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Abstract: Airports have a profound impact on our lives, and uncovering their distribution around the
world has great significance for research and development. However, existing airport databases are
incomplete and have a high cost of updating. Thus, a fast and automatic worldwide airport detection
method can be of significance for global airport detection at regular intervals. However, previous
airport detection studies are usually based on single remote sensing (RS) imagery, which seems an
overwhelming burden for worldwide airport detection with traversal searching. Thus, we propose a
hierarchical airport detection method consisting of broad-scale extraction of worldwide candidate
airport regions based on spatial analysis of released RS products, including impervious surfaces
from FROM-GLC10 (fine resolution observation and monitoring of global land cover 10) product,
building distribution from OSMs (open street maps) and digital surface model from AW3D30 (ALOS
World 3D—30 m). Moreover, narrow-scale aircraft detection was initially conducted by the Faster
R-CNN (regional-convolutional neural networks) deep learning method. To avoid overestimation of
background regions by Faster R-CNN, a second CNN classifier is used to refine the class labeling
with negative samples. Specifically, our research focuses on target airports with at least 2 km length
in three experimental regions. Results show that spatial analysis reduced the possible regions to
0.56% of the total area of 75,691 km2. The initial aircraft detection by Faster R-CNN had a mean
user’s accuracy of 88.90% and ensured that all the aircrafts could be detected. Then, by introducing
the CNN reclassifier, the user’s accuracy of aircraft detection was significantly increased to 94.21%.
Finally, through an experienced threshold of aircraft number, 19 of the total 20 airports were detected
correctly. Our results reveal the overall workflow is reliable for automatic and rapid airport detection
around the world with the help of released RS products. This research promotes the application and
progression of deep learning.

Keywords: remote sensing (RS); deep learning (DL); spatial analysis; object-based target
detection; airports

1. Introduction

Airports have attracted much attention in recent decades as being key transportation targets [1,2].
Uncovering global airport distribution has great significance for transport planning and analyzing
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human mobility patterns, but is difficult [3,4]. With the increasing number of global airports every year,
large-scale, rapid, and automated airport detection is important. The development of remote sensing
(RS) and the growing availability of RS imagery with high spatial resolution have elevated global
airport detection to a new height, which can precisely identify and locate airports [5,6]. However, due
to the huge amount of high-resolution imagery and computational complexity of detection algorithms,
it is best to first extract the data at a broad scale [7–9]. Differing from previous researches on airport
detection in single RS imagery [7,9–12], a hierarchical framework has been introduced for global airport
detection: broad-scale extraction of candidate airport regions based on spatial analysis of released
digital products, while at a narrower scale, suitable feature descriptors should be selected to identify
airports from within the candidate regions. Thus, how to efficiently obtain airports candidate regions
and robustly describe airport appearances are important for improving detection performance [10].

For candidate airport regions, simpler and more efficient segmentation-based approaches
are necessary for broad-scale searching, where spectral features, textural features, or geometrical
characteristics are frequently evaluated, such as gradient of intensity [13], airport line features [7,11,14],
and key scale-invariant feature transform (SIFT) points [15]. For the gradient of intensity, common
machine learning classifiers, such as the Adaboost algorithm, were adopted for the rough identification
of airport runways [13]. However, the gradient of intensity at the pixel level cannot represent the
substantive characteristics, and the line features are more specific for airport regions. Budak et al. [7]
proposed an algorithm composed of several line-based processing steps, Zhu et al. [14] introduced the
concept of near parallelity, and Tang et al. [11] applied a line segment detector to extract the features of
line segments in images. The proposed line-based methods have good performance, but also need
pixel-level operation, which requires enormous computation time and memory, thus limiting their
broad-scale application. Although the SIFT key-points method has a high computation efficiency with
high accuracy, it is still not suitable for relatively low-resolution imagery at a broad scale [15]. In
general, these studies commonly used features at the same scale, where single broad-scale features
could cause the missing of detailed information and low accuracy, and single narrow-scale features
could cause low computation efficiency.

