentinel 2 when applying the WIW logical rule. 

Landsat 8 Landsat 7 Sentinel 2 

Land cover class L8 ΔL7  ΔS2 L7 ΔL8  ΔS2 S2 ΔL8 ΔL7 ΔSCP  ΔPeps 

Buildings 97.2 0.0 0.0 95.8 –1.1 0.0 98.7 0.0 0.0 0.0 0.0 

Roads 88.4 2.7 –1.3 94.6 –6.5 –6.5 94.2 0.0 1.0 –0.5 –0.5 

Dry crops 99.4 –0.6 0.0 99.3 0.0 0.0 99.2 0.0 0.8 0.0 –0.8 

Rice fields 86.1 0.4 –0.8 98.0 0.0 0.0 95.4 0.0 0.0 0.0 0.0 

Grassland 98.4 0.0 0.0 97.7 –1.1 –1.1 99.2 0.8 0.8 0.0 –0.8 

Fallow land 99.4 0.6 0.0 93.5 0.0 0.0 97.6 2.4 2.4 0.0 0.0 

Forests 96.5 0.0 0.0 94.2 –1.9 –3.9 95.5 0.6 0.0 0.0 0.0 

Dunes 93.0 2.5 –1.7 98.1 –0.6 –0.8 97.9 0.3 1.2 0.0 –0.7 

Bare ground 94.1 –1.2 –1.8 93.5 –4.3 –10.8 93.7 –0.5 –1.4 0.0 –0.5 

Sand 90.7 2.0 –0.5 92.7 –4.0 –4.0 88.9 1.8 1.3 0.0 –5.3 

Salt works 90.4 –1.9 –0.5 96.1 –2.2 –2.9 96.4 –0.2 –0.6 0.0 –0.8 

Open marsh 81.5 1.5 –1.1 92.5 –1.5 –3.1 95.1 –0.3 –0.9 –0.6 –1.2 

Halophilous scrub 88.4 2.4 –2.8 91.1 –3.7 –10.4 85.5 0.9 0.9 –0.5 –3.6 

Canal, River 74.9 –0.5 –1.0 90.7 –1.2 –1.2 96.1 0.0 0.0 0.0 0.0 

Reed marsh 82.5 –0.7 –1.4 84.8 0.3 –0.7 88.7 0.3 –3.4 –0.6 –1.2 

Riparian vegetation 87.8 2.2 –2.2 80.7 –2.3 –9.5 83.7 –2.4 –3.3 –0.8 0.0 

Salt meadows 88.4 1.3 –3.2 92.0 –2.3 –3.4 91.4 –1.9 –3.1 –0.6 0.0 

Total 89.2 0.6 –1.1 93.0 –1.4 –2.5 94.1 0.1 –0.3 –0.2 –1.1 
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3.5. Performance of the WIW Logical Rule Relative to Other Water Indices 

Performance of the WIW equation (based on independent validation data only) was compared 
to eight water indices found in the literature using all field and optical reference points extracted 
from Landsat 7, Landsat 8 and Sentinel 2 scenes (Table 5). The Kappa coefficients were 
systematically higher with the WIW logical rule and differences among methods were especially 
marked with Sentinel 2 scenes. The resulting water masks were computed on twelve Sentinel 2 
scenes from December 2017 through November 2018 using the four methods providing the highest 
Kappa coefficient values (Figure 5). 

Table 5. Kappa values obtained when applying spectral water indices found in the literature to 
Sentinel 2 (S2), Landsat 7 (L7) and Landsat 8 (L8) scenes using the ground-truth and optical data 
available in this study. 