The fusion of multiple features, especially at different scales, can be used to improve the extraction
performance. Zhao et al. [16] fused the bottom-up region features and top-down line features to
reduce the sensibility of resolution variety, and Xiao et al. [12] used multiscale fusion features to
represent complementary information and proved that fusion of features outperformed other features
for candidate airport region extraction. Except for characterization of two-dimensional profiles, spatial
characterization of three-dimensional profiles should also be considered to improve efficiency, such
as elevation differences derived from existing digital elevation models [17]. Runways, with their
unique textural and spatial characteristics, are most prominently chosen to rapidly locate candidate
airports [7,8,11]. Here, runways refer specifically to the part of airport used for take-off and landing,
and can be directly extracted from impervious areas of land cover products, such as FROM-GLC10 (fine
resolution observation and monitoring of global land cover 10) [18]. Moreover, they have a distinct
shape, flat terrain, and are narrow and long with no direct connection to public roads. These unique
features allow spatial analysis methods to distinguish airports from other land uses.

At the narrow scale, other unique features are used to distinguish airports, including parking lots,
terminals, hangars, and aircraft [10]. The latter’s appearance is uniform in different locations, making
them easy to detect at a narrower scale [19]. Aircraft detection is relatively mature compared with
other targets. The many methods of aircraft detection can be roughly classified into two categories [20]:
low-level features, such as edges and symmetry [21–27], and high-level features based on object
features [20,28–33]. For low-level features, Bo et al. [21] converted RGB images to binary images
for aircraft detection. The image conversion, essentially, is a dimension reduction method, which
loses some descriptive features on the premise of reducing computational cost. Compared with the
dimension reduction method, Luo et al. [22] trained a support vector machine (SVM) classifier based on



Remote Sens. 2019, 11, 2204 3 of 19

histogram of oriented gradient (HOG) features. The low-level aircraft features detector has acceptable
accuracy with low computational complexity, but has poor robustness.

For high-level features, by increasing the dimensions of spectral features, textural features, or
geometrical characteristics, classification stability is significantly improved [28,32,34,35]. Deep learning
(DL) is the most prominent method that can automatically learn high-level features with high accuracy,
and has created new ways to analyze remote sensing imagery [36]. With the deepening of computer
vision research, convolution feature extraction was proposed due to its strong representation ability.
Convolutional neural networks (CNN), a kind of mature DL algorithm, have achieved significant
success in target detection with the help of prior knowledge-based region proposal methods [29,30,37].
For the prior knowledge, low-level features [37] and pretrained convolutional networks [29,30] are
commonly used. However, the region proposal method largely relies on supervised pretraining, which
increases the computation complexity, and thus a selective search was introduced in the R-CNN
(regional-CNN) and Fast R-CNN framework that required no prior knowledge [38,39]. Moreover,
inefficient selective searching can be replaced by a more effective region proposal network which
requires no prior knowledge and has better performance, called Faster R-CNN [40,41]. This Faster
R-CNN framework has proven successful and efficient for aircraft detection [42–45].

The detection of airports around the world is important but challenging due to variations in airport
appearance and size, and the complexity of their backgrounds. In this paper, we propose a hierarchical
airport detection method that obtains candidate airport regions based on released remote sensing
products, then uses high-resolution imagery to detect aircraft and distinguish airports from other
impervious surfaces, such as residual segmented roads or buildings. In general, the main contributions
of this work can be summarized as:

(1) proposal of a worldwide airport detection workflow based on mature DL methods and spatial
analysis of released digital products with the advantages of being fast and automatic due to the
omission of processing and analyzing original remote sensing data.

(2) the integration of DL and spatial analysis for global airport detection as an exploration of the
in-depth application of DL in the field of object detection, which has been urgently called for in a
previous publication [36].

2. Materials

In this study, three experimental areas were selected to test the proposed method as shown in
Figure 1, including Beijing (China), New Jersey (U.S.), and northeastern Buenos Aires (Argentina),
with areas of 16,394 km2, 38,491 km2, and 20,806 km2 respectively. The selection of three experimental
areas is due to consideration of geographical diversity, which can be used to verify the universality
and reliability of the proposed workflow. Major datasets used included the global land cover (GLC)
product FROM-GLC10, global digital surface model ALOS World 3D—30 m (AW3D30), open street
maps (OSMs) for roads and buildings, shape-files for administrative boundaries, and high-resolution
imagery from Google Maps (Table 1).

The FROM-GLC10 included 10 land cover types with 10 meter spatial resolution and high overall
accuracy [18]. Compared with other GLC products, FROM-GLC10 has the characteristics of high spatial
resolution and global coverage, which are conducive to the worldwide application of the workflow.
This product’s “impervious area” category was used to locate possible airport runways [46]. The
AW3D30, provided by the Japan Aerospace Exploration Agency, has 30 meter horizontal resolution
and higher accuracy than ASTER, SRTM1, and SRTM3 [47,48]. This was used to remove the nonground
features in impervious areas. OSM datasets provided widely used building distribution and road
network products, which could help eliminate nonrunway areas and segment the surface into blocks
for distinguishing airport runways. [49]. In order to validate the reliability of the proposed workflow,
airport validation data were downloaded from http://ourairports.com/data/, which included the
locations and descriptions of some existing airports.

http://ourairports.com/data/
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Table 1. Data sources.

Datasets Spatial Resolution (m) Updated Sources

FROM-GLC10 10 2017 Tsinghua University

AW3D30 30 April 2019 Japan Aerospace Exploration
Agency

OSM datasets - May 15th, 2019 Open Street Map
Administrative

boundaries - - Center for Spatial Sciences,
University of California, Davis

Google images
(19-level) 0.23 - Google

Airport validation data - June 12th, 2019 Crowd-sourced

3. Methods

The proposed workflow for airport detection first defines candidate regions and then detects
aircraft (Figure 2). There were three steps for identifying candidate airport regions, included exclusion
of nonground regions, block segmentation by road networks, and blocks extraction with area and
length thresholds. For the detection of aircraft, Faster R-CNN was used and a second CNN classifier
was used for refining the aircraft detection.
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3.1. Candidate Airport Regions

3.1.1. Exclusion of Nonground Regions

Impervious area in the FROM-GLC10 is composed of two parts: the tops of artificial structures
(nonground) and the ground itself, which need to be separated for accurate classification [46]. A
morphological filter can be used to extract nonground features from the AW3D30 dataset [50]. For
every step, using a sliding window (2 × 2 pixels) to extract the minimum elevation grid allows grids
with a height difference exceeding a given threshold to be regarded as nonground features (Figure 3).
We set this threshold conservatively as 10 meters. The buildings and nonground features can be
excluded as possible airport runways, and erasing them reduces the candidate areas and generates flat
impervious regions for the next step.
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3.1.2. Block Segmentation by Road Networks

Song et al. proposed recognizing city blocks using road networks, allowing impervious urban
areas to be segmented by erasing road networks [51]. In OSM roads, airports’ internal roads are defined
as “service roads”, which we retained to maintain connections between runways and parking lots.
Road networks were treated as a 10-meter buffer and segmented the flat impervious regions into blocks,
which was converted to shapefile format. After block segmentation, the airport is separated from other
blocks and appeared spatially nonadjacent. This allows spatial clustering based on adjacency analysis
to group adjacent regions (Figure 4). All the processing was finished with the help of the ArcMap
10.3 platform.
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3.1.3. Blocks Extraction with Area and Length Thresholds

For extracted blocks, those with small areas can be first removed by defining an area threshold.
According to our surveys and statistics, the area of an airport is usually larger than 0.1 km2; therefore,
an area threshold can greatly decrease the calculation of the next steps. Then, the length threshold was
applied to represent the features of the airport runway (Figure 5), which is defined by the diameter of
a minimum circumscribed circle. The maximum length of an individual block is determined by the
size of the airport, and larger airports usually have longer runways. In this paper, medium and large
airports were regarded as the target, and they usually have a block longer than 2 km. Thus, a 2 km
length threshold was selected. The area and length of each block were measured using the ArcMap
10.3 platform.
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Figure 5. Selection of a candidate airport region.