Water Index Landsat 8  Landsat 7 Sentinel 2 
AWEIsh [31] 0.64 0.61 0.57 

AWEInsh [31]  0.63 0.60 0.56 
IFW [30] 0.62 0.52 0.57 

NDWI (F)  0.62 0.52 0.57 
MIFW [26] 0.66 0.65 0.64 

MNDWI1 [36] 0.63 0.65 0.61 
MNDWI2 [36] 0.50 0.67 0.61 

WRI [34] 0.64 0.62 0.58 
WIW [this study] 0.68 0.77 0.82 

The MNDWI1 and MIFW indices could detect water in rice fields only before rice growth (area 
in pink circle on Figure 5) or after rice harvest (darker area in orange circle on Figure 5). Likewise, 
water in reed vegetation was detected only inside open-water areas of hunting marshes (small dark 
areas in red circle) or after reed harvest in winter (right part in the yellow circle). It appears that the 
MIFW index, which was developed with SPOT-5 sensors for detecting water under vegetation (used 
here with 0 as threshold value to improve Kappa coefficient), does not perform better than other 
water indices when used with Sentinel 2. The MNDWI2 succeeds partially in detecting water under 
vegetation, but its performance with Landsat 8 is particularly low (Table 5). Only the WIW equation 
provides duration of flooding that reflects real inundation patterns for all habitat types (shown in 
Figure 2): Water is detected similarly in non-harvested and harvested reed marsh (left vs. right part 
in yellow circle), demonstrating that vegetation coverage does not interfere with water detection; 
rice fields are considered as flooded during most of the period of rice growth (pink circle); and water 
can be detected under dense cover of halophilous scrubs (darker area in green circle). These plant 
formations, which grow in depressions that are flooded during a few winter months by rainfalls, are 
misclassified as permanently dry with the other three indices (Figure 5). 
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Figure 5. Annual water mask obtained with 12 monthly scenes of Sentinel 2 (from December 2017 to 
November 2018) when applying the water indices having the highest Kappa values in Table 5. 

4. Discussion 

In contrast to current water indices, the logical rule presented in this paper for detecting Water 
In Wetlands (WIW) performs equally well in the absence or presence of vegetation above the water 
surface. Seasonal wetlands are ecologically and economically important ecosystems that are 
particularly sensitive to climate change [46]. A robust tool for monitoring annual and seasonal 
trends in their hydrology is needed by practitioners interested in the conservation of these 
vulnerable ecosystems because hydrology is a prime factor affecting their biodiversity and 
contribution to humankind [8,43] 

Although based on independent field and remotely-sensed data in differing proportions, as 
well as various satellite sensors and different time periods, dichotomous partitioning with Landsat 
7, Landsat 8, and Sentinel 2 led to the same logical rule for predicting water presence. In all cases, the 
near-infrared band (NIR) was first selected, followed by the second shortwave-infrared band 
(SWIR2). None of the standard water indices found in the literature were selected by our models for 
detecting water in wetlands. Although an increased performance of water indices has been obtained 
recently by adding specific threshold values or by using them in combination with vegetation 
indices [22,41,59], applying simple threshold values to the NIR and SWIR2 bands appeared to 
provide better results in this study. Switching the threshold values among satellites or using 
different atmospheric correction methods provided similar water maps, suggest that our approach is 
robust and replicable. Furthermore, when applied to a Sentinel 2 scene of the Doñana marshes in 
southern Spain [79], the WIW logical rules provides a Kappa coefficient of similar value (0.84) to the 
one obtained for the Camargue wetlands. Overall, Sentinel 2 scenes systematically provide better 
classifications, presumably because of their higher spatial resolution compared to Landsat sensors. 
All models performed better than the water index previously developed in Camargue with Spot 5 
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which used a combination of green and SWIR wavelengths (MIFW index, [26]). The Spot-5 sensor 
had a single SWIR band that was located in the lower wavelength (1.58–1.75 μm), corresponding to 
the SWIR1 of the satellites used in this study and not selected in our classifiers. 

A closer look at the classification tree reveals that areas which reflect heat back into the 
atmosphere such as dry ground with little (e.g., mud flats) or no (e.g., road, buildings) vegetation are 
discarded by the reflectance values of the near infrared radiation. In a second step, the combined 
action of the short infrared penetrating the vegetation, its absorption by water and reflection by the 
ground is useful for identifying flooded areas, even under vegetation cover. Penetration of the NIR 
and SWIR wavelengths (800 and 2700 nm) through organic matter has several applications [80]. It 
has been shown that SWIR penetration capacity increases with increasing wavelengths [81,82]. In 
our case, it seems that the SWIR band behaves as in reflectography, the process used to highlight 
charcoal drawing underlying master paintings. According to this technique, a light source is used to 
illuminate the painting and the SWIR passes through the paint, being reflected by the canvas and 
absorbed by the charcoal. The optimal wavelength for passing through all paint layers is around 2 
μm [83], similarly to the SWIR2 bands selected in the WIW logical rule. It is noteworthy to mention 
that the only existing water index that can detect water under vegetation (MNDWI2) also uses 
SWIR2 wavelengths. 

The main types of flooded vegetation in the Camargue correspond to grasses (e.g., rice), 
succulent shrubs (e.g., Arthrocnemum, Salicornia, Salsola), trees (Tamarix sp.), and beds of emergent 
plants having variable height and density such as Ludwigia spp., club-rush, rush, sedge, fen-sedge, 
and common reed [84]. Based on visual interpretation of the water maps, the WIW logical rule 
performs equally well with all these types of vegetation. Apart from the MNDWI2 that can detect 
water in the early stage of vegetation growth, all water indices tested in this study failed to detect 
water under all types of vegetation cover. The particular case of hunting reed marshes is interesting 
because all water indices could detect permanent water in areas free of vegetation that are managed 
for ducks, but none of them could detect water into the reeds surrounding these pools which are also 
flooded for most of the year. Likewise, water under halophilous scrubs, which are a common habitat 
in Camargue, went completely undetected in all water indices. 