3.2. Aircraft Detection

The 2D convex hull for each group is the boundary of the candidate airport region; high-resolution
Google images were downloaded according to the boundary vector. Then, the Faster R-CNN was used
to detect aircraft in high-resolution images.

For training proposes, we selected 50 global airports and downloaded 19-level Google images
(2048× 2048 pixels) with 0.23 meter spatial resolution as training images for Faster R-CNN. The selected
50 airports did not include any airports in the three experimental areas. Usually, machine learning
methods require enormous training samples. Replicates were produced by rotating the images by 90,
180, and 270 degrees to further increase the number of training images. After rotation, there were 200
total training images containing 1360 labeled aircraft for the Faster R-CNN training process.

3.2.1. Analysis with Faster R-CNN

The Faster R-CNN is composed of two modules, the region proposal network (RPN) and the Fast
R-CNN module. Aircraft are relatively small objects when compared with the whole candidate region.
Smaller objects decrease the efficiency of RPN module; thus, the detection accuracy of Faster R-CNN
drops as the object’s relative size becomes smaller [40,52]. Although research on small object detection
has advanced in recent years [53], processing full-size images (billions of pixels) still results in poor
performance and high computational cost.

We used sliding windows to segment the full-size candidate airport images and independently
detected parts with multithreading (Figure 6). Here, the sliding window’s length was 2048 pixels.
The stride of the sliding window should be less than the window’s length to make sure there is some
overlap between the two windows. The overlap ensures that aircraft located in the boundary of two
neighboring windows can be detected correctly. According to the size of aircraft and the imagery
resolution, a 1792-pixel window stride chosen, resulting in a 12.5% overlap area. The subimages with
aircraft prediction results were the outputs of the Faster R-CNN. To detect as many aircraft as possible,
a 0.5 probability threshold was selected, but this resulted in substantial overestimation in which many
background regions were wrongly classified as aircraft. Thus, we applied a second classifier to reduce
such overestimation [54].
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Figure 6. Strategy for aircraft detection from the full-size candidate airport images with Faster R-CNN.

3.2.2. Reclassification with CNN

Considering the overestimated outputs of Faster R-CNN, a second state CNN classification was
adopted in this workflow. The GoogLeNet was selected as a CNN reclassifier for better performance [12],
and all regions identified as aircraft by Faster R-CNN were used as testing samples.

For training the CNN reclassifier, there are positive training samples and negative training
samples for refining outputs of Faster R-CNN (Figure 7). For positive training samples, there are 1360
subimages clipped from Faster R-CNN training images. For negative training samples, 8000 images
(2000 randomly selected sites after rotation) were selected, excluding the three study regions, and
with 0.23 meter spatial resolution and 2048 × 2048 pixels. They were all predicted by the previously
trained Faster R-CNN, and 1072 prediction results (subimages) were regarded as nonaircraft samples,
namely, the negative samples. The global positive samples used in Faster R-CNN training (1360 aircraft
samples) and global negative samples detected by Faster R-CNN (1072 nonaircraft samples) composed
the training samples of CNN reclassifier. The trained CNN reclassifier was applied to refine the class
labeling for aircraft detection by Faster R-CNN, and reclassification results were called refined aircraft.
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4. Results and Validation

We considered medium and large airports with blocks at least 2 km long as targets. The candidate
regions were reduced to less than 2% of their original area after spatial analysis; this process was mainly
influenced by the size of the target airports and the regional urbanization level (Figure 8). The initial
impervious surface was larger for Beijing than New Jersey or northeastern Buenos Aires, resulting in
larger candidate regions in the former than in the latter two (Table 2).Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 19 
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Figure 8. Candidate airport regions: (a) Beijing; (b) New Jersey; (c) northeastern Buenos Aires. The
blue masks were extracted from FROM-GLC10 products, and background images were downloaded
from Google Maps.

Table 2. Characteristics of target candidate airport regions where target airports had blocks 2 km
long. “All impervious area” and “Candidate airport impervious area” represent blocks before and after
spatial analysis, respectively. “Relative area” means the proportion of block area in each experimental
area, and “block counts” represents the number of blocks before and after spatial analysis.

City Attribution
Impervious Area

All Candidate Airport

Beijing Relative area (%) 15.49 1.64

Block counts 294,955 192

New Jersey Relative area (%) 7.95 0.37

Block counts 537,640 58

Northeastern Buenos Aires
Relative area (%) 5.05 0.06

Block counts 164,266 23
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Beijing had the highest artificial surface coverage (15.49%) with fewer blocks than New Jersey
(Table 2), which reflects the larger average area of blocks in Beijing than in New Jersey. Besides, there
was better constraint of spatial analysis in northeastern Buenos Aires, which decreased the relative
area and blocks to a low level.

For the Faster R-CNN training, the initial learning rate was 0.001 and halved with every 20,000
iterations. The batch size was 1, the training step was 60,000, and the momentum optimizer value was
0.9. The output of the Faster R-CNN is essentially a set of relative coordinates of aircraft proposals in
the input image. Each proposal is predicted to contain aircraft with an estimated probability greater
than a predefined threshold. With the 0.5 probability threshold, 829 proposals (737 aircrafts and
92 nonaircrafts) were predicted with 88.90% mean user’s accuracy in all three experimental areas
(Table 3). This output was fed into the second-state CNN automated classifier. The training samples
were classified into two classes, namely, the aircraft (positive samples) and nonaircraft (negative
samples). The GoogLeNet learning rate was 0.001 and was halved for every 20,000 iterations. The
batch size was 16 and the training step was 100,000. The user’s accuracy improved significantly after
CNN reclassification, and 760 refined results included 44 nonaircrafts (Table 3). The results of aircraft
detection for candidate regions are shown in the subgraphs of Figure 9; different subimages are from
different candidate airport regions, and the detection distinguished airports from the background. The
green line represents the boundary of candidate airport regions and red boxes are the proposed aircraft
regions detected by Faster R-CNN.

Table 3. Accuracy of aircraft prediction with Faster R-CNN and the improvement after the CNN was
applied to the predictions from the Faster R-CNN.

City Faster R-CNN Refined by CNN Reclassifier

Prediction User’s Accuracy Prediction User’s Accuracy

Beijing 340 90.88% 313 95.53%
New Jersey 380 88.16% 348 93.68%

Northeastern
Buenos Aires 109 85.32% 99 91.92%

Total 829 88.90% 760 94.21%

As shown in Table 3, 760 refined results with 94.21% user’s accuracy included 716 aircrafts and
44 nonaircraft, and all of the 760 results are located in 29 blocks. In order to filter the false airport
detections caused by the 44 nonaircraft, we filtered the 10 out of 29 testing regions that contained less
than seven aircraft in the CNN results (white dots in Figure 10), where seven is the average aircraft
number of the global 50 airports (1360/200). Finally, 19 airports (red dots in Figure 10) in the three
experimental regions were identified.

Airport validation data were used to validate the reliability of the proposed workflow. As errors or
incomplete records were common in this dataset, cross-validation was adopted. Of the 20 airports with
blocks longer than 2 km, 19 were detected correctly. The missing airport was located in northeastern
Buenos Aires (Figure 10c), where the impervious areas in the original FROM-GLC10 product did not
contain a complete runway for this airport, resulting in missing data during the subsequent processing.
In the experimental areas, no airports were found that were not in the existing database.
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the boundary of candidate airport regions and red boxes are the detected aircraft.
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5. Discussion