Standard water indices applied to our dataset had nevertheless Kappa coefficients generally 
above 0.6. Kappa coefficients are considered as the most robust method to measure classification 
accuracy because they take into account the possibility of the agreement occurring by chance alone. 
However, their calculation remains limited to the reference and validation points provided by the 
observer. Accordingly, a high Kappa coefficient does not necessarily mean that the map is accurate. 
Originally, only optical-space derived data (from SPOT 5 to Landsat 8 and then other satellites, see 
methods) were used in this study to develop the WIW equation. Such an approach provided good 
overall accuracy and Kappa coefficients but the resulting water maps were wrong when confronted 
with ground-truth knowledge. Conventional statistical methods are not designed to deal with 
erroneous data. When using inaccurate training data, misclassifications (e.g., sampling points for 
which the reflectance value is located outside the confidence interval of the studied variable) are 
discarded from the original group of data. This contributes to reducing the confidence intervals of 
the original dataset and the data marginally correctly classified are suppressed to optimize good 
classifications. While such procedure gives a high potential for good statistical results, it amplifies 
the original model’s flaws. In our case, when the original model correctly classified water presence 
or absence only half the time for a specific land cover class, the following water model then 
systematically misclassified this land cover type. Our solution was to add ground-truth data on 
water presence in the training sample for those land cover classes that were identified as providing 
false results. This allowed us to restore the original confidence interval of the dataset by increasing 
the number of points lying outside its limit values. This approach provided satisfactory results 
because the water maps were coherent with reality and the final models provided high classification 
accuracy. 

With all satellites, uneven slopes facing north of a small mountain range located outside the 
study area were misclassified as flooded during the winter months. Since all satellites were passing 
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over the Camargue in the late morning (between 10:10 and 10:40 CET), this confusion is probably 
associated with shadows caused by the winter sun that is too low to light the northern face of the 
mountains. This problem has previously been reported with most water detection methods and can 
be solved by combining spectral indices or adding elevation data [23,31]. On a few occasions, some 
permanent waters in a large and deep lagoon were identified as dry by all satellites. Considering 
that these scenes were systematically acquired under the condition of strong winds (> 100 km/h), 
these artifacts were probably caused by strong waves causing foam on the water surface. Such 
phenomenon is, however, unlikely to occur in shallow or seasonal wetlands. 

5. Conclusions 

The Camargue or Rhône delta comprises a high diversity of natural and human-modified 
habitats. The method developed in this study for detecting Water In Wetland (WIW) is hence likely 
to be applicable to many other wetland areas, especially around the Mediterranean Basin where 
similar types of landscapes are found. It would be interesting to test its performance under 
subtropical and tropical climates where wetland vegetation is more luxuriant and stratified, such as 
in the Everglades [25]. Automated methods for defining optimal thresholds would certainly increase 
performance of the WIW of which the main strength is to rely on high shortwave infrared 
wavelengths (SWIR2). Considering that our models were transferable from one satellite to the other, 
it seems likely that they would perform equally well with other satellites should they have SWIR 
and NIR sensors of comparable wavelengths. The model developed with Landsat 7 is probably the 
most robust for use with other satellites given its high performance with Landsat 8 and Sentinel 2, 
which is attributed to the wider acceptance range of its NIR sensor. Considering that Landsat 5 uses 
exactly the same sensors as Landsat 7, application of the WIW logical rule will permit territorial 
planners, wetland managers, and environmental scientists to follow water dynamics back to 35 years 
ago and, hopefully, for many years into the future with Sentinel 2, Landsat 8, and other satellites. 

The definition of wetlands provided by the Ramsar Convention is very inclusive [85]: 
“…wetlands are areas of marsh, fen, peatland or water, whether natural or artificial, permanent or 
temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine 
water the depth of which at low tide does not exceed six metres.” Considering the high temporal 
resolution of Sentinel 2 scenes (every 5 days), cumulative water maps built with the WIW logical 
rule could further be used for mapping a wide range of wetlands which are either periodically or 
permanently flooded. Such approach could be a good substitute to wetland mapping based on their 
vegetation characteristics and would further enable the monitoring of hydrology, in addition to 
wetland extent and location. Flooding dynamics have important implications for multiple services 
provided by wetlands (e.g., flood mitigation, water purification, wildlife habitat, and recreational 
potential), including carbon and methane cycling [8,86]. 
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