5.1. Candidate Airport Regions

5.1.1. Possibility of Worldwide Airport Detection from FROM-GLC10 Product

In Figure 10c, the incompleteness of impervious areas is caused by the accuracy of the FROM-GLC10
product, which is mainly influenced by the method and original data used in product generation.
For the missing airport, the runway was covered with vegetation, which meant that the spectral
characteristics were similar between the runway and the grassland. However, the 10 meter spatial
resolution of FROM-GLC10 is still the optimal product for a narrow runway, with which 19 airports
were detected correctly. In these 19 airports, impervious areas covered airport runways completely
by visual interpretation, and the overall coverage rate reached 95% (Figure 11). Compared with the
released products, the generation of impervious areas using raw remote sensing data is high-cost and
decreases the efficiency of worldwide airport detection. In summary, global airport detection by the
FROM-GLC10 product is viable and efficient. In the future, improved GLC products should also be
discussed for the improvement of global airport detection.
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Figure 11. Samples of FROM-GLC10 product coverage of airports. (a) Beijing; (b) New Jersey; (c)
northeastern Buenos Aires. Blue masks represent the impervious areas. Background images were
downloaded from Google Maps.

Generating a synergetic GLC map by fusion of different GLC products is a novel thought [55]. In
this paper, only FROM-GLC10 was used instead of a fusion of multisource GLC products, as different
products have various spatial resolutions, date of production, and classification system, such as the
MODIS product (MOD12Q1) with 1 km spatial resolution and all 17 classes of the IGBP legend [56].
The fusion of various GLC products requires different methods and data sources, which inevitably
increase the time and computational expense. Even so, it is debatable whether the integration would
improve the accuracy. In future research, different GLC products should be compared and the fusion
of these products should be systematically discussed.

5.1.2. Selection of Area and Length Thresholds

The selected threshold in spatial analysis has a great impact on block segmentation results: lower
thresholds produce more unnecessary blocks for further analysis, while higher thresholds cause
more airports to be missed. We analyzed the statistics of the number of blocks and airports detected
with different thresholds (Figure 12). It is clear that the length threshold had a stronger effect than
the area threshold. The optimal parameters, as shown in Figure 12, retain the most airports with
the fewest blocks. For northeastern Buenos Aires, the original thresholds were optimal, while for
Beijing, the optimal thresholds were 0.14 km2 and 2.2 km. However, as New Jersey airports were
numerous and variable in size, it was more difficult to choose an appropriate threshold that constrains
all airports. Country development levels and government policy together influenced the airport size
and number [57]. From a global perspective, the choice of area and length threshold were suitable and
generalized, but need to be adjusted appropriately for specific areas.
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5.2. Aircraft Detection

5.2.1. Parameters of the Sliding Window in Faster R-CNN

The presence of agminated aircraft was an important basis for distinguishing airports from other
candidate regions. Thus, it was necessary to detect as many aircraft as possible. A sliding window
searching strategy was adopted for aircraft detection from the full-size candidate airport images with
Faster R-CNN. There were two parameters in the processing: the sliding window’s length and stride.
The length of the sliding window in this study was 2048 pixels, which was the same as the length of
the training images and ensured that the relative size of aircraft was constant. For images with the
same resolution, enlarging the length of the sliding window would reduce the relative size of aircraft.
Previous research suggested that smaller objects decrease the efficiency of the RPN module, thus, the
detection accuracy of Faster R-CNN dropped as the object’s relative size became smaller [52].

The stride of the sliding window should be smaller than the window’s length to make sure there
is some overlap between two adjacent windows. The overlap ensured aircrafts located in the boundary
of two neighboring windows could be detected correctly. We adjusted the window’s stride, which
varied from 1152 pixels to 2048 pixels with a 128-pixel interval. Three airports (Figure 9a-1, Figure 9b-1,
and Figure 9c-1) were taken as examples distributed in three experimental areas and the total number
of aircraft was 374. We calculated the recall and accuracy of aircraft detection after final CNN refining
with different strides (Figure 13). It is clear that the recall decreased with increasing window stride and
the accuracy is stable.
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5.2.2. CNN Reclassifier for Accuracy Improvement

We not only aimed at detecting as many aircraft as possible, but also at achieving high accuracy.
A 0.5 probability threshold was selected in order to detect as many aircraft as possible, but this
resulted in substantial overestimation in which many background regions were wrongly classified as
aircraft. Therefore, two-state CNN classifiers were trained for aircraft refining. In this paper, the CNN
classification was simplified as there are only two classes, namely, aircraft and nonaircraft. Results
show that the CNN reclassifier is effective for refining the Faster R-CNN output. For worldwide airport
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detection, as more new cities are detected using Faster R-CNN, the reclassifier training samples can be
expended, further improving the overall accuracy.

To improve the identification accuracy, previous publications have focused on refinements of the
network structure used in the Faster R-CNN and CNN classifier. Most of them have been proved to be
effective, such as the single-shot multibox detector (SSD) [58] and you only look once (YOLO) [59].
All of these network structures could be tested and compared to determine the best detector. Not
only network structure can be explored; multiview images could also be considered, such as Google
street view (GSV). Previous publications have proposed scene classification and object detection using
GSV [60–62]. Thus, GSV, as an available and free resource, has potential for building an excellent
airport detector in future work.

5.3. Pros and Cons

For the purpose of fast and automatic worldwide airport detection, we proposed a released RS
product-based airport detection workflow. The possibility of airport detection from FROM-GLC10
product has been discussed in Section 5.1.1. Here, we discuss the pros and cons of the proposed
workflow. The workflow has the following merits: (a) the spatial analysis method is effective for
extracting global candidate airport regions with decreased data volume and calculating costs; (b)
extracting the visual information from high-resolution RS imagery by deep learning is one of the best
ways to obtain information about geographical objects. For instance, the blocks containing aircraft
mainly belong to airports; (c) in the workflow, several datasets were included, such as FROM-GLC10,
OSM road networks, OSM buildings, and global DSM. The worldwide candidate airport regions can
be constrained with FROM-GLC10, OSM provided 2D geographical information, and DSM provides
the third dimension. Thus, compared with previous studies, we integrated several released products
in order to avoid processing and analyzing original remote sensing data directly, which improved the
efficiency of the proposed workflow for the purpose of automatic and fast worldwide airport detection.

The proposed methods face the following problems: (a) the impacts of inaccurate products. The
proposed method relies significantly on FROM-GLC10 products, OSM datasets, and global DSM, and
error accumulates with the integration of these products, which has a great impact on the accuracy of
airport detection; (b) The time differences among products. Due to the limitation of data acquisition,
the remote sensing imagery and products were collected at different times (the FROM-GLC10 product
was updated in 2017 and high-resolution remote sensing imagery was collected in 2019). Thus, newly
built airports might not be detected. In a future study, a quick registration and partial update method
should be explored for the FROM-GLC10 product. Moreover, research on GLC has always been a hot
issue and improved GLC products are released every year. Using GLC products with higher resolution
and precision can effectively improve the detection results of the proposed method in the future.

6. Conclusions

In this paper, we presented a hierarchical method for fast and automatic airport detection around
the world, including broad-scale detection of impervious runway surfaces and narrow-scale detection
of aircraft. Previous studies focused on the airport detection algorithm in remote sensing imagery. In
this approach, impervious areas were identified through GLC products, then spatial analysis was used
to better constrain the candidate airport regions. Nonground regions were extracted and removed with
the help of DSM and OSM buildings. After that, the ground regions were segmented by the OSM road
network. Finally, spatial cluster-based adjacency analysis was used to constrain the candidate airport
regions. In the first step, the candidate airport regions were extracted by analyzing the geometrical
characteristics of segmentation blocks. In the second step, the Faster R-CNN method was used for
aircraft detection with 88.90% mean user’s accuracy, which could be improved to 94.21% using a CNN
reclassifier; areas containing many aircrafts were then defined as airports. The experimental areas
contained 20 airports with blocks longer than the 2 km threshold, 19 of which were detected correctly.
The missing airport can be attributed to the quality of the GLC map. Thus, the overall workflow is
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reliable and can be improved further through the use of higher quality GLC product and more efficient
network structure of DL.
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